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The problem of Josephson vortex generation by an applied current pulse injected through the 
edge of a long junction is solved. The spatial distribution of the phase difference between the 
junction borders after pulse action is found for a low pulse intensity, and the corresponding direct 
scattering problem associated with the effective equation of motion-the sine-Gordon equation- 
is solved. The inverse scattering technique makes it possible to determine the parameters of the 
generated solitons (free vortices and vortices bound to the edge of the junction) and the 
continuous spectrum excitations (the plasma waves). Perturbation theory is used to account for 
the influence of auxiliary factors such as dissipation and the d.c. component of the injected 
current on vortex dynamics. The condition that facilitates actual penetration of the vortices into 
the long junction is found. 

1. INTRODUCTION to the problem of pulsed excitation of Josephson vortices in 

A significant number of experimental and theoretical 
studies (see, for example, Refs. 1-3) have been devoted to 
investigations of the dynamics of Josephson vortices (mag- 
netic flux quanta or fluxons) in long Josephson junctions 
(LJJ). Several methods can be used to experimentally excite 
vortices in a long junction. One such method involves inject- 
ing an external current through the junction edge; as a rule 
the injection current contains d.c. and pulsed compo- 
n e n t ~ . ~ - ~  The resulting excitation of Josephson vortices ex- 
hibits a threshold. The pulse area must exceed a certain criti- 
cal value in order to generate vortices. This dynamical 
process was investigated numerically by Sakai and Samuel- 
sen7 within the framework of the familiar simiinfinite Jo- 
sephson junction model based on the sine-Gordon equation 
(with a dissipative term) for the nondimensionalized mag- 
netic flux p ( x ,  t)  . 

Wt-cp=+ sin cp+ycp,=O, r>O, (1)  

which is supplemented by the boundary condition 

The coordinate x,  directed parallel to the junction, and the 
time tare measured in equation ( 1 ) in units of the Josephson 
depth of penetrationil, and the inverse Josephson frequency 
a,. The parameter A phenomenologically accounts for dissi- 
pative processes caused by tunnelling of normal quasiparti- 
cles through the junction, - $h ( t )  is the extraneous current 
injected through the junction edge ( x  = 0) .  The same model 
describes the action of an external oscillatory magnetic field 
on the junction. 

Sakai and Samuelsen7 carried out a numerical analysis 
of the case 

where ha is the d.c. component of the current, while h, ( t )  is 
the pulsed component with a triangular waveform, which is 
similar to the experimental conditions of Refs. 4-6. This 
study also developed a semianalytic approach for determin- 
ing the threshold conditions for vortex generation in LJJ. 
However this is not a valid approach, a point already made in 
Ref. 7 itself. We will provide a consistent theoretical solution 

the present study. o u r  approach assumes aahort duration T  
of the pulsed injection current component h, ( t )  as well as a 
small d.c. current component ha (in this case the amplitude 
of the pulsed injection current may reach substantial levels 
ofthe order of T - I ) .  

The present treatment and the attendant results have, in 
our view, a much broader applicability than to nonlinear 
wave generation in long junctions. Indeed an analysis of any 
physical system that allows nonlinear soliton excitations to 
exist must deal with the problem of their generation. The 
situation where an intense and generally localized pulsed 
action drives a nonlinear system from equilibrium corre- 
sponds to the experimental conditions. The action of such an 
external force will generate a wave field distribution from 
which solitons and other system excitation result. If the sys- 
tem is described (after the end of external pulse action) by 
an exactly integrable equation, such as the sine-Gordon 
equation, the inverse scattering technique (IST) makes it 
possible, in principle, to calculate exactly the spectrum of 
the resulting excitations based on the wave field configura- 
tion established by the end of pulse action. In this connection 
it should be noted that a detailed analysis of some of the 
simplest initial sine-Gordon wave field configurations was 
carried out from the viewpoint of IST in Ref. 8, 9. 

This clearly indicates that the parameters of the excited 
solitons are, in the final analysis, determined by the charac- 
teristics of the pulsed force, i.e., its intensity and duration. 
To the best of our knowledge no consistent analytic investi- 
gation of such pjroblems has yet been carried out. 

In view of the fact that this formulation of the soliton 
generation problem most adequately corresponds to an ex- 
perimental situation independent of the specific form of the 
nonlinear, nearly-integrable system, we will briefly outline 
the general solution scheme. The problem of the linear re- 
sponse of a system to an external pulsed action is examined 
in the first stage, asssuming that the system was in equilibri- 
um (q,  = q,, = 0)  prior to the action of the force ( t  = O) ,  
and the spatial wave field distribution at time t = T is also 
calculated. It is obvious that such a calculation will be valid 
only if the force acts for a time T  short enough so that the 
excited pulse cannot "creep away" due to dispersion. It is 
important that the analysis of the response to the external 
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action can be carried out in the linear approximation. Then 
using the derived field configuration as the initial condition 
for the Cauchy problem for t> T we solve the direct scatter- 
ing problem within the framework of IST. This makes it 
possible to obtain a set of so-called scattering data of the 
discrete and continuous spectra; these describe the further 
evolution of the pulse. Specifically, if we know the discrete 
spectrum it is possible to determine completely the param- 
eters of the excited solitons. Since the IST is strictly valid for 
exactly integrable systems only, the auxiliary factors (re- 
sponsible for the loss of exact integrability) can be investi- 
gated within the framework of perturbation theory" by tak- 
ing the solution of the Cauchy problem as a zeroth 
approximation. This represents the third stage in solving the 
soliton generation problem. 

The specific results obtained in the present study relat- 
ing to Josephson vortex (fluxon) generation by a current 
pulse injected through the edge of a semiinfinite junction can 
be applied directly to a description of soliton generation in 
other nonlinear systems described by a perturbed sine-Gor- 
don equation (for example, easy-plane magnetic and nema- 
tic liquid crystals), when the spatial range of external pulsed 
action is significantly less than V, T, where V, is the highest 
group velocity of the linear excitations. 

2. Initial pulse waveform and solution of the inverse 
scattering problem 

Bearing in mind the use of the inverse scattering tech- 
nique we will continue Eq. ( 1 ) onto the semiaxis x < 0 by 
q,( - x,t) = q,(x,t). Then the following equation will corre- 
spond to Eq. ( 1 ) with boundary condition (2 )  

For definiteness we will represent the pulsed injected current 
component h ( t )  as a square-wave pulse: 

Taking the parameter h, in (3) to be small we will first con- 
sider the case h, = 0. 

The term sin q, in Eq. (4) remains of order unity over 
the time T during which the local pulsed force (5 )  acts, 
while under the conditions 

the terms p,, , p,, in equation (4) are large (we note that the 
characteristic spatial dimensions of the excited field region q, 
are of order V, T- T g  1 ) . Consequently during the action of 
the pulsed force Eq. (4)  subject to (6)  can be replaced by 

The linear wave equation (7) defined on the entire x axis is 
easily solved and at the time T when the pulse ends the con- 
figuration of wave fields q, and p, takes the form (see Fig. 1 ) 

cp ( x ,  T )  = i l ,a { -x  sgn x+' / , (x+T) [ l + 1 / 4 y ( x - T ) ]  sgn ( x + T )  
- t i ! ,  ( x - T )  [1-'I4y ( x + T ) l  s g n ( x - T ) ) ,  (8) 

cpt(x, T)= i !4a( l - ' l , yT)  [ s g n ( x + T ) - s g n ( x - T ) ]  . ( 9 )  

In order to describe the later evolution of the pulse we 
will examine the functions (8) ,  (9)  as initial conditions for 
the complete equation (4) and will take the parameter y to 
be small. Then Eq. (4)  is close to an exactly integrable non- 
linear sine-Gordon (SG) equation for t > Tand the IST can 
be used to solve the Cauchy poroblem." In the inverse scat- 
tering technique the sine-Gordon equation is related to the 
linear scattering problem 

{cp, c p t ;  h )  Y ( x ,  t ;  h )  =O 

for the auxiliary two-component function 

Y ( x ,  t ;  a )  = y 1 ( x 3  t ; h )  ) , ( Y 2 ( x , t ; h )  

which il is the spectrg parameter, which takes real positive 
values. The operator L takes the form 

h 

where &a (a = 1,2,3)  are the Pauli matrices, while I is the 
unit matrix. When conditions (6)  hold the direct scattering 
problem for the initial conditions (8),  1 9 )  can be solved 
approximately. For this process we write LY = 0 for ( 10) as 

( W d . = a  ( x ,  h )  Y , + P  ( x ,  h) Y, ,  (11) 

( Y ~ ) ~ = - a ( x ,  h )  V 2 - P * ( x ,  A) Y , ,  (12) - 

where 

i 1  
I3 ( x ,  = 7 L (9,-rpt) - -- 8h sin r p ,  (14) 

where the asterisk denotes complex conjugation. In order to 
find the scattering data we will specify the asymptotic values 
of the function Y for x = + cc , i.e., we will construct the so- 
called Jost function: 

FIG. 1.  Distribution of wave fields q, and q,, at the time t = T 
when the pulsed force stops. 
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where k(A) = A - 1/4A represents the wave number in the 
sine-Gordon equation. The coefficients b(A) and a(A) are 
called the backward and forward scattering amplitudes, re- 
spectively. After this normalization has been chosen the so- 
lution of Eqs. ( l l ), ( 12) for x < - Tobviously has the form 
of (15). 

As the subsequent analysis will demonstrate it is suffi- 
cient to know the behavior of the amplitude a(A ) for k- 1, 
i.e., near the point A = 1/2, in order to investigate the 
vortex generation process, i.e., in order to determine the 
threshold conditions behind discrete spectrum develop- 
ment. For k( T -' the direct scattering problem can be 
solved approximately in each of the following intervals 
specified by initial conditions (8),  (9). 

Interval - T <  x < 0. Introducing the notation y = B 
(X + T), where B = a (  1 - fyT), we will represent the ini- 
tial conditions (8), (9)  as 

where y- 1. Taking into account that B- T -' ) 1 virtue of 
(6) we will find the solution of Eqs. ( 11 ), ( 12) with the 
initial conditions ( 17) as the first terms of a series in powers 
ofB -': 

The constant A is determined from the condition for match- 
ing the functions ( 18) with the functions ( 15) at x = - T 
(here y = 0): 

The interval 0 < x  < T. We introduce the notation z 
= B(x - T) and represent the initial conditions (8),  (9) as 

We note that by virtue of condition (6b) z- 1 in ( lo) ,  since 
B 9  I, BT- 1, as before. An approximate solution of Eqs. 
( 1 I)-( 14) in this interval takes the form 

where 

iz iyCl z2 A , ( z ) = - $ - ( h e - i z + -  --- 
4h ) 8B (P+ 2 ~ l . z )  + D,,  

while the constants C, ,  C2, Dl and D2 must be determined 
from the matching conditions of the Jost functions in each 
order in the small parameter B -'. In lowest order we have 

In order to simplify the process of obtaining final results we 
will express the Jost coefficient a(A) directly through the 
constant Dl and D, determined in (23) and (24). We find 
from the matching condition of the functions (2  1 ), (22) and 
( 16) for (x = T) (i.e, for z = 0) 

a (A) e - i W L ) T / 2  = BT ihA HI' 
Y z I r = o = A c o s - - - s i n -  

2 2B 2 

We have used (25) in writing (26). By matching the func- 
tions (2 1 ), (22) with the functions ( 18) at x = 0 it is possi- 
ble to find D, - Dl to first order in B - I ,  which finally yields 

BT yBT2 BT 
a ( k ) = e i k ' { ( 1 - $ 1  c o s - + -  

2 4 
sin - 

2 

k=k ( h )  = A-1/4h. 

It is possible to find the amplitude b(A) analogously: 

b (A) = e - i kT /2  BT hA BT -iA sin --- - --- cos - + D2+D, 
2 2B 2 

We again point out that the results (27), (28) are valid un- 
der conditions (6) and also for k & T - I .  

3. ANALYSIS OF SCATTERING DATA: FREE VORTICES AND 
VORTICES BOUND TOTHE EDGE OFTHE JUNCTION 

We can easily determine that in the lowest approxima- 
tion in T (or B - I )  and for k&B -', T the scattering data 
(27), (28) formally correspond to the initial condition (9) 
together with p(x,  T) = 0, which were calculated in Ref. 8. 
However, as will become clear from the analysis below, 
terms of order T, B -' which differentiate our result from the 
result of Ref. 8, have a substantial influence on the free vor- 
tex excitation threshold. 

According to the IST results the zeros of the function 
a(A) corre~pond to soliton excitations; these lie in the upper 
half-plane of the complex spectral parameter A. A stationary 
breather-the fluxon and antifluxon bound state oscillating 
at the frequency cos p and having an amplitude 0 <p < T/  

2-corresponds to the complex conjugate pair of roots 

The only zero of the function a(A) lying on the imaginary 
axis at the point 

corresponds to a free fluxon travelling with speed v (v2 < 1 ) : 

rptl ( x ,  t )  = 40 arctg exp 

wherea = + 1 a n d l  = vt + &(0) are the polarity and coor- 
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dinate of the center of the vortex, respectively. In this prob- 
lem by virtue of the condition 

the free fluxons will appear only in pairs with polarities + 1 
and velocities + u. It is in fact obvious that only a fluxon 
travelling at a positive velocity (having the polarity a = sgn 
a )  is physically meaningful (its imaginary partner travelling 
with negative velocity is its "mirror image" with respect to 
the junction edge). Similarly, for x > 0 the breather solution 
in fact describes a single fluxon oscillating in the effective 
potential well near the junction edge. 

Substituting expression (27) into a ( k )  = 0 yields 

The solution of Eq. (30) with Im A > 0 yields the character- 
istics of the excited solitons. A simple analysis shows that the 
breather (a  fluxon oscillating near the junction edge) is gen- 
erated by the injected current pulse if the pulse area exceeds 
the threshold 

(lalT)thr=2~(1+~TT). (31a) 

Similarly, from (30) we obtain the threshold condition for 
generation of bound vortices: 

It is clear from (3  la )  and (3  lb)  that the presence of dissipa- 
tion in the system requires an increase in the injected current 
power in order to generate the same number of fluxons. The 
evolution of an initial pulse in a dissipative sine-Gordon sys- 
tem was studied numerically in Ref. 12, which also noted 
this same trend. 

The search for the threshold conditions for the creation 
of free fluxons (29) and for determination of their initial 
velocities is of fundamental interest. Analysis of Eq. (30) 
indicates that the corresponding threshold condition takes 
the form a ( k  = i) = 0, i.e., free fluxons are generated when 

The boundary conditions for generation of N free fluxons 
can be found analogously: 

lalT>iTNT=2n(2N-I) (ISyT) +4T/n (2N-I). (32b) 

The polarities of all generated fluxons match the sign of the 
effective amplitude a. 

In addition to vortices the applied current pulse also 
generates non-soliton excitations (plamsa waves) described 
by the continuous spectrum in terms of the inverse scattering 
technique. The primary characteristic of the continuous 
spectrum is the scattering amplitude (28). Specifically, at 
the generation threshold for a single fluxon, i.e., when the 
equality in relation ( 32a) holds, we have (k  < T ' ) 

The fundamental physical characteristic of these waves is 
the spectral density Z? (k )  = dE,,/dK of their energy E,, . 
According to Ref. 11 

Using relation (34) it is possible to estimate the energy 
contained in the nonsoliton part of the pulse-generated wave 
field as 

m 1 

Comparing (35) to the energy E ,  of the created fluxon (in 
our notation E ,  = 8) we find that only a small fraction 
( - T )  of the pulse energy is expended in the creation of the 
fluxon, and all remaining energy is expended in generating 
the relatively "useless" nonsoliton wave field. We note in 
this connection that the semianalytic technique used in Ref. 
7 did not take account of the nonsoliton part of the excited 
wave field. 

In analyzing the dynamics of the intial pulse for times 
t > Twe have so far neglected the influence of dissipation on 
the nature of fluxon motion (dissipation entered only into 
the threshold characteristics). In fact oscillations of the 
fluxon bound to the junction edge and described by the 
"half-breather" will experience damping slowly due to dissi- 
pation, and this bound state vanishes as t- cc , i.e., the fluxon 
is anniliated with its image. Regarding the free fluxon gener- 
ated by the pulse when condition (32) holds, the motion of 
this fluxon is decelerated by dissipation and by a certain time 
to it ends up at a point located at a distance of 

from the junction edge, where u is the velocity at which the 
vortex is created." If the weak attractive force Fa,,, of the 
fluxon travelling away from the junction edge towards its 
mirror image is ignored, t, = cc . In fact to is finite and under 
the action of force Kt,, the fluxon will eventually travel 
backward, enter a bound state and experience damping due 
to dissipation. The expression for the force Fat,, for 6) 1 ( f  is 
the effective vortex coordinate measured from the junction 
edge) is well known13: 

If, in addition to dissipation, we account for the small d.c. 
component h, of the applied current injected through the 
junction edge, the resulting fluxon may go to infinity. At the 
same time it is easily demonstrated that when h,#O an auxil- 
iary force 

will act on vortex (29) in addition to the attractive force Fat,, 
(37). The force F,,, is repulsive when oh, > 0, i.e., ah, > 0 as 
clearly indicated from (38). It follows from (37) and (38) 
that in this condition the total force Fat,, + F,,, acting on 
the fluxon consists of the force of attraction to the junction 
edge in the range (< 6, and the force of repulsion in the 
range 6 > 6, , where 

(we have assumed that In 1 h,l- ' > 1 ) . It is clear that the re- 
sulting fluxon will go to infinity if g,, defined in (36), exceed 
6,. We can therefore conclude that when dissipation is pres- 
ent a fluxon will escape from the junction edge if its initial 
velocity u exceeds the critical value 
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According to (30) and the results of the IST, the initial ve- 
locity of the generated vortex can be represented as 

where ko(ko2 > 1) is the root of the equation a(iko) = 0. As 
follows from ( 27 ) , 

cos(BT/2) + (yBTZ/4)  sin ( B T / 2 )  
k o = - B  -- 

sin (BTI2)  + ( B T / 2 )  cos (BT/2) 
a 

. . 

The condition v2 > v,, suggests that in addition to the thres- 
hold values a,, a,, ... (see (3  1 ), 32) ) there is a certain auxil- 
iary threshold value a, > a ,  for the fluxon going to infinity. 
If y lnlhol-'< 1, then a. lies in the range a ,  <a,  <a2. In 
principle when T- 1 we could have a. greater than a,. If 
a,<a<a.,i .e. ,  v2<vCr2 (specifically,when ylnlhol-'< I ) ,  
the fluxon will return to the junction edge and will be anni- 
liated there due to dissipative losses. 

In actual experiments a long Josephson junction will 
have a long, yet finite length L. Hence all preceding results 
will be valid when L go. If L <go, which could occur with 
very low dissipation, the condition for a vortex to arrive at 
the other junction edge appears as I hol > eCL and is indepen- 
dent of the initial vortex velocity. 

The condition for each subsequent fluxon going to in- 
finity can be obtained analogously. 

The authors wish to express their gratitude to A. V. 
Ustinov for discussions relating to the present study. 
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