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An analysis is made of the stability of soliton configurations using a discrete q, model. It is shown 
that destruction of equilibrium structures represents soliton-antisoliton pair annihilation in the 
absence of a phason mode in a spectrum of small vibrations. The role of temperature and quantum 
fluctuations is investigated. 

Considerable progress has been made recently in the 
study of structure states deduced using discrete nonlinear 
one-dimensional models. For example, the Frenkel-Kon- 
torova (FK) discrete model has been investigated sufficient- 
ly thoroughly. Detailed reviews can be found in Refs. 1 and 
2. In particular, it has been shown that in a certain range of 
parameters the discrete effects can result in pinning of regu- 
lar soliton configurations and can also give rise to stochastic 
structure states. For example, Peyrard and Aubry3 investi- 
gated numerically the characteristics of a one-dimensional 
model of atoms in a periodic potential such as the gap in the 
phonon spectrum, the coherence length, the Peierls-Na- 
barro barrier, and the pinning force in the vicinity of a transi- 
tion corresponding to a discontinuity of analyticity. It was 
shown in Ref. 3 that there is a critical value of the amplitude 
of a periodic external field A, in which a periodic soliton 
structure is pinned and the spectrum of small vibrations ex- 
hibits a gap A: 

A ( A )  -- (A-A,)", 2-1. 

I f2  <A,, a soliton structure is not pinned and can glide free- 
ly along a chain. A phason mode then appears in the spec- 
trum of the frequency of atomic vibrations. The transition 
from pinning to depinning was considered in Refs. 4 and 5 in 
describing a metal-insulator transition in Peierls chains. 

We consider some properties of a discrete p 4  model 
used widely in the description of structural transitions in 
ferroelectrics, proton transport processes in quasi-one-di- 
mensional chains with hydrogen bonds,6 etc. 

We show numerically that in a discrete chain of har- 
monically coupled particles, which are in a two-well poten- 
tial, the attraction between solitons and antisolitons is expo- 
nential. This interaction has the effect that for any density of 
solitons there is such a critical value of the parameter of the 
one-particle potential Kc, above which the state of a system 
with a given soliton density is dynamically stable, whereas in 
the range K < Kc, we can expect annihilation of soliton-anti- 
soliton pairs resulting in the appearance either of a homoge- 
neous state or of a structure with one soliton. 

We show that the spectrum of small vibrations of atoms 
in a soliton configuration chain does not contain a phason 
mode in a wide range of the parameter K.  This demonstrates 
the absence of unpinned soliton structures in the discrete p 
model, in contrast to the FK discrete m0de1.l.~ 

We report an investigation of the influence of tempera- 
ture and quantum fluctuations on the structure states pre- 
dicted by this model using the approximation of a self-con- 
sistent phonon field. We shall show that temperature and 

quantum fluctuations lower the threshold for the annihila- 
tion of soliton-antisoliton pairs. 

The Hamiltonian of this model is 

wherep, and u, are the momentum and displacement of the 
nth atom measured from the center of a two-well potential; y 
is the elastic constant of the chain; Vo and 2b are the energy 
barrier and the distance between the two wells of a one-parti- 
cle potential. Introducing a dimensionless variable 
q,, = u,/b, as well as the parameters w i  = y/m and 
K = Vo/yb ', we shall consider the following Hamiltonian: 

Steady-state equilibrium states of a chain are described by 
the following equations: 

which can be written in the form of a discrete mapping 

The ground state of the model described by Eq. (2)  is doubly 
degenerate and corresponds to the position of the particles 
either in the wells on the right-hand side (p, = 1) or in the 
wells on the left-hand side (p, = - 1 ) . In the simplest case, 
solitons are related to a transition of some of the particles 
from the state q, = 1 to the state p = - 1. An antisoliton 
corresponds to a transition p, = - 1 -+pH = 1. A special 
feature of the q, model is that solitons and antisolitons alter- 
nate rigorously along a chain. In particular, this is one of the 
differences between the q, and the FK models, because in 
the latter case the alternation of compression and dilatation 
solitons is not essential and, moreover, the structure of the 
ground state obtained in the FK model always includes ei- 
ther solitons or antisolitons. 

We investigate dynamically stable equilibrium configu- 
rations of the model of Eq. (2)  by the gradient meth~d.~ . ' -~  
In this method we solve a system of equations 

qn=-a%lacpn, n=i -N .  (4)  
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FIG. 1. Dependence of the energy of a chain E, on the distance between a 
soliton and an antisoliton for different values of K: 1 ) 0 5; 2) 0.7; 3 )  0.9; 4) 
3. 

If t-  co , all the quantities {p, ) tend to the values at which 
the investigated system has a stable equilibrium position. 

The first step is the interaction of a soliton and an anti- 
soliton. We considered this step for a chain of 30 particles. 
We selected the initial conditions in integration of the system 
of equations (4)  so that one soliton and one antisoliton 
should form in the chain. Variation of the distance between 
the centers of the soliton and antisoliton was used in calcu- 
lating the energy of the chain. The results of this calculation 
are plotted in Fig. 1 for different values of the parameter K. 
The ordinate gives the quantity ln(E,, - E,, ), where El, is 
the energy of a chain in which the distance between solitons 
and antisolitons is equal to 10 chain periods. Such a selection 
of the origin for the measurement of the energy is made be- 
cause in the range n > 10 a change in n by unity changes the 
energy in the 14th or 15th decimal place, which is at the limit 
of the precision attainable on a computer. It is clear from 
Fig. 1 that the energy of interaction of such a soliton and an 
antisoliton decreases exponentially as the distance between 
them is reduced, which is in agreement with the results ob- 
tained in the continuum approximation. lo*'' Next, as we can 
see from Fig. 1, a soliton and an antisoliton can approach 
only to a certain finite distance. For a fixed value of K their 
approach to a distance less than a certain critical value re- 
sults in mutual annihilation and the system goes over to a 
homogeneous state. In reality, such a transition releases an 

FIG. 2. Regular soliton structure in a chain of 30 particles. The upper part 
of the figure shows a soliton structure above the annihilation threshold of 
a pair in the case when K = 0.3250. The lower part of the figure shows a 
structure after annihilation for K = 0.2999. 

FIG. 3. The gap in the spectrum of small vibrations of a structure shown in 
the upper part of Fig. 1 as a function of the parameter K in the vicinity of 
the soliton-antisoliton annihilation threshold. 

energy which is used to create dynamic excitations of the 
phonon type, which is discussed later. 

The opposite is also true, i.e., a reduction in the param- 
eter K for a fixed distance n between the centers of a soliton 
and an antisoliton to a value Kc, (which depends on n )  re- 
sults in the annihilation of the soliton-antisoliton pair. If 
K > Kc,, both the soliton and antisoliton are pinned and the 
force of attraction between them is compensated by the force 
of pinning to the lattice. In particular, this means that a re- 
duction in the parameter K reduces the pinning force faster 
than the attraction force. Naturally, for a regular soliton 
lattice (i.e., a regular sequence of solitons and antisolitons) 
there should be a critical value Kc, below which the mutual 
annihilation of solitons and antisolitons takes place. An ex- 
ample of such a transition is shown in Fig. 2. We started with 
an initial structure of a chain consisting of 30 particles and 
containing two solitons and three antisolitons in the case 
when K = 0.325 (upper part of Fig. 2). The lower part of the 
same figure shows the structure of the same chain when K is 
reduced to K = 0.299, i.e., after the annihilation of two soli- 
tons and two antisolitons. We then investigated the behavior 
of the gap in the spectrum of small vibrations of particles in a 
soliton equilibrium configuration in the vicinity of the anni- 
hilation threshold. The gap in the vibration spectrum was 
defined as the smallest eigenvalue of the system 

Figure 3 shows the dependence of the lowest frequency 
in the spectrum of vibrations described by Eq. (5), repre- 
senting a chain with the Hamiltonian of Eq. (2); this lowest 
frequency is plotted as a function of the parameter K of the 
one-particle potential. As a stable equilibrium structure we 

FIG. 4. The gap in the spectrum of small vibrations of a one-soliton struc- 
ture as a function of the parameter K for a chain of 50 particles. 
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used that shown in Fig. 2. We can see that in the vicinity of a 
transition (Kc, - 0.3 ) the lowest frequency a,, exhibits 
considerable softening. However, this frequency does not 
vanish completely (if we allow for the calculation error). 

We investigated the pinning conditions in a one-soliton 
structure by finding how the gap in the spectrum of small 
vibrations of a chain consisting of 50 particles depends on 
the parameter K (Fig. 4).  On the basis of this dependence we 
concluded that a one-soliton configuration in the discrete q, 
model is pinned when K is reduced to values of - lo-'. On 
further reduction in K the width of a soliton becomes so large 
that it is necessary to select very long chains simply in order 
to avoid the influence of the boundary conditions. 

We shall now consider the problem of evolution of an 
equilibrium structure subject to allowance for dynamic exci- 
tations of a chain. We studied this evolution by numerical 
analysis of the solutions of the equations of motion of atoms 
in a chain containing N = 250 particles, subject to the fol- 

lowing cyclic boundary conditions: 

The initial conditions were selected in the form of a stable 
regular soliton structure consisting of two soliton-antisoli- 
ton pairs. We assumed that all the solitons have a finite ve- 
locity sufficient to overcome the pinning barrier. This veloc- 
ity corresponds to the following initial velocities of the 
atoms in a chain: 

Figure 5 shows the instantaneous configurations of this 
chain at various moments. We can see that initially a soliton 
structure moves as a whole at a velocity v. Next, the influ- 
ence of attraction between solitons and antisolitons results in 

FIG. 5. Results of numerical integration of Eqs. ( 6 )  
carried out on the assumption that K = 0.05 and 
v = 0.005. 
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their mutual approach and annihilation. After a finite time 
(in the present case, after t -  15 000) this soliton structure is 
destroyed and only phonon-like excitations remain in the 
system. We integrated the system of equations (6)  by the 
variable-order Adams method using variable steps. The pre- 
cision of these calculations was controlled by retaining a 
constant energy integral 2 = const throughout a numerical 
experiment, and it amounted to lo-'. 

The results reported above on stable structures can be 
obtained also by a classical approach at zero absolute tem- 
perature. If we allow for finite temperatures and quantum 
effects, a numerical analysis of possible equilibrium configu- 
rations of the p model and of its stability become much 
more complicated. In the present study the influence of tem- 
perature and quantum fluctuations is discussed using the 
approximation of a self-consistent phonon field, which we 
employed earlier in a study of the FK m ~ d e l . ~ . ~  In this ap- 
proximation the system of equation2 governing equilibrium 
positions of particles in a chain (dZ/d$, ) = 0, where the 
brackets denote averaging of an effective quadratic Hamilto- 
nian, reduces to a system of equations dp/dp,  = 0, where 
is the renormalized interaction potential: 

FIG. 6. Stochastic soliton structure obtained by solving Eqs. (9)-( 11) on 
the assumption that K = 6 ,  c = 0.5, and T = 0. 

force and the threshold for the annihilation of soliton-anti- 
soliton pairs. 

A numerical analysis of the solution of Eqs. (9)-(11) 
was made for a chain of 89 particles. At T = 0 and for the 
quantization parameter c = 0.5 we formed the random soli- 
ton structure shown in Fig. 6. This structure was obtained as 
a solution of Eqs. (9)-( 1 1 ) by the method described in Refs. 
8 and 9. 

It should be noted that the solitons in Fig. 6 are much 
narrower and this is due to the fact that the parameter K is 
considerably greater (K  = 6) and that soliton-antisoliton 
pairs are far from the conditions favoring annihilation. 
Heating a structure ( T # O )  reduces the value of K, the first 
to be annihilated are soliton-antisoliton pairs separated by 
the shortest distances. The structure formed after annihila- 
tion of a soliton-antisoliton pair in the case when T = 6 is 
shown in Fig. 7. Therefore, our numerical analysis of sto- 
chastic soliton structures carried out using the discrete p 
model and allowing for thermal and quantum fluctuations 
predicts the annihilation of solitons and antisolitons which 
are of local nature. An increase in the temperature of a regu- 
lar soliton structure causes annihilation of the pairs which is 
of global nature. 

The results obtained on the local destruction of random 
structures are confirmed also by a numerical analysis carried 
out by the molecular dynamics method in the case of a chain 
consisting of 250 atoms. The initial conditions were in the 
form of a dynamically stable soliton structure shown in Fig. 
8. All the atoms in the chain were assumed to have a certain 
initial velocity given by 

Equation (8)  was derived using a pseudoharmonic ap- 
proximation in which only the mean-square fluctuations 
were allowed for: 

In this approximation the spectrum of self-consistent excita- 
tions is found from the equations 

where 

@, (0) =v, sin (2nn. 5/250), n=l-N. (12) 

v, and ey' are the eigenfrequencies and the eigenvectors of 
vibrations of atoms in the chain. The equations describing an 
equilibrium structure are then 

Equations (9)-( 1 1 ) represent a closed system of equations 
determining the equilibrium positions of particles in a chain 
and the spectrum of their small vibrations. 

It should be noted that inclusion of thermal and quan- 
tum fluctuations in this approximation renormalizes the 
one-particle potential, and this lowers the potential barrier 
separating the two wells. If this barrier is equal to K for 
T = f i  = 0, and after allowance for fluctuations we find that 
k, = K(3(p  ) - 1 ) 2 .  Therefore, the influence of tempera- 
ture and quantization reduces the parameter K. This means 
that the temperature and quantum effects lower the pinning 

The Hamiltonian equations of motion (6)  were solved sub- 
ject to the free boundary conditions p,, , = p,, p, = p,. 
In the case of sufficiently low initial velocities u, (u, <0.01) 
the initial structure was found to be stable for all the times 
assumed in the numerical experiment. This was due to the 
fact that the kinetic energy imparted to the chain was insuffi- 
cient to overcome the pinning barrier. An increase in u, re- 
vealed local melting processes (Fig. 8) .  Clearly, such a local 
melting process begins from soliton-antisoliton pairs with 

FIG. 7. Stochastic soliton structure at a finite temperature, calculated for 
K = 6, c = 0.5, and T = 6 .  
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FIG. 8. Results of numerical integration of Eqs. (6) on the assumption 
that K = 0.35 and v, = 0.1 1 (free boundary conditions). 

the shortest internal separation. After a long time there is a 
further annihilation of pairs. 

The influence of thermal and quantum fluctuations on 
the structures predicted by the p model is different from 
that in the case of FK model. As shown in Refs. 8 and 9, 
fluctuations in the FK model result in local melting of a 
chain in soliton regions and not in the annihilation of soli- 
ton-antisoliton pairs. Numerical analysis of the spectrum of 
small vibrations of atoms in a soliton structure, carried out 
over a wide range of the parameter K (up to K = Kc, ) re- 
vealed the existence of a finite gap and the absence of the 
phason mode. The latter implies that there cannot be any 
unpinned regular soliton configurations in the discrete p 
model, in contrast to the FK model. This conclusion is sup- 
ported by the results of a numerical investigation of the 
equations of motion ( 6 )  carried out by the molecular dy- 
namics method. In our numerical experiment a moving soli- 
ton structure was found to break up in a finite time as a result 

FIG. 9. Spectrum of small vibrations of a structure shown in Fig. 7. 

of the soliton-antisoliton annihilation process. 
Figure 9 gives an example of a spectrum of small vibra- 

tions of atoms in a structure shown in Fig. 7. The spectrum 
can be divided arbitrarily into three characteristic zones. 
The lower zone contains local symmetric vibrations of atoms 
in a soliton. The second zone also contains local vibrations, 
which are related to the soliton component and they repre- 
sent a band of antisymmetric vibrations. The upper zone 
contains vibrations of atoms forming regular parts of the 
structure. 

A numerical analysis of soliton structures in the dis- 
crete p4 model shows that there is a critical value of the 
parameter of the two-well potential Kc, (which depends on 
the soliton density) below which the soliton structure is dy- 
namically unstable. For K < Kc, the existing exponential at- 
traction between solitons and antisolitons results in their 
mutual annihilation. The main manifestation of temperature 
and quantum effects in this model are an effective reduction 
in the parameter K and local annihilation of soliton-antisoli- 
ton pairs. 

The authors are grateful to A. F. Sadreev for his interest 
and valuable comments. 
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