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Within the framework of the Landau theory of phase transitions, we investigate the types of phase 
changes which can occur between superconducting phases of the heavy-fermion compounds 
U, -, Th, Be,,. We show that none of these phase changes agree with the experimentally- 
observed phase diagram (x, Tc ), in which there is one second-order phase transition in the region 
x < 1.75% from the normal to the superconducting state and two successive second-order phase 
transitions for x > 1.75%. The overall properties of U, - , Th, Be,, argue in favor of the following 
two scenarios, each of which involves a sequence of phase transitions that comes closest to the 
experimentally established sequence. ( 1 ) For x > 1.75% a second-order phase transition occurs 
from a normal to a superconducting phase with symmetry O( T) x R; then, as the temperature 
decreases, a first-order phase transition occurs to a superconducting phase with symmetry 
D, (C,) x R. Forx < 1.75%, a phase transition of second order occurs from the normal metal to a 
superconductor with symmetry D, (C,) x R. ( 2 )  In the rangex > 1.75% a second-order 
transition occurs from the normal metal to a superconductor with symmetry O(D2), followed by 
afirst-order transition toasuperconductor withsymmetry D,(E) ;  forx < 1.75%, we have a 
second-order phase transition from the normal metal to a superconductor with symmetry D, (E). 

1. INTRODUCTION 
Although about five years have passed since the discov- 

ery of superconductivity in uranium heavy-fermion com- 
pounds, the nature of the superconducting and normal states 
in these compounds remains unclear (see the review Ref. 1 ) . 
What is lacking is an experimental method which would al- 
low the superconducting phases to be identified unambigu- 
ously (i.e., the way unclear magnetic resonance methods 
were used to investigate the superfluid phases of He3). Study 
of the (x,Tc ) phase diagram of the superconducting com- 
pounds U, - , Th, Be,,, which are formed by replacing 
atoms of uranium in UBe,, by thorium, provides important 
information of this sort. These compounds exhibit two phase 
transitions in the range of concentrations 1.75% 
< x < 6%2" (the lines Tca and Tcb in Fig. 1 ) : a transition of 
Tca to a superconducting state, and an additional second- 
order phase transition at a lower temperature Tcb . 

Quite a few attempts have been made to explain the 
mechanism of these t rans i t ion~.~ ,~- '~  In this paper we will 
adopt the most controversial point of view, according to 
which the transition of T = Tcb is a transition between two 
superconducting phases. Our arguments are based on the 
following experimental facts: ( 1 ) Inversion of the magnetic 
field dependence of the lower transition temperature 
Tcb (H) gives rise to a plot3 of the function H(Tcb ) which 
resembles the temperature dependence of the upper critical 
field H,,, ( T ) .  (2)  There is a sudden change of slope in the 
dependence of the lower critical field on temperature at the 
transition point Tcb (Ref. 4). ( 3 )  The line T,, in the region 
x > 1.75% appears to be a continuation of the line Tc in the 
region x < 1.75% (Ref. 11, 14). Anomalous ultrasonic ab- 
sorption has been observed in the vicinity of this line (in 
contrast to the line Tc, ) .5,6,15 (4)  Under pressure, the mini- 
mum in the curve Tc (x)  becomes deeper and shifts to the 
region of larger concentrations, until at a pressure P = 10 
kbar superconductivity disappears entirely in the neighbor- 
hood o f x z  3% even at T = 0. At this pressure, the material 
is superconducting only for concentrations less than this. l4 

The behavior of Tc as a function of pressure14 and concen- 
tration of impurities of other elementsI6 for x <x, differs 
qualitatively from its behavior for x > x, , which leads us to 
believe that near Tc these composition regions correspond to 
different superconducting phases. 

Several possible explanations for this kind of behavior 
have been proposed in the l i t e r a t ~ r e , ~ ~ ~ . ' ~ . ' ~  The authors of 
Ref. 7 claimed that the transition of Tcb was a transition 
between an isotropic (due to impurities) and an anisotropic 
superconducting phase. However, these authors also pre- 
dicted that the splitting of the lines Tca and Tcb had to start 
x = 0, which does not agree with experiment (Fig. 1). In 
Ref. 8 the phase transition of T = Tcb was interpreted to be a 
transition between a superconducting phase with cubic sym- 
metry and a superconducting phase with a tetragonal distor- 
tion, and the anomalous ultrasonic absorption near Tcb was 
associated with oscillations of domain walls separating su- 
perconducting domains with different orientations of the te- 
tragonal anisotropy axes. However, one of the predictions of 
this reference was the absence of anomalous ultrasonic ab- 
sorption near Tcb along the ( 11 1) direction, which again is 
not confirmed by e~periment .~ In Refs. 12,13 a phenomeno- 
logical description of the phase change was proposed in 
terms of a mixture of two superconducting phases possessing 
different symmetries. Some remarks on these last two refer- 
ences will be given in the text of this article. 

Apparently, there is also experimental evidence for an 
alternative point of view, in which the curve Tcb corresponds 
to an antiferromagnetic transition (Ref. 5,9).' For instance, 
the results of experiments on muon spin resonance17 point to 
the presence to T <  Tcb of a very small magnetic moment of 

pB associated with the U atoms. However, the pres- 
ence of this moment is not confirmed by neutron scattering 
and NMR measurements.18 

In this article, we will thoroughly analyze the 
U, ,ThXBel3 phase diagram in the spirit of the Landau 
theory of phase transitions, assuming that the curve T,, is a 
line of transitions between two superconducting states. The 
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FIG. 1.  Schematic (x,T,  ) phase diagram for the phases of U,  _ , Th, Be,, 
(n is the normal state). 

results of our analysis show that none of the possible scenar- 
ios based on this picture-including the ones investigated in 
Refs. 12, 13--can lead to the phase diagram shown in Fig. 1. 
If the transition to the superconducting state proceeds from 
a nonmagnetic normal phase (Sec. 2 and the Appendix), 
then either the line Tcb must be a line of second-order transi- 
tions (see Sec. 3), or there is at least one other second-order 
phase transition line (or even one of first order) in addition 
to the second-order phase transition line Tcb emerging from 
the point where the curves T,, and Tcb split off (see Ref. 4) .  
The possibility of a transition to a superconducting state 
from a magnetic normal state (Sec. 3) also leads to phase 
diagrams which are more complex than the diagram in Fig. 
1. The general conclusion of this paper is that it is not possi- 
ble to explain the phase diagram of U, - , Th, Be,, unambig- 
uously at the present time. Any such explanation would re- 
quire, e.g., additional measurements of the behavior of the 
transition lines for large concentrations of thorium, a test for 
the presence or absence of magnetism for T< T,,, a search 
for possible additional phase transition lines, a more careful 
test to confirm that the line Tcb corresponds to a second- 
order phase transition, etc. 

In this paper we predict and discuss the properties of 
certain superconducting phases and compare them with the 
experimental data (Sec. 4) to determine which is most pre- 
ferable. When we do this, we eliminate all but two scenarios. 
Each of these corresponds to a sequence of phase transitions 
which occur successively as the temperature decreases, and 
each resembles closely what is shown in Fig. 1 .  According to 
the first of these scenarios, for x >  1.75% a second-order 
phase transition occurs from the normal phase to a super- 

'conducting phase with symmetry O(T) XR, followed by a 
first-order phase transition to another superconducting 
phase with symmetry D3(C,) xi?; for x < 1.75% a second- 
order phase transition occurs from a normal metal to a su- 
perconductor with symmetry D, ( C3 ) x R .  According to the 
second scenario, for x > 1.75% a second-order phase transi- 
tion occurs from a normal metal to a superconductor with 
symmetry O(D,), followed by a first-order phase transition 
to another superconducting phase with symmetry D,(E); 
for x < 1.75% a second-order phase transition occurs from a 
normal metal to a superconductor with symmetry D,(E). 
The difference between the phase diagram predicted by these 
scenarios and the one shown in Fig. 1 is that in the former the 
line Tcb is a line of first-order transitions. Observation of a 
latent heat at this transition would put everything in its 
place, because the other properties of these superconducting 

phases do not contradict the experimentally-observed prop- 
erties of the phases of U, - ,Th, Be,,, and their phase dia- 
gram (see Fig. 3) do not contain any additional phase transi- 
tion curves emerging from the point where the curves Tca 
and T,, split off. 

2.TRANSlTlON BETWEEN SUPERCONDUCTING PHASES 
ARISING FROM A NONMAGNETIC NORMAL STATE 

In this section, we will investigate various scenarios in 
which the transition corresponding to the line Tcb in Fig. 1 is 
between superconducting phases which arise directly from a 
normal nonmagnetic state. It is well known l9 that in the case 
of a strong spin-orbit interaction the order parameter of the 
superconducting state can be expanded in terms of basis 
functions from one or several of the irreducible representa- 
tions of the symmetry group of the crystal. For UBe,,, this 
means the following representations of the cubic group 0 :  
two one-dimensional representations A, and A,, a two-di- 
mensional representation E, and two three-dimensional rep- 
resentations F,  and F,. Each irreducible representation has 
its characteristic electron-electron pairing interaction con- 
stant, and consequently its own superconducting transition 
temperature. Therefore, the phase transition occurs from 
the normal state to a superconducting state with an order 
parameter A which transforms according to only one of the 
irreducible representations of the group 0, i.e., the one char- 
acterized by the highest critical temperature. The expansion 
coefficients of the order parameter in terms of basis func- 
tions of this representation are determined by minimizing 
the corresponding Ginzburg-Landau functional (GLF) . In 
this case the order parameter is found to be invariant relative 
to a certain subgroup H of the "symmetry group of physical 
laws" G = 0 x R x U( 1 ) (R is the time-reversal operator, 
while U( 1 ) is the gauge transformation group). 

If, as happens in U, - ,Th,Bel3 in the region 
x > 1.75%, a second phase transition occurs to another su- 
perconducting phase as the temperature decreases, then 
three cases are possible: 

A. The transition proceeds within the framework of a 
single representation from one minimum of the GLF to an- 
other, and is due to temperature variation of the coefficients 
in the GLF expanded to terms of fourth order. Because the 
symmetry groups of all the minima of the GLF which are 
related to any given representation are not subgroups of one 
another,I9 a phase transition between two superconducting 
states within the framework of a single representation is al- 
ways a first-order transition. This case is precisely analogous 
to that of the phase transition between the A and B phases of 
He3 (Ref. 20), and, just as for helium, the line of first-order 
phase transitions Tb must end on a smooth curve T, (see 
Fig. 2). This is not in agreement with the experimental phase 
diagram, for which the curve Tc has a sharp kink at the point 
where the curve Tb ends (Fig. 1 ). 

B. The p h a ~  transition occurs because of mixing of the 
principal phase A,, whkh transforms according to the i r ~ -  
ducible representation T, of the group 0 ,  with a phase A, 
which t~ns fo rms  according to another irreducible represen- 
tation Tb and which possesses a critical temperature 
Tcb (x)  < T,, (XI for x > 1.75%. The symmetry groups of 
these states are respectively Ha and H,. The possibility that 
such a transition could explain the experimental phase dia- 
gram (Fig. l ) was analyzed in Ref. 13, in which it was point- 
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FIG. 2. Phase diagram of phase corresponding to a single representation. 
T, is a line of first-order phase transitions. 

ed out that a necessary condition for the occurrence of such a 
phase transition is that 

h h 

which assumes in particular that the states A, and A, have 
the same spatial parity. According to this subordination 
scheme, which follows from the theory of second-order 
phase transitions, two phase transitions will occur for 
x > x ,  = 1.75% (in this composition rang: we have as- 
sumed that T,, >Ab ) ::he first to the phase A, and the sec- 
ond to the phase A, + A,. For x < x, , within which compo- 
$ion f;ange Tca < T,,, there is one transition to the phase 
A, + A,; in the region x <x, near T,, (x)  we should ob- 
serve" the insignificant increase in specific heat c ( T )  men- 
tioned in Ref. 1 1. Sorting out all possible pairs of supercon- 
ducting states arising directly through a transition from a 
%orm~l nomagnetic state, and including the conditions 
T,  # T,,  H, C Ha, we arrive at four possibilities in all, which 
are listed in Table I. 

The condition ( 1 ) , while necessary, does not yet guar- 
antee that the phase diagrams for the pairs of phases listed in 
the table will coincide with the experimentally-observed 
phase diagram shown in Fig. 1 .  In the Appendix we have 
carried out an investigation of the problem of minimizing the 
GLF to find the phase diagram corresponding to an order 
parameter which is in the form of a linear combination of 
basis functions from two irreducible representations, for the 
example of a mixture of the representations A, and F,. Al- 
though such an analysis would differ in detail from the one 
given in the Appendix if carried out for the other pairs of 
representations given in Table I, it would lead to qualitative- 
ly similar results for all the pairs. We are also led to the same 
results from general symmetry considerations; let us now 
turn to a discussion of these. 

Following Ref. 13 verbatim, let us attempt to construct 
a phase diagram in which a second-order phase transition 

occurs for x < x, from the normal state to the superconduct- 
ing state with symmetry H, , while for x > x, the transition 
is from the normal to a superconducting state with symme- 
try Ha (where H, C Ha ). We will assume that there is only 
one transition between these phases; this is possible, e.g., in 
the case of a mixture of A, and F, for y, < 0 (see Appendix). 
In order to clarify what the order of this transition will be, we 
must investigate the factor group H,/H, ,  i.e., the broken- 
symmetry group associated with a transition from a state 
with symmetry Ha to a state with symmetry H,. The factor 
group2 Ha /H, ,  together with their irreducible representa- 
tions T ( H , / H ,  ), are listed in Table I. The phase transition 
under study here is a first-order transition if we can con- 
struct a third-order invariant out of the basi$unctions of all 
the nonunique irreducible representations T ( H , / H ,  ) (be- 
cause they have identical transition temperatures). It is im- 
portant that during this transition no breaking of gauge sym- 
metry or time-reversal symmetry occur; this ensures that the 
third-order invariant will be real. The groups D,(C,) and 
D,(E) are isomorphic to D,; therefore the representations of 
all three groups coincide. The third-order invariant for the 
group D, is xyz, where x,y,z are basis functions for the one- 
dimensional representations B,, B,, B,; for the group C, this 
invariant equals e: + e 3  , where e * = x + iy are the basis 
functions for the one-dimensional representations T+ and 
r-. Thus, if only one transition can occur between phases 
with symmetries Ha and H,,  this transition is necessarily 
first-order. 

It is interesting to note that the same conclusions were 
reached by the authors of Ref. 12, who investigted the case 
yhere a phase with s-pairing was chosen as the A, phase, i.e., 
A, = ey A,, while a ~ o l a r  phase with d-pairing was chosen 

A * 
asthe A, phase, i.e., A, = [ (kl) ,  - 1/3]iGyAb (here, a, isa 
Pauli matrix). That is, if there is only one transition between 
these phases, then it surely is a first-order transition. Actual- 
ly, the phase with s-pairing is invariant relative to three- 
dimensional rotations, so its symmetry group Ha = SO,. 
The polar phase with d-pairing is symmetric relative to on:- 
dimensional rotations around the mirror anisotropy axis 1, 
and its symmetry group H, = S ,  . The result of the factori- 
zation Ha / H ,  is not even a group, but is rather a factor space 
SO,/S, = RP2, i.e., the real projective plane. Thus, the 
symmetry which is broken by this transition is determined 
by R P  ,; this is like the transition from an isotropic liquid to a 
nematic liquid crystal, which, as is well known,,, is a first- 
order transition thanks to the presence of a single third-or- 
der invariant. 

Thus, in the case under study here, the phase diagram 
will have the form shown in Fig. 3 (see also the Appendix). 
For various reasons, a first-order phase transition may differ 
only weakly from a second-order transition, in which case 
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A, r+v r- 



A A 

FIG. 3. Phase diagram for the phases A, and A, corresponding to differ- 
ent representations. T,, in the region x > x, is a line of first-order phase 
transitions between superconducting phases. 

the phase diagram shown in Fig. 3 corresponds to the phase 
diagram shown in Fig. 1. 

Let us now drop the requirement that only one transi- 
tion occurs between the phases with symmetries Ha and H,. 
Now both transitions can be second-order. Calculations 
which apply to this case can be found in the Appendix for the 
example of a mixture of the representations A, and F,. Here 
we will describe qualitatively the successive transitions 
between phases together with their symmetries. The pairs of 
phases 1,3,4 presented in Table I, and also the pair of phases 
investigated in Ref. 12, admit the following general descrip- 
tion of the phase transition sequence. 

Fzr x <<̂x, a second-order phase transition occurs to a 
phase A, + A, with symmetry H, (line T,, in Fig. 4).  In its 
turn, this phase conyrts b~ means of a second-order phase 
transition to aphase A, + A,eiGwith symmetry H,/R (line 
TcR in Fig. 4).  For x > x, two se~ond-order phase transitons 
occur in succession to a phase A, with symmetry H, (line 
Tc, in Fig. t), an2 then to the same phase as in the case 
x<x,,  i.e., A, + AbeiG, with symmetry H,/E (line T,, in 
Fig. 4). For phases No. 2 in the table the phase transition 
picture looks the same. Namely, foz x < x, a phase transi- 
tion (line Tcb ) occurs to the phase A, + A, with symmetry 
Hb = D3(E), followed b~ a s~ond-order  phase transition 
(line TcR ) to the phase A, + AbeiG with symmetry C3(E), 
accompanied by a breaking of the symmetry relative to ele- 
ments of the group D,(E) which contains the time-reversal 
operator R. For x > x, consecutive second-order transitions 
occur, first to a phase A, with symmetry H, = O(Dz) (line 
TCa ), and then to a phase with symmetry C, (E) (line Tc, ). 

Turning now to case C, we note that the curve T,, is not 

FIG. 4. Phase diagram for the phases A, and A, corresponding to differ- 
ent representations. The lines T,, in the region x> x, and T,, in the 
region x <x, are lines of second-order phase transitions between super- 
conducting phases. 

observed in experiment. However, this is not a problem if we 
assume a strong dependence of T,, on concentration. Final- 
ly, there is also a scenario covered under case B in which 
there are two transitions with symmetries Ha and Hb, one of 
which is first-order and the order second-order (see the Ap- 
pendix). 

C. The phase transformation picture shown in Fig. 4, 
which contains four second-order phase transition curves, is 
of course possible even when the subordination condition 
( 1 ) is not fulfilled. It can also be realized if the p h a ~ s  A, a%d 
A, belong to different irreducible representations T, and Tb 
and plots of their critical temperatures intersect at x = x, so 
that T,, (x) > Tcb (x) for x > x, and T,, (x )  > T,, ( x )  for 
x < x, , and if their symmetry groups Ha C G do nzt satisfy 
condition ( 1 ) . The symmetry group of th5phase A, which 
forms as theAemperature falls from phase A, for x > x, and 
from phase A, for x < x, is such that Hc C (Ha nH, ). The 
number of scenarios of this kind is rather large; however, so 
long as none of them are observed experimentally, there is no 
sense in concerning ourselves with a detailed discussion of 
them. 

3. TRANSITION BETWEEN SUPERCONDUCTING PHASES, 
ONE OF WHICH ARISES FROM A MAGNETIC NORMAL STATE 

As we have already pointed out in the Introduction, the 
possibility that the transitions on the line T,, are transitions 
to an antiferromagnetic state has been discussed in the litera- 
t ~ r e . ~ , ~  If we adopt this point of view, then the line of antifer- 
romagnetic transitions T,, , which runs below the line of the 
superconducting transitions T,, for x > x,, must also be 
present in the region x < x, . Although experiments do not 
reveal any phase transitions in this region besides the transi- 
tion to the superconducting state (the curve T,), it is 
noteworthy that the curve of the dependence of the resistiv- 
ity p(  T) on temperature in U, ,Th, Be,, has a maximum 
(TM = 2.5 K for x = O), and that the temperature which 
corresponds to this maximum decreases with increasing 
concentration, becoming less than Tc for x slightly less than 
x, If we assume that TM is the transition temperature to 
an ordered magnetic state, then we are led to the phase dia- 
gram shown in Fig. 5, where the magnetic transition curve 
( TM, Tcb ) intersects the superconducting transition curve 
(T,, Tc, ). An analogous situation is observed in UPt, 
( T = 0.5 K) ,  where according to neutron scattering a transi- 
tion to an antiferromagnetic statez4 is observed at T, = 5 K, 
which correlates with a maximum in the function dp/dTon 
Tat the same temperature. However, no anomaly in the spe- 
cific heat near this temperature is observed. 

From the point of view of symmetry of the phases 
formed, there are many scenarios involving breaking of the 
symmetry 0 x R X U( 1 ) of the original normal state which 
correspond to this picture of the phase transitions. Let us 
describe, e.g., the simplest of these scenarios: for x > x, 
there is a transition (the line Tc, ) to the usual superconduct- 
ing phase with symmetry 0 XR, and then to some sort of 
superconducting magnetic phase, e.g., with symmetry 
OR (T)  = (E, 8C3, 3C2, 6U2R, 6C4R). For x<x ,  the first 
transition to occur is to a trivial antiferromagnetic phase 
with the symmetry of one of the colorless groups'') 
(0 x R ) x U( 1 ) (we also admit transitions to a phase with 
the symmetry of the color group OR ( T) X U( 1 ) ), followed 
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by another phase transition to some sort of superconducting 
magnetic phase, e.g., to the phase mentioned above with 
symmetry 0, (T) .  We will not immerse ourselves in any 
deeper discussion of the possibilities which arise here, in 
view of their large number and the absence of definite experi- 
mental indications pointing to a picture of the phase transi- 
tions resembling what is shown in Fig. 5. We note only that 
the phase diagram must be more complex than what is 
known at this time about the diagram shown in Fig. 1. 

4. DISCUSSION 

As we have already noted, out of all the scenarios de- 
scribed in this paper for the phase transition in 
U, -,Th,Be,,, the most plausible one is shown in Fig. 3. 
The only difference between this scenario and the experi- 
mental one show in in Fig. 1 is the line of transitions T,,, 
which is found to be a line of first-order transitions. All the 
other scenarios include additional phase transitions; there- 
fore, in our view, although no latent heat is observed along 
the transition line T,,, it should be looked for, especially 
since the remaining properties of the phases implied by the 
picture in Fig. 3 do not contradict observation. 

Out of the four scenarios corresponding to Fig. 3 and 
listed in Table I, only the first two are acceptable, since only 
these imply a power-law dependence of the specific heat at 
T+O. As pointed out in Ref. 19, the phases which are listed 
in Table I under Nos. 3 and 4 can have zeroes in the gaps of 
their excitation spectra only by virtue of some accidental 
circumstance, such as zeroes of some specific functions of 
the irreducible representations; zeroes cannot occur by rea- 
son of symmetry. 

The phases listed under Nos. 1 and 2 can correspond to 
either singlet (S = 0) or triplet (S = 1 ) pairing. The latter 
case is more probable, because measurements show that the 
upper critical field at T = 0 in U, - , Th, Be,, (Ref. 26) sig- 
nificantly exceeds (almost by an order of magnitude) the 
paramagnetic limit. Among the phases which transform ac- 
cording to one of the representations F, or F,, there is one 
phase (see Ref. 27) whose upper critical field is not at all 
subject to suppression by paramagnetism. This phase has the 
planar-phase structure (according to the terminology bor- 
rowed from the theory of superfluid He3) : 

FIG. 5. Phase diagram including transitions for x < x ,  from the normal 
state to a normal antiferromagnetic state (AFS) and then to an antiferro- 
magnetic superconducting state (AFSS). For x > x,  there are transitions 
from the normal state to a superconducting state (SS) and then to an 
AFSS. 

the upper critical field for this structure is a solution to the 
equation art + a" = 2 (see Appendix to Ref. 27). It is sig- 
nificant that for T+ Tc the phase with the maximum field 
Hc2 (T )  is not this phase, but the so-called Scharnberg- 
Klemm phase. As the temperature decreases the solution for 
H,, (73 corresponding to the latter phase is suppressed by 
the magnetic field because of paramagnetism, and in the 
high-field region is replaced by the solution corresponding 
to the planar phase. This behavior is not sensitive to admix- 
ture of the one-dimensional representation A ,  (No. 1) into 
the representation F,, nor to admixtures of the two-dimen- 
sional representation E (No. 2) into the representations F, 
and F,. Thus, it is not necessary to assume the presence of 
mixing of representations in order for the upper critical field 
to exceed the paramagnetic limit in triplet-pairing supercon- 
ductors with strong spin-orbit interaction, as was assumed in 
Ref. 27; it is therefore sufficient to have phases belonging 
either to F, or F,. 

Near T,, the upper critical fields of superconducting 
phases with representations F, and F, must be anisotropic. 
The absence of such a n i ~ o t r o p y ~ ~ ,  and also the anomalously 
large slope of the function H,, ( T) as T+ Tc (Refs. 16, 26), 
apparently indicate that in the neighborhood of T, there are 
strong scattering processes which suppress the supercon- 
ducting correlations. Questions such as this still remain un- 
resolved. 

In discussing the properties of superconducting phases 
of U, - , Th, Be,, i i i s  perenent to recall that according to 
Ref. 19, the phases A, and A, corespznding to No. 1 in Table 
I are nonmagnetic, while for NoA2, A, is a superconducting 
antiferromagnetic phase, while A, is a superconducting fer- 
romagnetic phase. The latter scenario may possibly be rel- 
evant in light of experimental indications" that the phase 
below the curve Tcb possesses a small magnetic moment in 
the region x > 1.75%. 

In addition to searching for a latent heat of the transi- 
tion along the line T,, (x  > 1.75%) or looking with x-ray 
scattering for a jump in the lattice constant, an important 
test of the scenario proposed in this paper for the phase tran- 
sitions in U, ,Th, Be,, would be an investigation of the 
phase diagram in the high-concentration region. For exam- 
ple, the behavior illustrated in Fig. 6 would definitely argue 
in favor of the phase change scheme described in this paper. 

In examining the experimental material, we find there 
are two facts which can be explained if the line Tc, is a line of 
first-order phase transitions in the region x > 1.75%. First of 
all, the coefficient of linear expansion for T <  T,, has a deep 
minimum3 in the region x > 1.75%, which may indicate a 
discontinuous change in the volume occupied by the materi- 
al in the course of a first-order phase transition which is 
smeared out over the corresponding temperature interval. 
Secondly, there is the giant ultrasonic absorption near Tc, 
(X  > 1.75%) (Refs. 5, 6),  which we will pause to discuss in 
somewhat more detail. 

According to Ref. 13, the anomalous ultrasonic absorp- 
tion observed in the vicinity of the lines Tc and T,, (Fig. 1 ) 
indicates a transition to a superconducting state with a mul- 
ticomponent order parameter. However, the theory of ultra- 
sonic absorption based on this point of view29 contains an 
incorrect assumption about the Goldstone character of the 
order parameter oscillations near the transition tempera- 
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FIG. 6. A possible phase diagram for U, _ ,Th,Be,, including the region 
of high thorium concentrations. The region of existence of the supercon- 
ducting phase A, (x, <x  < x, ) is bounded from below by the first-order 
transition line T,,. For concentrations x < x, and x > x, the line T,, is a 
line of second-order transitions. 

ture. Actually, all collective modes in superconductors with 
strong spin-orbit interaction have a gap for any temperature 
on the order of the gap in the spectrum of elementary excita- 
tions. Apparently, the anomalous ultrasonic absorption near 
Tc in pure UBe,, is correctly described in terms of the Lan- 
dau-Khalatnikov relaxation mechanism, as proposed in Ref. 
30. The ultrasonic absorption near the line Tcb for concen- 
trations in the range x > 1.75% differs significantly from the 
absorption in pure UBe,, (Ref. 5,6).  First of all, the intensi- 
ty of the absorption peak exceeds by two orders of magnitude 
its value in the pure material; secondly, the dependence of 
the absorption coefficient on the sonic frequency is propor- 
tional to w1 - " ( y g  1 ), in contrast to the hydrodynamic de- 
pendence ( cc w2) for pure UBe,,. This giant ultrasonic ab- 
sorption can occur at a first-order phase transition when 
droplets of one superconducting phase form in the other su- 
perconducting phase; the attenuation of sound is then de- 
scribed within the theoretical framework developed by Isa- 
kovich13 (see also Ref. 32) for polycrystals and emulsions. 
We present here some estimates corresponding to this view- 
point. 

It is reasonable to assume that under these experimental 
 condition^^.^ the wavelength of sound il = to lop3 cm 
at the frequencies w / 2 ~  = 50-250 MHz is large compared to 
the size of a domain a of the droplet phase. When pinning of 
domain boundaries at microscopic inhomogeneities is possi- 
ble, the size of a domain can be larger than the coherence 
length g ( T ) .  We can estimate the penetration depth of a 
thermal wave S z  (x/w) 'I2 [X = %/Cis the ratio of the ther- 
mal conductivity to the specific heat: X( Tc ) = 6- cm2/ 
sec-see Ref. 33 ] gives S - lop5 cm. If the size of the domain 
satisfies a < 6, then most of the attenuation of sound takes 
place within the domain. In this case, the coefficient of at- 
tenuation a is a w2, and its ratio to the attenuation of sound 
in a spatially uniform phase 

Here V ;  / V is the ratio of the volume occupied by the drop- 
lets of the new phase with size a < S to the volume of the 
sample. For droplets with sizes a > S, most of the attenuation 
of sound takes place in a "skin depth" of thickness -8 near 
the boundary of the domain. The attenuation coefficient sat- 
isfies a a w 'I2, and 

where V ;  is the volume of a droplet of the new phase with 
size a > 6. It is not hard to see that the quantity a can exceed 
a, by several orders of magnitude. The observed depen- 
dence of a on frequency ( cc w1 - ) shows that droplets with 
size a > S provide the more significant contribution to the 
ultraviolet attenuation. 

In conclusion, we would like to thank G. E. Volovik for 
his active interest in this work. One of us (V.P.M.) also 
expresses his thanks to A. Leggett and J. Flouquet for useful 
discussions. 

APPENDIX 

We here present a full analysis of the GLF for a mixture 
of the representations A, and F,. The order parameters 
zhi$h trangor? accordiv to these representations, i.e., 
A, (k )  and A, (k )  (where k = k/k,) in the notation of Ref. 
19, are described in the following way: in the spatially-even 
case ( S  = 0, i.e., singlet pairing) 

in the spatially-odd case ( S  = 1, i.e., triplet pairing) 

.. 
(k) =iAa (;Y= (i) &, 

Here, \V, ( i ) ,  \V, (1;) are respectively the spatially-even and 
spatially-odd basis functions for the representation A,; anal- 
ogously, @F)(k) and @:) (k)  (i = 1,2,3) are spatially-even 
and spatially-odd basis functions for the three-dimensional 
representation F,; G are Pauli matrices. In order to find the 
complex amplitudes A, and vi, it is necessary to minimize a 
GLF of the form, 

h h 

Here Fa and F, are functionals of A, and A, (see Ref. 19), 
while Fa, is a term corresponding to the interaction of these 
representations: 

In Eqs. (3)-(5) we introduce the notation: 

T,, > Tc, for x > x ,  , and Tca < T,, for x < x, . The values of 
Dl, D2, P3 were choyn in such a way that stability is guaran- 
teed for the phase A, ( k )  wgh symmetry H, = D,(C,) Xi? 
in the absence of the phase A, ( i )  (in particular, P, < 0; see 
Ref. 19). Since the choice of the overall phase of the order 
parameter is not significant, we will assume that the coeffi- 
cient A, is real. 

For further exposition, it is convenient to cast 7, in the 
form 
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Here A, = 1771, ni are the components of a unit vector. Ex- 
pressing ( 4 ) ,  ( 5 )  in this notation, we obtain 

It is clear from equations obtained by variation of the func- 
tional ( 2 ) - ( 5 )  in the region x < x ,  $at for temperatures 
T,, ( x )  2 T >  T,, ( x )  the phase A, ( k ) ,  for which 
Inl\ = In,l = l̂n,l = 3'12, $i = 0 ,  A: cc ( 1  - T / T c b ) ,  has 
some phase A, ( k )  mixed into it; the amplitude of this ad- 
mixture satisfies A: cc ( 1  - T / T , , ) ,  (these results are de- 
rived in direct analogy with those obtained in Ref. 12). This 
perturbation possesses symmetTy H, O( T )  X i?. The sym- 
metry of the general solution A, + A,, which corresponds 
to an extremum of the free energy, is left unchanged by trans- 
formations of the group H, = D,(C,) x i?, because 
H, C H, . Furthermore, because for T 5 T,, the inequality 
A, 4 A b  is fulfilled, the functional F, + F,, i s  smgl com- 
pared to the functional F,, and the solution A, +.A, obvi- 
ously remains a minimum point. However, the first term in 
( 5 ' )  partially lifts the eightfold degeneracy connected with 
the choice of signs of the ni; for y,  < 0 the phases with values 
of 3112(nl,n, ,n3) equal to ( l , l , l ) ,  ( 1 ,  - 1 ,  - I ) ,  
( - 1 , 1 ,  - 1 ) , and ( - 1 ,  - 1 , l )  are energetically favored, 
while for y l>O the favored phases are those with 
31'2(nl,n2.,n3) equal to ( - 1 ,  - 1 ,  - 1 1 ,  ( - l , l , l ) ,  
( 1 ,  - l , l ) ,  and ( l , l ,  - 1 ) .  

We now investigate the concentration region x > x, for 
Emeeratures T <  T,, ( x )  < T,, ( x ) ,  in which the phase 
A, ( k )  with symmetry H, = D3(C3)  xi?, which transforms 
according to the r e p ~ s e ~ t a t i o n  F,, appears against a back- 
ground of the phase A, ( k ) ,  which transforms according to 
the representation A,  (Ha = O( T )  x i?). Here an important 
role is played by the sign of the coefficient y, when the GLF 
is minimized. 

1 .  Let y, < 0.  It is clear that the minimum of the GLF is 
attained for $, = $, = $, = 0 and, depending on the sign of 
y,, for the same values of n as the ones listed above for the 
region x < x ,  . Substituting these values of $i = 0 and 
IniI = 3'12 in the functional ( 2 ) - ( 5 ) ,  we obtain 

Minimizing ( 6 )  with respect to A,, A,, we find that the 
phase trangtio; whicJh ttkes us from the phase with order 
pa ra~e t e r  A, ( k )  + A, ( k )  to the phase with order param- 
eter A, ( k )  is first-order. This result corresponds to the first- 
order phase transition investigated in Sec. 2, paragraph B for 
a symmetry change O( T )  X X  +D, (C, )  xi?, which is illus- 
trated by the phase diagram in Fig. 3. 

2. For the case y, > 0 ,  the picture of the phase transi- 
tions is somewhat more complex. A further illustration is 

constructed using the following logical argument. Having 
guessed that the phases $i take on the general value 

= +h2 = $, = $, we will investigate under what conditions 
these values of the phases correspond to a minimum of the 
GLF ( 2 ) - ( 5  ); we will then investigate the existence of other 
minima. 

Thus, setting $, = y3, = $, = y3 and minimizing ( 4 ' ) ,  
( 5 ' ) ,  we find 

only if 

which is always valid near T,, ( x ) .  Substituting ( 7 )  into 
( 2 ) - ( 5 ) ,  we obtain 

A further minimization of (8)  with respect to n gives the 
solution lnll = In2[ = In,[ = 3-'I2 for 03> - y1/2y3 (re- 
call that y, > 0 ) .  Investigating first the region 
0, > - /2y3, we finally obtain a functional of the form 

from which it follows that a second-order phase transition 
occurs with the appearance of an amplitude A, for 

We now prove that the solution presented above is actu- 
ally a minimum. In fact, when we substitute 

= $2 = $3 = $ and minimize the GLF with respect to $ 
and n, w obtain a solution with lnll = In,l = In,l = 3-'I2. 
Conversely, setting Inl 1 = In,[ = 3-'I2, we obtain the solu- 
tion $, = $, = $, = $ which minimizes the functional (2)- 
( 5 ) .  these conditions are sufficient to ensure that the solu- 
tion is a minimum, because by carrying out this two-stage 
minimization of the GLF twice, the second time with the 
stages reversed, we have in fact subjected the GLF minimum 
to a test with respect to stability relative to all collective 
oscillation modes taken separately. In the case under discus- 
sion these modes are a real oscillatory mode n for fixed val- 
ues of $ and a complex oscillatory mode $1$2$3 for fixed 
values of n. A A A 

The phase A, = A, + A,, corresponding to the solu- 
tion $, = $, In, I = 3-'I2, is symmetric relative to the group 
H, = D, ( C ,  ), H, C H, (see Sec. 2, Pa~agraph B; for clarity 
%f dizussion the pha~e~factor  for A, is separated out; 
A, -Abet*). The phase A, is not invariant relative to the 
operation of time reversal R, because R interchanges el%nd 
e - '? Because H, C H,,  in order to find out the nature of the 
transition between the phases with symmetry H, (which 
arises, as we have seen for x < x ,  ) and the phase with H,, it 
is necessary to investigate the factor group 
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Because the cube of a basis function from the single nonuni- 
que one-dimensional representation of this group is not an 
invariant, the phase transition in question is a second-order 
transition. Formally, the transition takes place as the quanti- 
ty 4 in (7) reduces to zero, i.e., on the line 

The diagram corresponding to the phase transitions under 
discussion is shown in Fig. 4. 

In conclusion, let us dwell briefly on the region 
p3 < - S / 2 y 3 ,  where the order parameter is not even sym- 
metric relative to D3(C3). Without even studying the func- 
tional (2)-(5) at the minimum, we can confirm that the 
transition between a phase with symmetry Hc C Ha which 
arises for TS;Tcb(x) ,  and phase with symmetry 
H, = D3(C,) X  x, is a first-order transition. Actually, even 
if the group Hc satisfies the condition Hc C Hb which is nec- 
essary for a second-order transition, our investigation shows 
that we always can construct a third-order invariant from 
basis functions of the irreducible representations of the fac- 
tor-group Hb with respect to any of its subgroups Hc (ex- 
cepting the already-discarded D3(C3) ,  and also the trivial 
one E, which always can be augmented by a symmetry ele- 
ment U2eir, because the basis function of the F, representa- 
tion change sign when rotated around one of the second- 
order axes. We present here two of the factor groups Hb/Hc : 

[ D 3  ( C J )  X R ]  1 ( E ,  Uzei") = C 3 X R ,  
[D3  ( C , )  X R ]  / ( E l  U,ei") X R = C 3 .  

"We should mention here a phenomenological descrption of the phase 
transition in U, -xTh,Be,, in terms of a transition connected with the 
establishment of a coherent state in a Kondo lattice whose transition 
temperature for x >  1.75% lies below T, (Ref. 10). The question of 
whether such a transition can occur remains open. 
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