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A study is reported of the scattering of electrons, moving above the surfaces of solid hydrogen and 
neon, by internal and surface vibrations of the lattice. It is shown that, in contrast to electrons 
traveling above the surface of liquid helium, the main reason for the scattering is not the bending 
of the surface but modulation of the bulk permittivity. Calculations are reported of the energy 
relaxation time for electrons at a lower transverse quantization level. The process of relaxation is 
dominated by bulk vibrations. Scattering by these vibrations is not quasielastic, in contrast to the 
scattering by Rayleigh vibrations. 

INTRODUCTION 

Electrons on the surface of liquid helium (levitating 
electrons) have been the subject of experimental investiga- 
tions for some time (for reviews, see Refs. 1 and 2). Similar 
experiments with electrons on the surface of solid hydrogen, 
deuterium, and neon have appeared since the early eight- 
ie~ .~-"  

The present paper reports calculations of the scattering 
of such electrons by crystal lattice vibrations. It must be 
stressed at the outset that the mechanism of the scattering of 
electrons in the case of a solid "substrate" is very different 
from the mechanism of the scattering in the case of a liquid 
"substrate." 

The main source of the scattering perturbations origi- 
nating from a liquid "substrate" are distortions of the image 
forces (which confine an electron to the vicinity of the sur- 
face) due to the bending of the surface of the liquid by capil- 
lary waves (this is known as the electron-ripplon interac- 
tion). Capillary waves are much "softer" than acoustic 
waves: if the surface tension is estimated using the expres- 
sion a a Ms2/a:, where M is the mass of an atom, s is the 
velocity of sound, and a, is the interatomic distance, it is 
found that the frequency of a long (qa, 4 1 ) capillary wave is 
a,,, a ~q(qa , )"~ ,  which is much less than the frequency of 
an acoustic wave o,, a sq. Soft waves are easier to excite and 
they scatter more strongly (because of the higher density of 
states and higher Planck occupation numbers). This is why 
in the case of scattering of electrons above liquid helium we 
can ignore internal acoustic vibrations, i.e., we can ignore 
the compressibility. 

However, if the "substrate" is solid, then the surface 
(Rayleigh) and internal waves have frequencies of the same 
order of magnitude. This means that we cannot ignore the 
compressibility and have to allow for internal vibrations. If 
the compressibility is finite, there is another reason for dis- 
tortion of the image forces, which is modulation of the per- 
mittivity in the bulk of a crystal. This scattering mechanism 
is stronger than that due to the bending of the surface of a 
liquid and it includes contributions not only of surface but 
also of internal vibrations. 

In the majority of the reported experiments on electrons 
on surfaces of cryogenic crystals attention has been concen- 
trated on the effects associated with the elastic scattering of 
electrons. In these experiments the scattering by lattice vi- 
brations does not appear because of the strong background 

of the scattering by defects of the crystal surface and by 
atoms or molecules of the vapor above the surface. However, 
in the case of the phenomena associated with the heating of 
electrons and also in the case of weak localization effects the 
inelastic scattering is important and in this case the scatter- 
ing by lattice vibrations should predominate. Attempts to 
detect weak localization of electrons on the surface of solid 
hydrogen and to determine the dephasing time have already 
been reported. ' ' 

1. SCATTERING PERTURBATION 

We shall consider the simplest model of the potential of 
image forces with an untruncated "Coulomb" attraction 
and an infinitely strong repulsion: 

Here, Q = (E  - 1 ) / 4 ( ~  + 1 ), where E is the permittivity of 
the crystal and z is the axis directed along the normal to the 
surface of the crystal which occupies the half-space z < 0. 
The value of Q (and of the other parameters which will be 
required later) of solid hydrogen and neon are listed in Table 
I. The parameters of deuterium are not given because they 
differ from the parameters of hydrogen by amounts smaller 
than the error inherent in the adopted model. For compari- 
son, Table I lists also the parameters of liquid helium. 

Perturbation of the potential U by bending of the sur- 
face in the case of a constant value E of is given in Ref. 13. It 
can be represented in the form 

The vector R is the projection of r onto the ( x ,  y )  plane and 
u(R) is the normal displacement u, of the point R of the 
surface of a crystal; integration is carried out over the points 
r' on the surface of a crystal (z' = 0). 

Perturbation of the potential Ubecause of the weak spa- 
tial modulation of E for a constant plane boundary is (see 
Appendix 1) 

The permittivity modulation &(r)  appears because of mod- 
ulation of the crystal densityp as a result of vibrations. Using 
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TABLE I. Parameters describing scattering of electrons by phonons above the surface of cryo- 
genic crystals and liquid helium 

the Clausius-Mossoti relationship, we obtain 

6e= (e-1) (6p/p) =- (e - l )  div u, (4) 

where u is the displacement vector. Assuming that EZ 1, we 
can write down 

Qe2 div u (r') 6Ub(r)=-- PI' 
r '<o  lr-r'14 

In the presence of a surface force F there is also a perturba- 
tion13 

6UF(r) =eFu (R) . (6) 

2. SCATTERING PROBABILITY 

We shall calculate the scattering probability using 
methods developed in Ref. 14. The wave function of an elec- 
tron is 

where L2 is the normalization area; k is the wave vector of 
free motion in the ( x ,  y) plane, and $, (z) is the eigenfunc- 
tion in the potential ( 1 ) . 

We shall average the scattering perturbation SU(r) 
over the motion along the z axis, i.e., we shall calculate 

6Unn* (R) = j  dz 6 0  (r) p.., (2) , p... (2) = c (4)1n, (2). 

(8) 

We have allowed here for the fact that the functions $, 
are real; SU is the sum of the perturbations SU", Sub, and 
SUF. The displacement u, which occurs in SU, should be 
regarded as the phonon field operator in the Heisenberg rep- 
resentation u (r,t) . We shall construct a correlation function 

(6Cnnr (Ri, ti) 6Unn7 (Rz, tz) ) 

We shall use its Fourier component to express the scattering 
probability: 

where the transferred energy and momentum are 

The correlation function (9)  contains diagonal terms of 
the form ( 6 v  S F  ) as well as cross terms ( S D  S@ ) , i.e., 
the different scattering mechanisms interfere. We shall con- 
sider only the situations when one scattering mechanism 
predominates. It is then sufficient to know the diagonal cor- 
relation functions. A comparison of these functions makes it 
possible to determine which mechanism predominates. 

We shall use the representation 

X ( X )  = x K , ( x )  (12) 

where K, is the modified Bessel function of the second kind. 
We note that 

A direct calculation gives the following results. In the case of 
the perturbation (2 ) ,  because of the bending of the surface of 
a crystal, we have 

CC 

This includes the Fourier component of the correlation func- 
tion of normal displacements of points on the surface. In the 
case of the perturbation (5),  which is due to modulation of 
the bulk permittivity, we have 

co 0 

In this case we have a correlation function of dilatations 

which can be used to calculate the Fourier component in 
terms of R, - R, and t, - t , .  Finally, for the perturbation 
( 6 ) ,  which appears because of a pressing-down field, we 
have 
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The required correlation functions of displacements 
and dilatations can be found using the familiar relationship 
between the equilibrium correlation functions and the re- 
tarded Green's functions of the phonon field1? 

<u,(r,)ua(r2)),=-2fi(Nm+4)Im Ga~(rc, rzJ o+iO), 

Here, G is the displacement along an axis a at the point r ,  
when the density of the force directed along an axis P is 

The function G was calculated in Ref. 16 for an elastic iso- 
tropic half-space. 

We separate the Bose factors by writing down 

(divu(z,)divu(z,) ),,=2fi(N,+I) sign oK(Io1, qJz,, z,), 

(uu),,=2fi(N,+l) sign wL(lo1, q). (19) 

We introduce the notation 

a=(02/s2-qZ)'b, b=(02/~2-qZ)'i2, 

a=(q2-02/S2)'b, p= (q2-02/c2)"1, (20) 

wheres and c are the velocities of longitudinal and transverse 
sound. Simple but fairly cumbersome operations yield the 
following results in the case when w > 0. If q < w/s, then 

if W/S < q < W/C, then 

if q > W/C, then 

2 - - ~ ( z , + T ~ ,  K=- 4P9 e n6[4apq2 - (q2+P2)Zl, 
ps4 

Equations (21 )-(23) are written down for the case when the 
elastic half-space occupies z > 0. When they are substituted 
inEqs. (14), (IS),  and (17), thesignsofz, andz, must be 
reversed. 

The delta function occurring in the last two expressions 
determines the dispersion law of Rayleigh waves: 

c 1 
6[. . .]=- 

9" If' ( E o )  l 6 (o-uq), 

C Z  'h 

j(E)= (2-E2)' - 4(1-~2)112( I - - E2) , 
s2 

Here, v is the velocity of Rayleigh waves. 

3. SCATTERING AT A LOWER LEVEL 

The expressions given in Sec. 2 allow us to calculate, in 
principle, any scattering characteristics. In order to obtain 
explicit expressions, we shall consider the scattering at a 
lower level of transverse motion (n = n' = 1 ) . At this level 
we have 

The energy of an electron at the level n = 1 is 
- E, + E ~ ,  where the binding energy is 

whereas E~ = +i2k '/2m is the kinetic energy of motion in the 
(x,y plane. 

For reasons given in the Introduction we shall calculate 
the relaxation time ?(E) , which is found from the relation- 
ship 

Here, E~ is that value of E at which the power of the energy 
losses P(E) changes its sign. 

Integration with respect to d, k ' in Eq. (27) reduces to 
integration with respect to dwdq (see Appendix 2). It is clear 
from Eqs. (21 )-(24) that K and L depend on o and q very 
differently in the range of internal vibrations (q > w/c) and 
in the range of surface (Rayleigh) vibrations (q < w/c). 
Therefore, we have to calculate separately the contributions 
made to P(E) by bulk and Rayleigh waves: P = + p . 

We shall see later that is dominated by those transi- 
tions which are characterized by 

q-k, hw-E, (28 1 
whereas in the case of p the important transitions are those 
characterized by 

q-k, h o = f i u q - t i s q - ( ~ m s ~ ) ' ~ < ~ .  (29) 

In other words, the scattering by bulk vibrations is inelastic 
and that by Rayleigh vibrations is quasielastic. 

In the calculation of ?(E), we shall confine ourselves to 
the energy range 

It is clear from Table I that in the case of thermal vibrations 
(E - T) below the melting point T,, this range covers all the 
important temperatures with the exception of the very low- 
est. 

We shall calculate the Fourier components of the corre- 
lation functions ( 14), ( IS), and ( 17) for internal waves on 
the basis of the assumptions represented by Eqs. (28) and 
(30). We note that these assumptions lead to 

We shall first consider the simpler Fourier components giv- 
en by Eqs. ( 14) and ( 17). The inequality of Eq. (3 1 ) allows 
us to calculate the correlation function of displacements in 
Eq. ( 19) in the case when q = 0, which gives 

(32) 
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We can then find directly the correlation function associated can make the same approximations with respect to 3? as in 
with the surface force field: the case of internal waves. We then find that for the mecha- 

2312 nism associated with bulk modulation of E, we obtain 
( 16UF1 2):q = (N,+1)-(eF)2. 

0 s  
(33) 

In calculation of the integral in Eq. ( 14) we find that because ( = Q2e4 (Nu+ I )  sign o6 ( 1 w I - v q )  
of the factor p,, = & (z), we have z S  y-' and, therefore 
qz - kz 4 1 follows from Eq. (30). Using the expansion of Eq. 
( 13 ), we obtain a correlation function due to bending of the (41 1 
surface: 

When the correlation function of dilatations in Eq. ( 19) 
is expanded in terms of q, we need to retain only two terms of 
the expansion (this will be demonstrated later), so that 

2Ao 
(div u ( z I )  div u ( z 2 )  >:, = ( N , + l ) -  

ps" 

We now consider the integral in Eq. ( 15). In this inte- 
gral we havez 5 y- ' for the same reason as that in the case of 
Eq. ( 14). Oscillations of the correlation function of Eq. (35) 
give z' 5 (w/s) - '. Therefore, according to Eq. (3 1 ) , we find 
that qz' 5sq/w 4 1 . Hence, q(z - z'I 4 1 and we can assume 
that X = 1. We then obtain the following expression for the 
correlation function associated with the bulk modulation of 
the permittivity: 

Here, t = w/2ys and we have 

C ( t )  +  IS(^) = dz W (x) ei tx ,  
0 

where 
rn 

lS2xlnx+ ..., x+0 
. . . , x"= ' (38) 

At low values oft, we find that 

C ( t )  + l ,  S ( t ) = t  ln(al t )+O, a - l .  (39) 

This is why we have to retain in Eq. (35) the second term 
which originates from the second term of the expansion of 
the correlation function of the dilatations of Eq. (19) in 
terms of q. At high values oft, we obtain 

In this case the second term in Eq. (36) is always small. 
In calculating the Fourier components of the correla- 

tion functions ( 14), ( 15), and ( 17) for Rayleigh waves we 

in the case of the mechanism associated with bending of the 
surface, we find that 

for the mechanism associated with the surface force field, we 
have 

4. COMPARATIVE ROLE OF DIFFERENT SCATTERING 
MECHANISMS 

We shall first estimate the comparative effectiveness of 
the scattering mechanisms associated with the bending of 
the surface and with the bulk modulation of the permittivity 
in the case of bulk waves. In our estimates we shall assume 
that logarithmic factors are of order unity, which leads to 

Using the estimates given by Eq. (28) we find that the 
mechanism for modulation of E dominates in the case when 
E 4 El because k 4 y. A comparison of Eqs. (4 1 ) and (42) 
readily shows that this mechanism predominates also in the 
case of surface waves and this is again due to the inequality 
"//4% 1. 

The physical reason for the mechanism of modulation 
of E being stronger than the mechanism associated with 
bending of the surface in the q 4  y case is as follows. A dis- 
placement of the surface alters the spectrum of an electron in 
the field of image forces only if the surface is bent. Hence, it 
follows that SU" is proportional to the second derivative of 
u, (Z = 0)  with respect to x and y. Therefore, for a wave with 
a momentum q the amplitude of the potential SU is propor- 
tional to qZ at low values of q, as demonstrated by Eq. (34). 
Bulk modulation of E may distort the spectrum in the field of 
image forces also when SE is independent of x and y. There- 
fore, for a wave with a momentum q the amplitude SU; is 
finite in the limit q-0, as demonstrated in Eq. (36). 

We shall now turn to the scattering mechanism asso- 
ciated with the surface force. In the case of internal vibra- 
tions we obtain the following estimates from Eqs. (36) and 
(33): 
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where 

The role of the surface force is greatest at low energies. As- 
suming that E - ms2, we find that the minimum value of the 
ratio (45) in the range of energies defined by Eq. (30) is 
(F,F) (ms2/E, ) . It readily follows from a comparison of 
Eqs. (41 ) and (43) that the same estimate applies also in the 
case of surface waves. Therefore, the surface force can be- 
come significant only at temperatures T S  1 Kin fields FR  10 
kV/cm. Therefore, in the case of cryogenic crystals the role 
of the surface force as the scattering mechanism is consider- 
ably less than in the case of liquid helium. This is due to the 
face that the characteristic field Fo is two orders of magni- 
tude less for helium. 

Obviously, the distortion of the image forces is de- 
scribed by Eqs. (2)  and (3) only if we adopt the model of the 
potential described by Eq. ( 1 ). For example, if the barrier at 
the z = 0 boundary is not infinite, we can expect a perturba- 
tion due to the fact that the bending of the surface or the bulk 
deformation near the surface does not alter the barrier 
height. We shall ignore such effects for two reasons. Firstly, 
the potential ( 1 ) gives a spectrum of levels which in the case 
of hydrogen differs by no more than 25% from that found by 
obser~ation.'~ Secondly, inclusion of these effects in scatter- 
ing would give rise to new unknown parameters (such as the 
derivative of the height of the barrier with respect to the 
surface curvature). 

5. ENERGY RELAXATION TIME 

In this section we calculate the energy relaxation time 
?(E) for the scattering within the n = 1 lower level of trans- 
verse quantization at energies in the range ms24E(EI. We 
allow only for the dominant scattering mechanism due to the 
permittivity modulation. The different behavior of the Four- 
ier component of Eq. (36) at high and low values of t  gives 
rise to a characteristic energy 

el=2fiys=2 (2msZE,)"a. (47) 

It should be noted that in the case of hydrogen the thermal 
energies E - Tbelow the melting point T,, lie lower than E,, 
but in the case of neon they are higher than E,. 

We shall consider first the range E 4 ~ ,  . Using Eqs. (36) 
and (39), we find the contribution of internal modes: 

We have introduced here a characteristic scattering time 

and functions 

2 
@*(E)- J as- I-,,. 

- m 

In the integration with respect to o the logarithm occurring 
in Eq. (39) is taken outside the integral at & = E, so that 

9.=ln (aeT/e). (51) 

If E ) E, , we similarly obtain 

If E) T, we can assume that T = 0 and use 

D,(oo)=(k+l)-'. (53) 

This gives 

The simpler expression for F(E) at T = 0 can be used to 
obtain order-of-magnitude estimates also when E - T. 

Since the scattering by bulk vibrations is not quasielas- 
tic nor of the low-angle type [see Eq. (25) 1, the momentum 
relaxation time 7, (E) for the scattering by these vibrations is 
of the same order of magnitude as the energy relaxation time 
F(E) found from Eq. (54). 

We shall now consider Rayleigh vibrations. In this case 
there is no characteristic energy E, . In estimating the role of 
Rayleigh vibrations we shall calculate the momentum relax- 
ation time T, (E) for scattering by these vibrations. Since the 
scattering is quasielastic, it follows that 

wherex is the angle between k and k'. Using Eq. (41), we 
find that at T = 0 the required expression is 

Comparing Eqs. (54) and (56), we can see that in the energy 
range 

the contribution of Rayleigh vibrations to the process of mo- 
mentum relaxation is the same as that of bulk vibrations. If 
E ~ E ; ,  the contribution of Rayleigh vibrations to T, is small. 
In the case of energy relaxation, it follows that due to quasie- 
lasticity of the scattering by Rayleigh vibrations throughout 
the investigated range of energies given by Eq. (30) the 
dominant contribution comes from internal vibrations. 

In the calculation of PB (E)  during the stage of integra- 
tion with respect to dwdq it is clear that the main contribu- 
tion is indeed made by the range defined by Eq. (28), which 
justifies the above assumption. It is instructive also to know 
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the surface layer z' which when deformed determines the 
scattering potential S @  . If E (E,, the integral in Eq. (37) 
includes contributions from x - 1, i.e., z' - y- '. However, if 
&BE,, thenx-t -', i.e.,zl-s/w( y-I. In thecaseofscatter- 
ing by Rayleigh waves the assumption represented by Eq. 
(29) is justified. We then always have z- y-I. 

We shall now consider the behavior and the orders of 
magnitude of the energy relaxation time given by Eq. (54). 
The two terms in the first row of Eq. (54) become compara- 
ble when E - E; 4 E, . Therefore, as E is increased from ms2 to 
E,, the quantity ?(E) first falls proportionally to E-' and 
then proportionally to E - ~ .  If E)E, the time F(E) reaches 
saturation. Some idea of the orders of magnitude is given by 
the values of ?(E) obtained for E = 1 K and E = T,, . In the 
case of hydrogen the values are 150 and 10 ns, whereas for 
neon they are 4 and 0.13 ms. It is clear from Eq. (49) that the 
much stronger scattering by hydrogen is associataed with 
the lower density of this crystal, i.e., with a larger amplitude 
of zero-point vibrations. 

The time T ,  = 10 ns corresponds to a mobility 
p = 2X 10' cm2-V-'-s-I. This mobility is somewhat less 
than that obtained in Ref. 4, where only a weaker mechanism 
associated with bending of the surface is allowed for. 

The energy relaxation time for the scattering by lattice 
vibrations should be compared with the corresponding time 
for the scattering by molecules or atoms in a vapor. In the 
case of the latter scattering mechanism (see Ref. 2),  we have 

8 my-' 
T 

1 - 
3n haN ' 

where Nis the vapor density and a is the cross section for the 
scattering of an electron by a vapor molecule. The energy 
relaxation time for the scattering in a vapor is 

The experiments reported in Ref. 12 give the scattering cross 
section for hydrogen as a = 50 A2. If we assume that 
N = 2X 1019 cm-2 (which in the case of hydrogen corre- 
sponds to the saturated vapor density at T = 13 K) ,  we find 
that ?,,, = 5 ns. If E = 13 K, Eq. (54) gives ? ,,,, = 4 ns for 
the scattering by lattice vibrations (phonons). Since T de- 
creases the density N falls exponentially, the above estimate 
means that in the case of thermal electrons above hydrogen 
the process of energy relaxation by scattering on vapor mole- 
cules is important only near the melting point. 

Theauthor is grateful to E. I. Rashba, V. B. Shikin, V. S. 
~del'man, and V. M. ~del'shtein for discussing the various 
aspects of this paper. 

APPENDIX 1 

We shall consider the distribution of the chargep(r) in 
a medium with a permittivity ~ ( r )  . The potential p ( r )  creat- 
ed by this charge satisfies the following equation: 

The energy of the field is 

We shall assume that for a fixed charge p the change in the 
permittivity is E -  + SE. The resultant change in the poten- 

tial Sp is easily found by varying Eq. (60): 
1 

6 9  (r) = - 5 d3r' G (r, r') div' [6e (r') V 'q (r') 1, (62) 
I n  

where the Green's function G satisfies 

div [e(r)  VG(r, r') ]=-4n6 (r-r'). (63) 

In the case of a point charge, 

we have 

Then, the change in the energy deduced from Eq. (61) is 

68='/ze6q (r,) . (66) 

Substituting Eq. (65 into Eq. (62) and integrating by parts, 
we obtain 

e2 
6 8  = - 5 d3rf Se(rf) V1G(r0,r') VtG(r', r.). 

8n (67) 
If the unperturbed problem corresponds to the half-space 
characterized by E = const, then G is readily found by the 
mapping method, which gives Eq. (3).  

APPENDIX 2 

If in the course of integration with respect to d 'k ' the 
integrand depends only on the moduli of the momenta k and 
k', and on the anglex between them, then 

where 

The range of integration ( - a,, 0) with respect to dx corre- 
sponds to k ' > k, and the range ( 0 , l )  corresponds to k ' < k. 
It  is useful to bear in mind that 
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