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In the plateau regions in which the quantum Hall effect is manifested, the dissipative current 
depends nonlinearly on the electric field. This current varies strongly as a function of the 
occupation of the Landau level. A decisive role in the formation of the dissipative current is 
played by resonance tunneling via bound states of electrons at impurities. The conditions for 
which the largest contribution to the current comes from scattering of electrons by just one 
impurity are found. For these conditions the dependence of the dissipative current on the electric 
field and on the total electron density is found. 

1. INTRODUCTION 

In the conditions of the quantum Hall effect the longitu- 
dinal conductivity vanishes at zero temperature. Neverthe- 
less, a longitudinal current with a nonlinear dependence on 
the electric field E exists. This dissipative current is induced 
by the interaction of electrons with impurities and phonons. 

The experiments of Refs. 1 and 2 showed that the longi- 
tudinal current increases when E exceeds a certain critical 
value Ec. The electric field is related uniquely to the electron 
drift velocity v, = cE /H. In Refs. 1 and 2 it was discovered 
that the v, corresponding to E, is close to the sound velocity 
s. As a consequence theori$s have a ~ ~ e a r e d ~ - ~  that have ex- 
plained the dissipation by Cerenkov emission of phonons. It 
is difficult to compare results obtained in Refs. 3 and 4 with 
experiment because the current distribution in the samples is 
highly n~nuniform.~ Moreover, in small the drift 
velocity v, corresponding to E, exceeds the soun$velocity 
by at least an order of magnitude. It is clear that Cerenkov 
emission alone does not determine the dissipation. 

In the present paper it is shown that under certain con- 
ditions the leading role in creating the dissipative current is 
played by tunneling processes with the participation of im- 
purities. In the process of tunneling the energy is conserved. 
The dissipation is ensured by the emission of phonons. We 
assume the temperature to be zero. This enables us to disre- 
gard electron scattering by phonons and consider only spon- 
taneous emission of phonons by electrons. It is assumed that 
the phonons have the possibility of escaping freely from the 
system, thereby protecting the lattice from being heated. 

The paper is organized as follows. In Sec. 2 we consider 
the elementary act of tunneling through a resonance impuri- 
ty. The conditions under which this process is dominant in 
comparison with tunneling through chains of impurities are 
elucidated. In Sec. 3 we consider the kinetics of a system of 
electrons and holes with the participation of processes of 
interband tunneling, tunneling from impurities into a band, 
intraband and interband transitions, and also transitions 
from a band to an impurity with the emission of phonons. 
The dependence of the current on the electric field and on the 
occupation ofthe Landau level is found. In Sec. 4 the current 
fluctuations are considered. 

2. INTERBAND RESONANCE TUNNELING 

We shall consider an electron moving in a plane under 
the action of a magnetic field H perpendicular to the plane 

and an electric field E lying in the plane. We choose thex axis 
along the electric field and fix the Landau gauge A, = Hx. 
The electrons are characterized by a conserved momentum 
component p along they axis. The wavefunctions $zp ( r )  of 
the electrons in the presence of the electric field have the 
same form as in the absence of the field, and the energy levels 
depend linearly on p: 

where w,  = eH/m*c is the cyclotron frequency. We recall 
that the quantity x = cp/eH is the average electron coordi- 
nate. Direct transitions from one Landau band to another 
are allowed by energy conservation but forbidden by mo- 
mentum conservation. This prohibition can be lifted by vir- 
tue of scattering by impurities or phonons. 

We shall start from an interband transition with scatter- 
ing by an impurity. Every impurity, including a repulsive 
impurity, has bound states in the gaps between the Landau 
levels. Resonance tunneling via these bound states is always 
much more effective than nonresonance tunneling. Since 
this is so, we need to know the exact wavefunctions of the 
electrons near the impurities. We take a model of a point 
impurity with potential 

The energy levels of an electron in the field of such an 
impurity have been found by Prange.I0 

We shall find the exact wavefunctions of the stationary 
states of a particle in the field of a point impurity. It is con- 
venient to consider this problem in a more general form for a 
certain Hamiltonian H = H, + V(r) with potential V(r) 
defined by Eq. (2).  The Green's function has the form 

G,O (r, 0 )  hGe0 ( 0 ,  r') 
Gc (r, r') =Gso (r, r') + 

l-hG,o(O, 0 )  ' 

where 

is the unperturbed Green's function of the Hamiltonian H,, 
and a labels the states with energy E, .  By the usual proce- 
dure we obtain the wavefunctions of the states in the field of 
the impurity: 
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( ) = 1 G ,  ( r ,  r', t  - t') $,O (r', t') dr' 
i'--m 5 

The scattering amplitude is equal to the projection of $, on 
the unperturbed state $",. : 

Hence, for the transition probability per unit time we find 

where 

Equation (7) has the typical form of the Breit-Wigner prob- 
ability of scattering via a bound state. The energy e,  of the 
bound state is determined by the equation 

The two factors in the numerator of the right-hand side of 
Eq. (7) determine the probabilities of arrival in and depar- 
ture from the bound state, and the imaginary part 

I m K ( r o ) = n  ~ G ( e . - - e . )  I dlz (8)  
a 

is determined by all the possible decay channels of the bound 
state. 

In our specific problem a is the set consisting of the 
integer index n labeling the Landau levels and the y-compo- 
nent p of the momentum. We are particularly interested in 
the case when n = 0 in the initial state and n = 1 in the final 
state. In this situation a and a' are represented entirely by 
the initial values and final values of the momentap andp', or 
by the coordinates x and x' corresponding to them. The law 
of conservation of energy establishes a relation between the 
difference x' - x and the electric field: 

executing tunneling can be regarded as quasiclassical. Then 
the given impurity creates an electric current 

Here it is assumed that the first band is almost filled and the 
second is almost empty. For small electric fields this as- 
sumption is fulfilled by virtue of the exponential smallness of 
the tunneling current ( 10). 

The expression (7 has a sharp maximum at E, = E,. 

Therefore, in the asymptotic limit as E-0, we have 

where the dimensionless parameter 6 = &,/kc - 1 charac- 
terizes the deviation of the bound-state energy from the mid- 
dle of the gap between the Landau levels. The expression 
( 11 ) can be rewritten in the form 

w o w ,  Z=e - 
Wo+W,  ' 

where 

is the probability of departure of the electron from the impu- 
rity to the nth Landau level. 

The current ( 12 ) is a maximum when the bound state in 
the absence of the electric field lies halfway between the Lan- 
dau levels. Near the maximum the current can be written in 
the form 

The geometrical meaning of A is clarified in Fig. 1. It is the 
distance through which the electron should hop in tunneling 
from a "valence" Landau band to a "conduction" Landau 
band. 

For small electric fields the magnitude of A substantial- 
ly exceeds the magnetic length. For this reason an electron 

FIG. 1. 
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exp (-A2/41H2) 
X 

exp[g ( A / l H )  ' 1  + (A2/2zH2) exp[-5 ( A / l H ) ' ]  
(14) 

In sufficiently small samples the electron and hole that have 
been formed do not have time to recombine before emerging 
from the system. In such samples the total current is equal to 
the sum of the currents ( 14) generated by separate impuri- 
ties. '' In large samples, when there is time for recombination 
to occur (see Sec. 3 ) ,  the current decreases. Therefore the 
current ( 14) that we have obtained determines an upper 
bound on the contribution from an individual impurity. In 
practice, this current is accessible to measurement only 
when the ratio A/l, is not too large. When the quantity 
A / l ,  approaches unity, the current I is equal in order of 
magnitude to em,, i.e., is - 1 p A  when H = 10 T. 

The current I({) decreases exponentially with increase 
of 16 1 .  Assuming that the dimensionless energy density of 
bound statesp (6 + 4 ) depends weakly on 6 near the middle 
of the gap between the Landau levels, we obtain the average 
value of the current produced by one impurity: 

The problem of tunneling from a filled Landau level to an 
empty one was first considered by Tavger and Erukhimov. ' I  

They studied a nonresonance transition and obtained a 
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much smaller exponential: - exp [ 3 ( A/ l ,  ) 1. Chaplik and 
~ n t i n , ' ~  and then Lifshits and Kirpichenkov,I3 considered 
resonance tunneling via bound states without a magnetic 
field. 

Tunneling transitions with the participation of one im- 
purity are accompanied by a change of the electron coordi- 
nates by an amount of order A. The influence of other impur- 
ities is unimportant only in the case when they are at a 
distance greater than A  from the given impurity. For a small 
concentration of impurities this is the case for most of the 
impurities. 

To estimate how small the impurity concentration 
needs to be we shall consider tunneling through a pair of 
point impurities, with strengths A ,  and A,, placed at the 
points r ,  and r ,  . The electron Green's function in the field of 
these impurities has the form 

where 

Hence the probability of a transition between the Landau 
levels per unit time is equal to 

The probability ( 18) is a maximum when the coordinates y 
and the bound-states energies in the given electric field are 
nearly the same for both impurities. 

The tunneling current produced by the pair of impuri- 
ties is the sum of the probabilities Wpp, over all initial and 
final states. It is equal to 

d p  dp' 2n 6 ( E ~ ~ - - E ~ ~ , )  I GOp' (rl)  GEO (rl, r ~ )  @IP,  (r2) 1 ' I =  J -  
(2nti)' ti IdetM12 

( 1 9 )  

The denominator of the integrand in ( 1 9 )  is a minimum 
when the energy of the electron is close to the energies of the 
bound states, i.e., when the equalities 

are fulfilled. Since the system is placed in an electric field, the 
Green function G, ( r ,  r )  depends explicitly on r. In Eqs. ( 19) 
and ( 2 0 )  all the G, ( r ,  r ' )  are taken at the value E = E,, E E , .  

We shall average the current ( 19) over the energies of 
the states bound at the impurities. We obtain 

where pi ( E )  = p ( s / h ,  + x ,  / A  - 1 / 2 ) .  
The expression ( 2  1 ) is a maximum when the distance 

between the impurities is equal to A/2 .  Averaging over the 
positions of the impurities, we obtain 

rent with the current (15) produced by one impurity, we 
find that the contribution of pairs of impurities can be ne- 
glected when 

For a given impurity concentration it is always possible 
to violate the inequality ( 2 3 )  by decreasing the electric field. 
Interband tunneling will then proceed through chains of im- 
purities. Such a situation was described by Shklovskii. l 4  Res- 
onance tunneling through two impurities in the absence of a 
magnetic field was considered in Ref. 17. 

3. THE DISSIPATIVE CURRENT AS A FUNCTION OF THE 
OCCUPATION OFTHE LEVEL 

The interaction of electrons with impurities cannot 
change their energies. In order to find the dissipative cur- 
rent, it is necessary to take into account the interaction with 
phonons. Since the temperature is assumed to be zero, only 
emission of phonons is possible. For v, > s, the laws of ener- 
gy and momentum conservation permit electrons to move 
along the upper Landau level while emitting phonons.4 But 
for u, <s, this is impossible in an impurity-free system. Im- 
purities, however, by accepting the excess momentum, allow 
transitions along one Landau level in this case as well. 

Tunneling processes lead to the appearance of holes in 
the first Landau level and electrons in the second Landau 
level. The electrons and holes can recombine with the emis- 
sion of phonons. Recombination is possible without change 
of the electron coordinates. Therefore, its probability does 
not become exponentially small in a small electric field. 

Recombination processes open up additional decay 
channels of a state bound to an impurity. This leads to broad- 
ening of the resonance level, and weakens the resonance- 
tunneling effect even for an exponentially small number of 
electrons in the second Landau level or holes in the first 
Landau level. 

Tunneling transitions with the participation of phonons 
occur much more slowly than the analogous elastic tunnel- 
ing processes. This is due to the smallness of the dimension- 
less electron-phonon coupling constant. In the kinetic equa- 
tions we neglect the process of impurity-free interband 
tunneling. The probability of this process is exponentially 
small in the electric field in comparison with tunneling 
through the impurity. To simplify the analysis we also ne- 
glect transitions between states localized at impurities, as- 
suming the impurities to be rare. This implies that we shall 
not consider effects associated with hopping conduction. 
The low-impurity-density approximation limits the applica- 
bility of the given theory to a region of sufficiently strong 
electric fields. We note that the nonlinear dissipative current 
is accessible to measurement only in this region. 

The electron density N, in the upper Landau level and 
hole density N,, in the lower Landau level obey the following 
kinetic equations: 

where c is the impurity concentration. Comparing this cur- 

378 Sov. Phys. JETP 68 (2), February 1989 Pokrovskil et aL 378 



Here 9. (r' ,  r )  is the probability of scattering of an electron 
in the upper Landau level. The quantity W e  (i, r )  is the prob- 
ability of a tunneling transition from the ith impurity to the 
upper Landau level, and Q, (i, r )  is the probability that an 
electron falls from the upper Landau level to the impurity 
with emission of a phonon. The analogous notation with the 
subscript h refers to holes in the lower Landau level. The 
equation also contains the probability Q(r, r') of recombina- 
tion of electrons and holes. The quantity n i  is the average 
number of electrons at the ith impurity. The population of 
each impurity is also determined from the kinetic equation 

- n N (r) Q r) + ( i n )  Q (4 r) ( 2 6 )  

We shall assume that the system is spatially uniform. 
We introduce the average density n ( E )  of electrons occupy- 
ing impurity levels with energy E ,  the latter being measured 
in units of h, and reckoned from the lower Landau level. In 
a large sample the stationary densities of electrons and holes 
do not depend on the coordinates and satisfy the equations 

which follow from ( 2 4 ) - ( 2 6 ) .  Here We ( E )  is the total prob- 
ability of tunneling from the impurity to the upper Landau 
level, and Wh ( E )  is the total probability of tunneling from 
the lower Landau level to the impurity. These probabilities 
are determined with good accuracy by the expression ( 1 3 )  
with n = 1 and n = 0. The quantity Q, ( E )  is the probability 

of transition of an electron from the upper Landau level to 
the impurity with emission of a phonon, and Q ,  ( E )  is the 
probability of transition of an electron from the impurity to 
the lower Landau level with emission of a phonon. The 
scheme of the processes is depicted in Fig. 2. 

Knowing the transition probabilities, it is not difficult 
to find an expression for the dissipative-current density: 

Here 

Of the equations ( 2 7 ) - ( 2 9 )  only two are independent. 
Therefore, in order to find N,,  N ,  , and n ( E ) ,  it is necessary 
to use an additional condition. In experiment one usually 
specifies the occupation v, or, equivalently, the total electron 
density N: 

The equations ( 2 8 ) - ( 3  1 ) determine the parametric depend- 
ence of the dissipative-current density on the total electron 
density N. The parameters are N, and N h .  

In Ref. 16 we considered the problem of the destruction 
of the quantum Hall effect in a somewhat different formula- 
tion. The distribution of electrons and holes obtained in Ref. 
16 depended on the coordinate x .  This was connected with 
the small size of the system considered there. In the problem 
there are two characteristic lengths. One of them, L o ,  is de- 
fined as the distance at which the growth of the number of 
carriers is limited by the recombination of electrons and 
holes. In order of magnitude, Lo - v / c Q ,  ( 1 / 2 ) .  The other 
characteristic length is the electric-charge screening length 
ro, A satisfactory theory of screening for the quantum Hall 
effect does not exist at present. In Ref. 16 we assumed that 
L,  is much smaller than both Lo and r,. Here, on the con- 
trary, it is assumed L ,  % Lo,  ro . 

Let the number N  of electrons be smaller than the num- 
ber of levels at the impurities. It is natural to expect that in 
weak fields the distribution of electrons over the impurities 
will be almost the same as in zero field, i.e., impurity levels 
with E < E~ ( N )  will be filled. If E ,  is not too close to one of 
the Landau levels, N, and N,  are exponentially small. This 
assumption is consistent with Eqs. ( 2 7 ) - ( 2 9 ) ,  and it follows 
from ( 2 9 )  that the smearing of the energy E ,  has magnitude 
-IZ,/A2. 

Explicit solutions of the system ( 2 7 ) - ( 2 9 ) ,  ( 3  1 ) can be 
obtained in two limiting cases-near the middle and the edge 
of the Hall plateau. We start from the first of these cases, 
corresponding to E ,  -- 1/2. In Eqs. ( 2 7 ) - ( 2 9 )  the quantities 
that vary most rapidly with energy are the tunneling-transi- 
tion probabilities We ( E )  and Wh ( E ) ,  which contain the ex- 
ponential factors exp [ - ( 1 - E ) ' A ~ / I ,  '] and 
exp( - E ~ A ~ / I , ~ ) .  Near E = 1/2 these probabilities can be 
represented in the following form: 

FIG. 2. 
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where, as before, E = 1/2 + 6, and y is a constant which can 
be found from Eq. ( 13). We shall regard the quantitiesp(e), 
Q, (E), and Q, (E)  as slowly varying functions of E and re- 
place them by the corresponding values at the point E = 1/2. 

In order that, on the one hand, the impurity levels be 
largely filled upon change of N, and, on the other hand, it be 
possible to neglect tunneling through chains of impurities, it 
is necessary that the inequalities 

exp (-A2/4ZH2) <cZH2<exp (-A2/81H2). (34) 

be fulfilled. We introduce the notation 

A 
N,Q, ('I,) =ay --exp (-A2/4ZH2), 

lHY2 
(35 

Then the system (27)-(29) reduces to the equation 
m 

where 

We shall assume that g$1. Then near the center of the 
plateau it follows from (36) that ap = 1. In thiscase Eq. 
(3 1 ) reduces to the relation 

12 

ZH2 a z H Y Z  
N = C  J ( e )  de+cp ('/2)-ln (?) 

A2 
0 

The first term of the right-hand side of (38) corresponds to 
filling of the impurity levels up to exactly the middle of the 
gap between the Landau levels. The second term takes into 
account small deviations from this filling. In the approxima- 
tions made the dissipative current is equal to 

The dissipative current as a function of the occupation 
reaches a minimum 

at a value N,, that depends on the electric field: 

We now consider the occupation of the impurity levels 
near the edge of the Hall plateau. When the condition 

is fulfilled, we can neglect the occupation numbers of the 
hole states and set the quantities N,, and W ,  equal to zero in 
(29). Then the occupation of the impurity levels is deter- 

mined by the formula 

The quantity We (E)  -exp [ - ( A2/1, 2, ( 1 - E ) ~ ]  de- 
pends exponentially on E. For We (E)  < N e e ,  (E)  the impuri- 
ty states are practically completely filled, while for 
We (E)  > N, Q, (E)  they are empty. We specify the energy E, 

by the relation 

The width of the energy range over which n (E)  changes from 
unity to zero is, in order of magnitude, 

The total electron density is equal to 

Here we have neglected the occupation of the upper Landau 
level. It follows from (44) that this is valid under the condi- 
tion 

Near the edge of the plateau we take account of transitions 
only between the upper Landau level and the impurity levels. 
We neglect transitions from impurity to impurity and scat- 
tering by several impurities; this is valid when 

The conditions (47) and (48) admit a larger p ( ~ , )  than 
(34). This is connected with the fact that near the edge of the 
plateau the necessary tunneling length is smaller than at the 
center. 

The dissipative current is determined by the first term 
of expression (30). It is equal to 

With increase of N the energy E, increases, according to 
(46), until the inequality (47) is violated. With further in- 
crease of N, delocalized states in the upper Landau level will 
be populated. This implies that the Hall plateau terminates 
after the impurity levels with energy 

are filled. Thus, the width of the Hall plateau decreases lin- 
early as a function of the electric field. The linear depend- 
ence of the width of the plateau on the electric-field intensity 
has an extremely general character and is due entirely to the 
sharp dependence of the tunneling probability on the length 
of the jump. 

4. FLUCTUATIONS 

In experiments with narrow Hall samples 
with a characteristic size of 1 pm have been used. This size is 
substantially greater than the screening radius (which is 
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about 400 A, according to the estimate of Kane et c~1.'~). 
Therefore, the total electron density in the sample can be 
regarded as given. The number of electrons in the sample is 
of the order of lo4. The number of impurities, especially with 
deep bound levels, is substantially smaller. One may expect 
considerable fluctuations of the density of states, and asso- 
ciated fluctuations of the dependence of the current on the 
occupation. These fluctuations are described by the formula 

and, because of the smearing of the step in the electron distri- 
bution function n (E), the quantity p (E, ) appearing in (5 1 ) 
should be smoothed over an energy range SE-IH2/ 
A2(1 - E,). 

The equation (5 1 ) shows that fluctuations of the den- 
sity of states p ( ~ )  lead to fluctuations of the slope of the 
curve I (N) .  Indeed, suppose t h a t p ( ~ )  has a peak at a certain 
E, . Then in a certain range of variation of N only states with 
energy E, will be occupied. In other words, as a function of N 
the quantity E, (N) does not change, and therefore the cur- 
rent determined by Eq. (49) also does not grow. A step ap- 
pears on the curve I (N) .  

We shall consider the change of the position of the step 
as the electric field increases. For this we calculate the cor- 
rection (associated with the smearing out of the distribution 
function) to the formula (46) determining the relationship 
between the number N of electrons and the quasi-Fermi level 
Eo : 

It follows from Eq. ( 5  1 ) that the step moves in accordance 

with the law 

Qualitatively, this behavior corresponds to the step motion 
that was observed in Ref. 8. 
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