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The conductivity components of a metal containing a system of parallel plane defects are 
calculated. If the scattering of the current carriers by the defects is sufficiently intense, coherent 
quantum effects are important, and the temperature dependence of the resistance component 
perpendicular to the defects is that of an insulator. The cases of strongly and weakly reflecting 
defects are discussed. A model is proposed to explain the temperature dependence of the 
transverse resistance of crystals of high-temperature superconductors. 

1. INTRODUCTION tance of graphite on the basis of scattering of current carriers 
Regardless of the anisotropy of the Fermi surface, a by stacking faults. In One's Paper, however, the transverse 

localized Anderson transition will occur in all crystallo- resistance was calculated by means of the Boltzmann equa- 
graphic directions simutaneously in a disordered metal tion, which has only a limited range of applicability for this 
(Refs. 1 and 2, for example). There are, on the other hand, model. In ~articulm, the temperature dependence found for 
layered materials for which the behavior of the resistance the transverse resistance by On0 was metallic. 
along the layers is metallic, while that across the layers cor- 
responds to an insulator. A classic example is graphite,34 in 
which this effect has been observed for more than 30 years, 
although it does not yet have a satisfactory theoretical de- 
scription. The high-temperature superconductors 
YlBa2Cu,0, fall in the same It should be noted 
that the temperature dependence of the transverse resistance 
is not "universal" in these two compounds: There are high- 
quality samples in which the transverse resistance is metal- 
lic. The insulating nature of the transverse resistance is thus 
not an inherent property of the compounds but a conse- 
quence of the defect structure of the real crystals. 

In layered materials there is a tendency toward the for- 
mation of plane defects, oriented parallel to the layers. In the 
superconducting cuprate YlBa2Cu30,, for example, high- 
resolution electron spectroscopy has revealed twinning 
boundaries running parallel to the layers'' and also some 
irregular alternations of Y and Ba layers" (the typical dis- 
tance between the plane defects on a photograph shown in 
Ref. 11 is 100 A).  In the present paper we show that the 
behavior of the transverse resistance is that of an insulator 
when there is strong scattering of current carriers by plane 
defects. If the relaxation time of the transverse component of 
the momentum, e ,  is much smaller than the time r0 for 
departure from a state with a given energy E and a given 
longitudinal momentum component pll , then over times rf 
( t (  an electron can be scattered by plane defects many 
times, while the momentum pll is conserved. Over these 
times, the motion of a particle with a definite value of pll is 
essentially one-dimensional. We know that the Boltzmann 
equation cannot be used, regardless of the value of the pa- 
r a m e t e r " ~ ~ ~ ,  for a one-dimensional disordered meta1.'2v'3 If 
no other scattering mechanisms were operating (7,- w ), 
the wave functions would be localized in the transverse di- 
rection, and the conductivity in this direction would vanish. 
Relaxation of the longitudinal component of the momentum 
leads to disruption of the coherence of the transverse motion 
and to the appearance of a finite conductivity in this direc- 
tion. 

Ono14 explains the pronounced anisotropy of the resis- 

2. WEAKLY REFLECTING PLANE DEFECTS 

To calculate the transverse conductivity in the case of 
plane defects with a reflection coefficient r( 1, it is conven- 
ient to use a version of Berezinskii's technique which was 
proposed by Gogolin et a1. l5 Applying this technique to the 
system under consideration here requires writing the elec- 
tron Green's functions in a mixed representation-the coor- 
dinate representation in the transverse direction and the mo- 
mentum representation in the longitudinal direction: 

Here the plus and minus signs specify the retarded and ad- 
vanced Green's functions, respectively, and v, andp, are the 
transverse velocity and transverse momentum, which de- 
pend on the longitudinal momentum pll through the energy 
of the longitudinal motion, E~~ (pll ). The phonon Green's 
function and the impurity line must be transformed analo- 
gously. If scattering by plane defects is dominant, the tech- 
nique is similar to Berezinskii's technique for one-dimen- 
sional electrons with additional scattering by 
three-dimensional phonons. l5 The only difference is that the 
phonon Green's functions depend on pll , so it is not legiti- 
mate to carry out an independent integration over the longi- 
tudinal momentum in the phonon Green's functions and in 
the impurity lines. 

Gogolin et al.15 showed that if the condition Ami & 1 
holds (AE is the typical energy transferred to a one-dimen- 
sional electron in a collision with a phonon, and ri is the time 
scale of the momentum relaxation due to collisions with im- 
purities), the scattering by phonons affects the conductivity 
only to the extent that the "escape" electron relaxation time 
changes. An expression for the hopping conductivity in this 
case can be found from the expression for the complex rf 
conductivity through the replacement iw+ l/r,,, . For the 
system under consideration here, this approximation is valid 
under the vastly weaker condition vll <ApII &I ,  where Apll is 
the typical change in the longitudinal momentum in the 
collisions. For scattering by impurities, this condition holds 
in essentially all cases, while for collisions with phonons it 
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holds at temperatures T%s/vll < , where s is the sound veloc- 
ity. Using the result of Ref. 15 for a one-dimensional metal, 
we thus find the following expression for the transverse con- 
ductivity at < 47,: 

where { ( x )  is the Riemann function, N ( E ~  ) is the state den- 
sity, and (...)s, means an average over the Fermi surface. 
Because of interference effects, the transverse conductivity 
differs from the classical conductivity by a factor </r04 1. 
If the escape time is determined primarily through scattering 
by phonons, the temperature dependence of o, is that of an 
insulator. 

The scattering by plane defects does not influence the 
longitudinal conductivity, for which we can use the usual 
Drude formula 

where rll is the relaxation time of the longitudinal compo- 
nent of the momentum. This time is determined by scatter- 
ing by impurities and phonons: 1/rI1 = I/<, + l/rPh. At 
temperatures above the Debye temperature (i.e., in a region 
in which the resistivity pll = all -' is a linear function of the 
temperature), the relaxation of pll is caused by scattering 
through large angles. In this case the times rI1 and ro are the 
same, so the product o,ull does not depend on the tempera- 
ture. It is determined by the parameters of the Fermi surface 
and by the interaction of the carriers with plane defects. 

We have assumed that the defects are infinite. For 
band-shaped defects with a typical width L, expression ( 1 ) 
remains in force if an electron over the time L /vll required to 
cross the band, can, be scattered by impurities or phonons: 
L /vll %To. 

At sufficiently high temperatures, the escape time ro 
becomes comparable to the time e, coherent effects are sup- 
pressed, and the transverse conductivity assumes its classi- 
cal value 

Because of the scattering by plane defects, however, a specif- 
ic quantum-mechanical correction to the conductivity, 
0fr,12,/(e)~ in order of magnitude, arises. The quantum- 
mechanical correction to the conductivity, ha,, is deter- 
.mined by diagrams on which impurity lines intersect. Dia- 
grams which contain two intersecting lines describing 
scattering by plane defects cancel each other out. Diagrams 
of the types shown in Fig. 1, a and b, in which three lines 
intersect, make a nonvanishing contribution (the diagrams 
are evaluated by the Berezinskii technique). Calculations 
lead to the results 

~ ~ ~ ( a ) = -  eZN(ep) ( ( V I T L Z O ) ~ / ( ~ ~ ~ ) ~ ) ~ ~ )  (3a) 

AuL(0) =i/ZA~L(a', (3b) 

Au,=~Au,(")$.~Au~(~)=-~~~N(E~) ( ( V , T , T ~ ) ~ / ( T , ~ ) ~ ) ~ ~ .  

(3c) 

In the region rf - r1 - ro the quantum-mechanical correc- 
tion Aa, becomes comparable to the classical conductivity 
of', and interference effects become important in the scatter- 
ing by plane defects. 

FIG. 1. Berezinskii diagrams determining the quantum-mechanical cor- 
rection to the conductivity in the case of a scattering by plane defects. 
Solid line-Retarded Green's functions; double line-advanced Green's 
function; dot-dashed line-line describing a scattering by plane defects; 
dashed line-impurity or phonon line, filled point-current vertex. 

3. STRONGLY REFLECTING PLANE DEFECTS 

For the scattering of electrons by plane defects with a 
reflection coefficient r 5 1, the classical expression for the 
transverse conductivity id4  

where t = 1 - r is the transmission coefficient, and d is a 
typical distance between plane defects. 

When the mean free time ro becomes longer than the 
typical transit timed /v, , quantum-size levels appear in each 
"gap" between neighboring plane defects, and the transverse 
momentum takes on several discrete values p,, = m/ 
d(n = 1,2 ...). Since d is random, the values of p,, for the 
neighboring gaps will generally differ. For each gap, how- 
ever, a small fraction of the states are highly hybridized with 
a state in one of the neighboring gaps. A simple estimate 
shows that the highly hybridized levels are those for which 
the difference between the quantized values of the transverse 
momentum is less than t 'I2/d. The time scale for the tunnel- 
ing to a neighboring gap once such a level is reached is 
r, -d /v,t 'I2. 

Let us estimate the lifetime rj in a gap in a situation with 
scattering by impurities and phonons. If the typical transfer 
of longitudinal momentum in the course of a collision is 
Apll % v, /vll d, an electron will hop between quantum-size 
levels over a time on the order of 70. The electron will reach 
hybridized levels at a frequency t '12/ro. The estimate of the 
transition time depends strongly on the ratio of the tunneling 
time r, to the lifetime in the level, rO. 

1. In the case r 0 4 r t ,  the tunneling probability once a 
resonant level has been reached is r,,/r,, and the transition 
time is estimated to be 

and an estimate of the conductivity from Einstein's rela- 
tions, a, = ~ ' N ( E ~ )  Dl, again leads to the result (4). 

2. In the opposite limit, rO% 7, , an electron goes into a 
neighboring gap with a probability of order unity once it 
reaches a resonant level. We thus find the following esti- 
mates: a transition time rj -rJt ' I 2 ,  a diffusion coefficient 
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D, - t '12d 2 / ~ o ,  and a transverse conductivity 

If r0 is determined by scattering by phonons, the tempera- 
ture dependence of the transverse conductivity has a plateau 
(4) in the interval 

and at eh > d /t lt2u, this plateau gives way to insulating 
behavior, ( 5 ) . 

4. CONCLUSION 

Let us examine the applicability of this model to real 
systems. In nearly all Y,Ba,Cu,O, superconducting single 
crystals, the longitudinal resistance depends linearly on the 
temperature, so we would expect the transport time rIl and 
the escape time 7, to be comparable in order of magnitude. 
There are single crystals which exhibit a p, ( T )  behavior 
which is clearly of an insulating nature.'r9 If behavior of this 
sort is caused by scattering of current carriers by plane de- 
fects, the product pllp, should be independent of the tem- 
perature. This assertion remains in force if there is an addi- 
tional scattering by impurities, in which case the 
temperature dependence of pll  ( T )  takes the form 
pi1 ( T )  =po + Tdpll /dT. 

Figure 2 shows plots of (pIlp, ) ' I 2  for single crystals 1,2, 
and 3 of Ref. 8 (these crystals exhibited a superconducting 
transition at T-90 K). We see that for all three crystals 
there is a plateau on the plot. For crystal 2, for example, the 
value of (pIIp, )'I2 varies within 6% limits between 100 and 
250 K. The increase in (pl,p, )'I2 with increasing tempera- 
ture is naturally linked with a transition of p, to a classical 
regime. In certain single crystals, there is a large region of 
residual resistance on thep, ( T )  curve; this region gives way 
to an insulating behavior as the temperature is lowered.'.' As 
was shown in Sec. 3, this behavior occurs in the scattering of 
carriers by plane defects with a smaP transmission coeffi- 
cient ( t g l ) .  From (2), (4) and (5) we findtherelation 

where To is the temperature at which the dependence p, ( T) 
becomes that of an insulator. Relation (6) can be used to 
estimate the typical transmission coefficient t. Using the esti- 
mate vll /u, - 5, which follows from measurements of the an- 
isotropy of the field H,, in these materials, we find t - 0.2 for 
single crystal 1 of Ref. 8. At such transmission coefficients, 

the temperature dependencep, ( T)  becomes that of an insu- 
lator when the mean free path across the layers, I,, becomes 
comparable in magnitude to the typical distance between 
plane defects, d. Taking d- 100 A, we can find an estimate of 
the mean free path along the layers, Ill, at the temperature at 
which the insulating behavior sets in: 

This estimate is more than an order of magnitude greater 
than estimates of Ill made in Refs. 16 and 17. Note, however, 
that the estimates of Refs. 16 and 17 were afflicted by a large 
uncertainty because of the absence of reliable measurements 
of the band parameters (the effective mass and Fermi veloc- 
ity) of the high-temperature superconductors. Anderson 
and Zou" and Xing et a1.I9 believe that the insulating behav- 
ior ofp, (T )  is an internal property of the compounds. That 
assumption contradicts the fact that thep, ( T )  behavior var- 
ies wildly from one sample to another. 

In most of the papers on graphite (e.g., Refs. 3-6), the 
temperature dependence of the resistance components has 
been reported over the temperature range 0 < T <  300 K. In 
this range the functional dependence pll ( T )  is nonlinear, so 
there is no reason to believe that the times rI1 and r0 are the 
same. As a rule, l/p, falls off more rapidly than pll with 
decreasing temperature. On the basis of the model proposed 
here, this behavior can be explained if the inequality 
rI1 ph 2 )rEh holds for the impurity time In this case, 
l/p, - l/rgh would vary more rapidly than the longitudinal 
component of the resistance, pll -- 1/71 + l/rih, with de- 
creasing temperature. 

I wish to thank A. I. Glazman, S. V. Iordanskii, and D. 
E. Khmel'nitskii for useful discussion of this study. 
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