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A study is made of inertia-free dynamics of one-dimensional harmonic chains in a periodic 
potential in the presence of a homogeneous longitudinal field, which constitutes a model 
describing the slip of charge density waves and the motion of a vortex lattice in a profiled 
superconducting film. A variant of a model with a piecewise-parabolic potential, introduced by 
Aubry, is used to obtain the exact solution for steady-state motion of a chain. The nature of 
behavior near the mobility threshold can be used to classify steadily moving structures as 
commensurate, incommensurate, and almost commensurate, each characterized by its own 
dependence of the velocity of motion on the applied force. A description is given of the motion of a 
solitary phase defect in a commensurate periodic structure. 

The spatial coherence effects are manifested by a wide 
range of physical systems such as quasi-one-dimensional 
crystals with a space charge wave,'-5 monatomic films on 
crystalline  substrate^,^.' Abrikosov vortex lattices formed in 
a thin profiled superconducting film,8 etc. We shall consider 
systems in which there are two types of interaction, each of 
which tends to impose its own periodicity; they can be fre- 
quently regarded as the interaction of elements of a structure 
with one another, on the one hand, and the interaction with 
an external potential, on the other. 

In the case of a corrugated superconducting film (Fig. 
1 ) a transverse magnetic field applied transverse to the film 
tends to form a regular triangular vortex lattice in which the 
separation between the rows is 

where B is the magnetic induction and Q0 = hc/2e is a mag- 
netic flux quantum. The presence of a one-dimensional cor- 
rugation with a period b means that, for energetic reasons, 
the vortices are located where the film thickness is least so 
that the period of the vortex structure in the direction, of the 
corrugation tends to become commensurate with 6. 

Another example is a system with a charge density 
wave. In this case the "intrinsic" period of a structure is 
a = d/p, ,  wherep, is the Fermi momentum. In view of the 
discrete nature of the lattice, the system tends to form a 
structure in which charge modulation along the direction of 
the wave vector of the charge density wave can have a period 
commensurate with the period of the lattice along a given 
direction of b. 

In both these examples the application of an external 
force can set in motion a modulated structure in the form of a 
charge density wave or a vortex lattice. An Abrikosov lattice 
can be set in motion simply by passing a current j directed 
along corrugation grooves in a film (Fig. 1). The vortices 
then experience a Lorentz force equal to f = c-'@, j and 
directed transverse to the current. A charge density wave 
subjected to an electric field also experiences a force directed 
along the field and proportional to its intensity. 

It is known from a general theory of incommensurate 
 structure^^^'^ that in the systems under consideration we can 
expect either commensurate structures which are periodic or 
incommensurate quasiperiodic structures. The response to 
an applied force can vary. We can have a situation when 

force, no matter how weak, can set the system in motion or 
the motion of a structure may begin only when the force 
exceeds a certain threshold value. In the latter case it is usual 
to describe the structure as pinned. Commensurate struc- 
tures are always pinned and incommensurate structures are 
pinned only if the applied potential is sufficiently high. Each 
quasiperiodic incommensurate structure is characterized by 
its own critical value of the applied potential, beginning from 
which a structure becomes pinned. 

If the applied force exceeds a threshold value, a struc- 
ture travels at some velocity u. In the case of a charge density 
wave this implies the appearance of an electric current pro- 
portional to u. The motion of vortices in a superconducting 
film creates an electric field proportional to v and directed 
along the current. The present paper is concerned with how 
the velocity u of a structure depends on the applied force$ In 
both applications mentioned above such a dependence is re- 
garded as a current-voltage characteristic, i.e., as the de- 
pendence of the current on the voltage in the case of a charge 
density wave and of the voltage the current in the case of a 
superconducting film. 

Aubryl' proposed a model which can be solved exactly 
and which predicts commensurate and incommensurate 

FIG. 1 .  Vortex structure moving along the x axis in a current-carrying 
corrugated superconducting film. A magnetic field B is directed at right- 
angles to the plane of the film. Each vortex experiences a Lorentz force f, 
= c-'a,. 
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structures. In view of the specific nature of the potential in 
this model all the structures (both commensurate and in- 
commensurate) are pinned irrespective of the strength of the 
applied potential. However, the pinning force may depend 
strongly on this potential. Aubry obtained explicitly all the 
structures representing the ground state of his model for any 
ratio of the "internal" period to the period of the potential. 

In the first section of the present paper we shall formu- 
late the Aubry model and describe structures corresponding 
to commensurate and incommensurate ground states, and 
alsostructures with solitary defects. In the second section we 
shall derive expressions relating the velocity of steady-state 
motion of a structure to the applied force. In the third sec- 
tion we shall study the dependence of the force on the period- 
icity of the structure. In the fourth section we shall consider 
the motion of a solitary in a periodic structure. In the fifth 
section we shall discuss the motion of an incommensurate 
quasiperiodic structure in near-threshold fields. The results 
obtained will be discussed in the conclusions. 

1. MODEL: GROUND STATE 

We shall consider a one-dimensional chain in which 
each site is associated with a real quantity pj , where j is the 
site number. It is usual to consider models with an energy 
functional of the type 

where the function L(x, y) is a discrete analog of a Lagran- 
gian and it has the following properties: L(x, y )  is contin- 
uous, periodic in the sense 

L(x+l ,  y + l )  =L(x ,  y). 

and satisfies the condition 

In particular, these properties are exhibited by functionals of 
the type 

with a periodic potential V(p + 1 ) = V(p). 
The most popular potential is 

V,, ( c p )  = (1-cos 2 n p )  /4nZ, (1.3a) 

which corresponds to the familiar Frenkel-Kontorova mod- 
e1.12 Aubry was able to obtain an exact solution by choosing 
the following potential: 

where Int x is the integral part of x. 
We can formulate the task of minimization of the func- 

tion ( 1.1 ) for a chain of length which tends to infinity, sub- 
ject to the following additional condition superimposed on 
the configuration {pj}: 

( P N - ~ N '  lim -------=ma 
N++oo,N8+--m N-N' 

Obviously, a minimum corresponds to one of the stationary 
configurations characterized by 

The following theorem can be proved1° about the 
ground state of the model described by Eq. ( 1.1 ) for a given 
value of 4: this ground state corresponds to one of the config- 
urations from a set parametrized by a unique function g(x)  
with the following properties: g (x)  is a nondecreasing func- 
tion of x, g(x,)>g(x,) for x, >x3 and g(x + 1) = g(x)  or 
g(x)  = x  + h(x) ,  where h(x)  = h(x + 1) is a periodic 
function of x. Then, all the configurations of the type 

correspond to the ground state and the parameter f i  labels 
such configurations. 

In the case of rational values of = M /L, where M and 
L are integers, the ground state exhibits the property of peri- 
odicity: p;,, = p9 + M. Then, in the interval [O; l ]  the 
functiong(x) has exactly L discontinuities separated by 1/L 
and in the intervals between the discontinuities we have 
g(x)  = const. This form of g (x )  corresponds to a unique 
ground state of the system, apart from the substitution 

The configuration {p;) minimizing the functional 
( 1.1 ) corresponds to an elementary topological phase defect 
above a commensurate ground state with Q, = M /L if 

The plus sign in Eq. ( 1.7) corresponds to a dilatation 
defect and the minus sign corresponds to a compression de- 
fect. For example, if = 0 and g(x)  = Int x, the ground 
state is the configuration pp = m, where m is an integer, 
whereas in the case of an elementary defect, the ground state 
is the following kink configuration: 

The ground state with @ = 1/N can be regarded as a 
structure composed of equidistant kinks separated by a dis- 
tance N. An elementary dilatation (compression) defect in 
such a structure is the configuration in which the distance is 
N * 1 for one of the pairs of the neighboring kinks. The 
ground state with = l /(N, + 1/N2) can then be regarded 
as a sequence of defects separated by the same distance 
N1N2 + 1 above a structure with Q, = 1/N. 

This can be generalized as follows: the ground state 
with a given rational value a, of the type 

represents a sequence of defects separated by the same dis- 
tance L, + , above a structure characterized by 

The ground state with an irrational value of can be regard- 
ed as a hierarchy of defect structures in a sequence governed 
by an expansion of @ i:l the form of an infinite continued 
fraction. l3  

These ideas are, strictly speaking, valid only if the di- 
mensions of defects are small compared with the separation 
between them, which is true when the potential /1 is suffi- 
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ciently strong. If the potential Vin the model of Eq. ( 1.2) is 
sufficiently smooth, we can showlo that for low values of A 
the ground state with an irrational value of corresponds to 
an analytic function of g(x)  without any discontinuities. 
This means that a continuous degeneracy of the ground state 
with a Goldstone parameter f l  [see Eq. ( 1.6) ] occurs, so 
that the threshold force is zero. 

In the model with a potential ( 1.3b) the critical value of 
the potential force A, inducing a transition from one incom- 
mensurate structure to another is zero for all the irrational 
cP. The ground state is always pinned and it corresponds to a 
finite or an infinite hierarchy of defects. The function g(x)  
can then be found exactly": 

m 

where 

IfA ( 1, then r=: 1 - A 'I2. For irrational values of a ,  we find 
that gA (x)  has a dense set of discontinuities at the following 
points: x = 4 + I@ + m. 
2. STEADY-STATE MOTION 

We shall now assume that each site in a chain experi- 
ences an external force f which displaces pi from its equilib- 
rium position. For the sake of simplicity, we shall consider 
an inertialess (instantaneous-response) system for which 
the equations of motion contain only first derivatives with 
respect to time: 

In the case of a vortex lattice in a superconducting film 
the motion of vortices is always inertialess.I4 Here, f is pro- 
portional to the current of the Lorentz force. Neglect of the 
inertia of a charge density wave is also often justified.l5,l6 In 
the latter case the quantity f represents the electric field. 

Substituting E(C% 1) in the form of Eqs. ( 1.1 ), ( 1.2), 
and ( 1.3b), into Eq. (2.1 ), we obtain the equation of motion 
for the Aubry model: 

where 

We shall seek the solution of equations of the form 
(2.2) corresponding to steady-state motion of a chain as a 
whole at some velocity u subject to the condition that the 
phase shift is maintained during subsequent times at infinite- 
ly distant sites of the chain, i.e., when the parameter @ of Eq. 
( 1.4) remains constant. We can expect that this type of mo- 
tion occurs when the force f is appplied adiabatically. 

By analogy with the Aubry solution, in the case of the 
ground state of the chain we shall assume that1' 

It is then necessary to demonstrate a posteriori that this se- 
lection of mj ( t )  is self-consistent, i.e., we can show that the 
solution of the system of equations (2.2) with mj ( t )  in the 

form of Eq. (2.4) satisfies the condition (2.3). We shall 
show later that this leads to coupling v a n d j  

The solution of the system (2.2) with mj in the form of 
Eq. (2.4) will be described by 

Substituting Eqs. (2.4) and (2.5) into Eq. (2.2), we obtain 

where d(x)  is 

d(x)=x- I n t ( x + + ) = z  
exp (2nin (x+'/,) ] . (2.7) 

n--m 
2nin 

The right-hand side of Eq. (2.6) contains a function which is 
periodic in time and oscil'stes at the frequency w = 27rv. 
Consequertly, $j ( t )  should be sought in the form - 

* ( t ) =  .pll'eain? (2.8) 
n--m 

The equations for $jn' ,  obtained from Eqs. (2.6)-(2.8), are 
of the form 

It follows from Eqs. ( 1.4) and (2.5) that the solutions of the 
system (2.9) which are finite in the limit j-. f co can be 
found using the Green's functions which decrease at 
j- f oo: 

I 
rn=l 4- - 2 f ninv- [ (h+2ninu) ( 1 + A+2ninv)] 4 " . 

Summing the series in Eq. (2.10) over and substituting the 
result in Eq. (2.8) and then into Eq. ( 2 . 5 ) ,  we obtain 

exp [2nin (x+ ' / , )  I 
g(z)=x+h ' 2nin(A+'r sinZnn9+2ninu) ' (2.13) 

n=-00 

In the Appendix A it is shown that the functiong(x) of 
Eq. (2.13) has the following properties: 

1 ) if u-0, theng(x) -+gA (x) ,  whereg, ( x )  is the corre- 
sponding function of the ground state [Eq. ( 1.9) 1 ; 

2) if u # 0, then g(x)  is a continuous monotonically in- 
creasing function of x; 

3 )g(x  + 1) =g(x)  + 1. 
When we allow for these properties of the function 
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g(x), we may conclude that the sequence of pi in Eq. (2.12) 
satisfies the requirement 

which follows from Eqs. (2.3) and (2.4) if 

which relates the force f to the velocity v of the motion of a 
configuration. Substituting Eq. (2.13) into Eq. (2.14), we 
find that simple transformations give 

If @ = M /L is a rational number, then the series of Eq. 
(2.13) for g(x)  can be transformed into a finite sum of L 
terms. Then, Eq. (2.15) transforms into (see the Appendix 
A)  : 

L-i 

hZ 1 1-t: 
= 5 h+4 sin2 nk@ i-2f cos (2nk/L) + t: ' 

3. THRESHOLD FORCE 

If we go to the limit v- + 0 in Eq. (2.16), we find that 
the second factor in the sum becomes + 1 and then the sum 
can be easily calculated, so that for 

ft(L)=lim f (v, MIL) 

in the limit v- + 0 we have 
(L)- (i-r)S l+f 

f t  - a ( i + r )  4-+ . 
I f 1  4 1, then using r z  1 - A 'I2, we can transform Eq. (3.1 ) 
to 

h - 
2L ' 

L<Lo 

4 hqa 
, 

-(1+2 exp (-LA5)), LWLo 
4 

(3.2) 
where Lo = U -'I2. We can findf, for irrational values of @ 
by going to the limit L -+ co in Eqs. (3.1 ) and (3.2), which 
gives 

Physically f IL' is the weakest force which has to be ap- 
plied to the chain sites so that the configuration begins to 
move. Its origin is as follows. Let us discuss the ground state 
with the configuration {pjo'). We shall introduce 

where q,jO' is the deviation, at a site j, from a minimum of the 
potential V ( p )  [Eq. ( 1.3b) 1. A configuration (@jO') is de- 
scribed by Eqs. ( 1.6) and ( 1.9). Sinceg, (x)  has a discontin- 
uity at x = 1/2, we have 6, < 1/2, where 

1 i i-r i+F 

If the applied force obeys f<f,, it follows from the local 
quadratic nature of the potential of Eq. (1.3b) that the 
whole change in the configuration reduces to a homoge- 
neous displacement of all pi by an amount f /A. As the force 
reaches a value at which the condition lj ;. 1/2 is no longer 
satisfied at any site, then pi jumps from this site to a neigh- 
boring potential well and this triggers the slide of the other 
sites. 

The threshold force decreases when the order of com- 
mensurability L of a structure is reduced and reaches its 
smaller value given by Eq. (3.3) for incommensurate struc- 
tures. This value does not vanish for any positive value of A, 
in contrast to the case of smooth potentials." 

For specific systems the parameter @ can be given a 
clear physical meaning. For example, in the case of a super- 
conducting film it is simply the vortex lattice period which is 
inversely proportional to the square root of the applied field, 
whereas in the case of a charge density wave the parameter @ 
is the number of electrons per site. The dependence of the 
threshold field on @ is clearly unrealisticf, (@) =f, of Eq. 
(3.3) applies to all irrational values of @, whereas f, ( M /  
L )  = f jL' of Eq. (3.1) applies to all rational values of a. 
However, in the case of real systems a configuration moves 
also when f <A. In the case of a superconducting film this is 
due to the thermal creep of magnetic flux" and in the case of 
a charge density wave it is associated with the current of 
"above-condensate" electron~'~ and/or the thermal drift of 
solitary defects.I9 Therefore, the observed threshold force is 
not f( + 0, a), but more probably the value off at some 
finite threshold velocity v,, but this aspect is outside the 
scope of the present paper. 

We shall consider f as a function of @ for a fixed (small) 
value of v. The results of a numerical calculation using Eq. 
(2.16) are presented in Figs. 2 and 3. If v#O, then f is a 
smooth function of @ and the graph of this function shows a 
finite number of peaks corresponding to certain rational val- 
ues of +. 

In the Appendix B we obtain the following expansion 
for f(v, @I :  

m 

E cth - h+4sinz-)] , (3.5) 
f 0 ( v ) = ~ J h + 4 s i n 2 ~ / ~  [L( 2 

h2 cos 15 
fL(v,x)=-Jdt 2~~ h+4 sin2(E/2) 

ch [ V-' (x - Int X-'/,) (h+4 sinz (E/2) ) ] 
X 

sh[ (2v) -' (h+4 sinz (g/2) ] 
(3.6) 

It is shown there that if v 4 A  4 1 and I) l/A 'I2, we can ap- 
proximatef, (x) as follows: 

where d (x )  of Eq. (2.7) represents the proximity of x to an 
integer; we also have 
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The approximation represented by Eq. (3.7) is valid if 
xol( 1/2, whereas in the opposite case we find that f, (x) 
differs little from a constant. 

It follows from the above discussion that f, (v,l@) con- 
sidered as a function of @ has maxima at the points @ = m/l, 
where m is an integer, provided I <  ( 2 ~ ~ ) - ' .  The width of 
the maximum isx,. However, not all these maxima appear in 
f(u, @) of Eq. (3.4). Obviously, f(v, @) has maxima for 
rational values of @ = M/L, where L <LC (v) and LC ( v )  
should be found from the condition that there be no overlap 
between neighboring maxima which are separated by dis- 
tances of the order of LC -', i.e., the relationship x, a L, 
should be obeyed and hence we should have 

FIG. 3. Dependences f ( u )  for structures with @ = 1/2 (curve I ) ,  
= 27/55 (curve 2) ,  and @ = 34/55 (curve 3) .  The force of the poten- 

tial A is 0.1. These dependences illustrate respectively the cases of com- 
mensurate, almost commensurate, and incommensurate structures. 

FIG. 2. Dependences f(@) plotted forL = 0.1; the values; of 
v are 10W2 for curve 1 and 1OP3 for curve 2. 

4. MOTION OF A SOLITARY DEFECT 

We shall consider the motion of a solitary defect in a 
commensurate structure such that 

We shall modify Eq. (2.16) noting that the summation sign 
includes an expression which is periodic with a period L in 
the summation index k. Consequently, we can replace k with 
kM, where M is any integer which is not a multiple of L. We 
can always select Min such a way that MM = PL 1, where 
P is  an integer. After this substitution Eq. (2.16) becomes 

1 1-i: 
f=- 

2~ ,y h+4 sin2 (nklL)  ' I-2iA cos 2ickS+f: 

1 nk 
(4.2) 

= eap [- - (h+4 sin2 T ) ]  . 
Lv 

where 6 = M/L. In the Appendix it is shown that the ex- 
pansion of @ as a chain fraction gives 

Here, L,, , is the denominator of a continued fraction con- 
sisting of the first r terms of the continued fraction of the 
number @. 

In the structure with @ = M /L we form a lattice of de- 
fects separated by equal distances, going over from @ to @, , 
where 

Then, @ in Eq. (4.2) transforms to @%, where 

We then have one elementary defect per L, sites and 
the phase shift at each defect is 1/L. Therefore, when the 
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average rate of change in the phase at a defect is equal to v, 
the velocity of defects along a chain is LLNv. If we go to the 
limit N+ co (and also LN- C O )  and v-0, where 
LLNv = /3= const, we are then dealing with the case of a 
solitary defect traveling at a velocity /3. The sum with respect 
to k in  Eq. (4.2) then changes to an integral with respect to 
x = 27k/LN: 

n 

h2 Gb 1 1-tZ ( 3 )  
f ) =  h+4 sinz(x/2) 1-Z t  ( x )  cos Lx+t2(x) 

In discussing the limiting cases we shall expand the in- 
tegrand in Eq. (4.6) in powers of t (x) :  

Equation (4.7) readily yields f in the limitsp-0 and/3- co : 

Having differentiated Eq. (4.7) with respect to /3, we 
obtain 

where I, (z) is a modified Bessel function. Assuming that 
/3( 1, we shall replace the I,(z) functions with their asymp- 
totic forms, assuming that P2 + zZ) 1 (Ref. 20): 

(44-8')" 2+h 
h(B) = - +- B + arsh - 

B B 2 ' 

The function h (P) has a minimum at /3 =Po, where 

We shall only discuss the case when A <  1 so that 
Po = 22 ' IZ and h(/3,) = A 'I2. At large values of L, when 
Lh (yo) = LA 'I2 % 1, the sum over I of Eq. (4.1 1 ) can be lim- 
ited to the first term with I = 1. However, if LA 'I2 4 1, then 
in a certain range of velocities p, including Po = 22 'I2, we 
have to sum the whole series of Eq. (4.1 1 ) . 

We shall begin with the case of high orders of commen- 
surability characterized by L%l/A 'I2. We then have 
f( CXJ ) = f jL), which is governed by the second formula in 
Eq. (3.2). Limiting the sum in Eq. (4.11 ) to the term with 
I = 1, and integrating with respect to Busing Eqs. (4.8) and 
(4.9), we obtain the following results for different limiting 
cases: 

(4.13) 

We shall now consider the cases of low orders of com- 
mensurability when L (A - I t 2 .  We then have 

=( 

In the range /34 1 the function h (p) of Eq. (4.1 1 ) is 

B hL ' 2 (=)"exp (- s- ) , fl 9 2h1a: 

h hL 
2 exp (- ~ a ~ l ~ )  - 4 (m)l'lexp (- - B - L ~ )  . 
2hirs<B<I; 

2 exp (- La'/*) - - 
( L  + I ) !  L 

2 + x  
4hva ( )-=-I 

x e x p  ( - - L ) ,  P S I .  . B 

If/3<AL or/3)4/L, we can-as in the case of large values of 
L-limit Eq. (4.11 ) to just the first term. However, the in- 
equality Lh (/3) 4 1 is satisfied within the interval AL 4/34 4/ 
L, so that the sum over I in Eq. (4.11 ) can be replaced by an 
integral with respect to dl. When Eq. (4.11 ) transformed in 
this way is integrated with respect to P, we find that simple 
operations yield 

It is worth noting that the interval AL <P<4/L can be 
split into two parts: the range of linear dependence f(/3): 

and the range where it reaches the value A /2L, beginning 
from p- 2A 'I2. 

Generally, the motion of a solitary defect is character- 
ized by the following properties. The mobility threshold of 
the defect is equal to the mobility threshold of an incommen- 
surate structure. The asymptotic behavior off (P) in the lim- 
it/3+Oor f-f, + Oisdescribed by f a exp( - AL //?) which 
is the same expression as that describing the dependence 
f(/3) in the case of a single-site system in a potential of the 
form ( 1.3b). If the defect is formed in a structure with a high 
order of commensurability, L 1/A 'I2, then such a depend- 
ence is observed almost to the values off = f l L ' ,  correspond- 
ing to the mobility threshold of the structure in which the 
defect is formed [see Eq. (4.13) 1. In a structure with a low 
order of commensurability the velocity of a defect becomes 
proportional to the applied force as soon as this force begins 
to exceed significantly the threshold value of the force f, for 
the given defect [see Eq. (4.16) 1. Naturally, in this case the 
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velocity of the defect again tends to infinity when the force 
increases to the value il/2L, which is the threshold for a 
defect-free structure. 

5. MOTION OF AN INCOMMENSURATE CHAIN 

In the case of a commensurate structure with a period 
L, i.e., when @ = M/L, the asymptote of f ( v )  in the limit 
v + 0 [corresponding to f - f jL) + 0] is of the form 

In this section we shall consider the behavior of incommen- 
surate structures at low velocities v. With this in mind, for a 
given L we shall approximate the irrational number @ by the 
nearest, rational number @, = ML /L bearing in mind that 
we should later go to the limit L + co, @, - @. Within the 
limits of this approximation, we can use Eq. (4.2) in which 
we have to substitute 

where li;rL is governed by the condition 

Expanding Eq. (4.2) as a series in powers of i, and differen- 
tiating with respect to v, we find that 

In Eq. (5.1 ) we shall go over from summation over k to 
integration with respect tox = 27rk /L using the relationship 

Then, we find from Eq. (5.1 ) that 

j 2t;h l e x p  -- 1 )  I ~ G ~ - , ? L  ($,) - 

We shall show below that in the limit L- oo the greatest 
contribution to the sum over 1 in Eq. (5.2) comes from terms 
with a specific value of I /L  = x,. Therefore, in the case of 
sufficiently low values of v we can use the familiar asymp- 
totes of I, (2) when p2 + 2 % 1 (Ref. 20) : 

c" 

In Eq. (5.2) m of the sum over m only the term with 
rn=1nt(l6,+1/2) - is retained, so that 
l a L  - m -d(l6, ) and the notation y, = (ld(l$, ) ( is in- 
troduced. In the sum over in Eq. (5.3) we shall separate the 
terms which correspond to the maximum value of the argu- 
ment of the exponential function. We note that at x, = xjO', 
where 

the expression in the argument of the exponential function 
has a sharp minimum in terms of the variable x, = I/L. Its 
relative width is (v/y,A 3/2)114 and this width is small if 
v<A 3/2. The value of the argument of the exponential func- 
tionin Eq. (5.3) is - (4/3) 3/4y:'2/2 3/4/v112at~l = XI'). Ifyo 
is a minimum, then under given conditions characterized by 
L -. co , I- co , and I /L = x,, where xo is found from Eq. 
(5.4) assuming that y = yo, and y, = ~ld(l&, ) 1 the asymp- 
totic form of f(v) in the limit v-0 is 

4 " I,, h" 
( f - f ,  ) ahq1~(y0~)" '  e r p  [- ( j- ) YO 1, (5.6) 

where yo is governed by the behavior of the sequence 

forL- w,I- m,l/L =xo.Sincexo~Ointhelimitv-0 [see 
Eq. (5.4) 1, then in calculating yo we should go to the limit 
xo - 0 in dealing with the above sequence. A numerical coef- 
ficient has been dropped from Eqs. (5.5) and (5.6). 

We shall select a rational approximation for @ by a suit- 
able fraction of the order ofs, consisting of the first s denomi- 
nators of an expansion of irrational @ as an infinite contin- 
ued fraction: 

From the point of view of they,, = min criterion, the values 
of 1 should be selected from the set L f: , of denominators of 
suitable fractions of order k for the number @,,, = L, / 
Ls+ I (a  suitable fraction of order k for the number @ is the 
continued fraction consisting of the first k elements Ni of a 
continued fraction of the number @) . In the Appendix C it is 
shown that for s-, and k-. a, but with s - k finite, we 
have 

1 L;?~~(L::;$(~)) 1 + (i/5(a-h)+@8-h) -', (5.9) 

where 

Qn=i/ (Nn+i+i/ (Nn+z+. . .). . . 9 (5.11) 

$'")=i/(Nn+i/ (Nn-i+. . .+l/Ni). . .). (5.12) 

An asymptote of the type given by Eq. (5.6) clearly 
applies only if for a given irrational number @ the sequence 
of Eq. (5.9) has a lower limit. It is known that this property 
is exhibited by what are called quadratic irrationalities,13 
i.e., irrational numbers which are roots of quadratic equa- 
tions with coefficients which are integers. Expansion of such 
@ numbers as a continued fraction yields a periodic (begin- 
ning from a certain value r )  sequence of denominators N,. In 
this case we obviously have 

where @, and @, are periodic chain fractions for which se- 
quences of denominators have, respectively, the forms 
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N,, , , N,, , ... N, + , and N,, N,-, ... N,-, , where R is 
the period of a sequence of denominators of the number a. 
We can show that the highest value of yo is obtained for the 
"golden mean" @ = (5'12 - 1 )/2, corresponding to 
yo = 1/5'12. 

The dependence (5.6) can also be represented in the 
form 

where 

The same LC ( v )  (apart from a factor of the order of unity) 
sets the limit of resolution of peaks in a graph off(@) for a 
given value of v [see Eq. (3.9)]. The dependence of Eqs. 
( 5.14) and ( 5.15) can generally be predicted on the basis of 
the following considerations. We shall assume a specific val- 
ue of v. We shall approximate an irrational number @ with a 
rational one @, = M, /L. If L is not too large, we can as- 
sume that f - fL consists of two contributions, which are 

and 

The terms become comparable for 

~ - h ' ~ / v ' ~ * - L ~  (v) . 

We can assume that LC (v) is the limit beyond which an in- 
crease in the order of rational approximation L does not 
result in a significant improvement in the accuracy of the 
calculation off - f,. 

The dependence f ( v )  reaches the asymptote described 
by Eq. (5.6) when 

The range of values of v where f ( v )  is described by Eq. (5.6) 
exists also for the rational value @ = M/L provided only 
that L 9 L,. The limits of this range are set by the inequalities 
LBL, (0)  %Lo or by 

The range of velocities where this structure behaves as com- 
mensurateis v (A '12/L and it becomes narrower or the order 
of commensurability of L increases. 

6. CONCLUSIONS 

We have obtained different dependences of the velocity 
v on the force f applied to various types of structures. We 
have distinguished the commensurate, incommensurate, 
and almost commensurate structures. Among the commen- 
surate structures we have included those that correspond to 
the rational values of @ = M /L with denominators which 
are not very large:. 

because if L >Lo the dependence vCf) has practically the 
same form as that in the case of irrational values of @. 

In the case of commensurate structures the threshold 
force f jL' depends strongly on the order of commensurabi- 
lity L. If u*<A /2L or if 

then in Eq. (2.16) relating f and v we need retain only the 
term with k = 0, which gives rise to a dependence vV) : 

If f jL', the dependence reaches the linear asymptote 
v =f. 

In the case of incommensurate structures the threshold 
force is f,. The relationship between the velocity and the 
force valid in the f -f, et case is given by Eq. (5.6), which 
can be rewritten in the form 

v m ~ f ~  l n - z [ I /  InX (-J-) ] ,, 
f - f t  f-f* 

where A is a number of the of order unity. The dependence 
v(f)  is of the form given by Eq. (6.2) when u g A  312, i.e., 
when f -f, GI, and its asymptotic form w h e n b  ff is v =f. 

The almost commensurate structures represent a spe- 
cial case when 

Near the threshold when f < f jL', the structure moves as a 
result of motion of its internal defects relative to an immobile 
structure with @ = M/L. The dependence f(v) is then de- 
scribed by Eqs. (4.15) and (4.16) where we have to substi- 
tutep = v/S. With the exception of a narrow range of values 
off nearf,, the dependence in question is linear: 

The linear regime corresponds to the motion along a 
chain of practically completely depinned defects. The limits 
of the interval (61 <A,  inside which structures behave as 
almost commensurate, relative to a given commensurate 
structure characterized by = M /L, are determined by the 
requirement that for fz f jL) the value of v determined from 
Eq. (6.3) should be less than A /2L and hence the width of 
the interval is AL -A '"/2~. 

In this model a dependence of the type 

typical of commensurate structures at low values of v is a 
direct consequence of the fact that the potential of Eq. 
( 1.3b) is not smooth. In fact, we can consider a single-site 
system for which the equation of motion is 

The threshold value off is then 

For f >f,, the average velocity u is found from 

Let us assume that V 1 ( g , )  attains a maximum at the point q0. 
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In the case of a smooth potential we have 

in the vicinity of p,,, so that in the limit f+f ,  + 0 the asymp- 
totic form v V )  has the form v a C f - f ,  ) ' I 2 .  However, if po is 
a point where there is a kink in the potential, as in the case 
described by Eq. ( 1.3b), then the integral in Eq. (6.5) di- 
verges logarithmically, so that 

It therefore follows that in systems with a smooth po- 
tential V(p) the behavior near the threshold differs consid- 
erably from the Aubry model in that it should be character- 
ized by different critical exponents. However, in any case a 
pinned structure can be represented as a hierarchy of inter- 
acting defects of the soliton type. Consequently, the classifi- 
cation of possible structures as physically commensurate 
and incommensurate with a special type of above-threshold 
behavior for each class, should be of universal validity. An- 
other universal feature should be the presence of almost 
commensurate structures which are realized in the form of 
chains of distant defects above a physically commensurate 
structure. In the case of these structures the dependence of 
the velocity v on the force f should have a linear region corre- 
sponding to an almost depinned motion of defects. Such 
problems as the establishment of critical dependences for 
systems with a smooth potential and identification of specif- 
ic limits of classification of structures in such systems into 
physically commensurate and incommensurate will require 
a further study. 

The authors are deeply grateful to Yu. A. Firsov, B. I. 
Shklovskii, M. I. Raikh, B. Ya. Krivnov, and F. Ya. Nad' for 
discussing the results of the present study. 

APPENDIX A 

The property 3 of the function g(x)  follows directly 
from the expansion described by Eq. (2.13): 

where h(x)  is a periodic function. 
We can demonstrate the properties 1 and 2 by expand- 

ing each term of the series (2.13) as a Fourier series in terms 
of 2m@: 

l - r  +- r lx ,  
l+r  

Here, r, is described by Eq. (2.11 ). If v = 0 and r ,  = r, the 
sum over n in Eq. (A2) is readily calculated subject to (2.7), 
because 

v = 0 then the function g(x)  is identical with g, (x) of Eq. 
(1.9). 

We can prove the property 2 by differentiating the 
expression for g(x)  given by Eq. (2.13). We shall represent 
the summation variable n in the form n = mL + k, where 
m=O; f 1; +2...andassumethatk=O; 1; ... L -  1.We 
then have 

k 1 -1 

X [2nim+2ni- L + - Lv (h+4 sin' nko) ] . (A4) 

Summation over m is carried out using 

We then obtain a finite sum of the type 

gf ( x ) = L Z +  
l-th cos (2nk/L) 

LO ,-, 1-2tk cos (2nklL) +t,Z 

1 
X B X ~ { -  - ( A M  sin' nkm) [Lx-Int(Lx) I) ,  (A61 

Lv 

where t, are defined as in Eq. (2.16). It follows directly from 
Eq. (A6) that gl(x) is positive for rational values of 
a' = M/L. If v#O, the series ofEq. (2.13) is absolutely con- 
vergent and henceg(x1 is continuous in x and @. This proves 
the continuity and monotonicity ofg(x) for any parameter 
a'. 

If @ = M /L, Eq. (2.16) can be derived from Eq. (2.15) 
by replacing the summation variable with n = mL + k, 
where m = 0; * 1, + 2 ..., and k = 0; 1; ... L - 1; then, 
summation over m is readily carried out allowing for 

m 

1 - sin b e-a -- ' (n+2nim)'f bz b I-e-a cos b+e-24 
rn--or 

(A71 

APPENDIX B 

Substituting the expansion of Eq. (A 1 ) into Eq. (2.14), 
we have 

where the functions g, (x) are defined by Eq. (A2) and dif- 
ferentiation of this equation gives - 

In the calculation of the sum over n we shall use the expres- 
sion 

Substituting Eq. (A3) into Eq. (A l ) ,  we can show that if the application of which gives 
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where the functions h ( x )  modified by substitution of the 
integration variable 

become 

X 
(z -  ( z Z - l )  ") ' 2x2 

(2-4)" exp (T ). 
The only singularity of the integrand in Eq. ( B 5 )  is a 

cut from z = - 1 to z = + 1. Closing of the contour in the 
left- or right-hand half-plane gives, depending on the sign of 
x ,  

1 

where B ( x )  is the Heaviside step function. Substituting Eq. 
( B 6 )  into Eq. ( B 4 )  and allowing for the restriction imposed 
by the 6  functions on the summation over m, we find that 
after replacement of the integration variable with z = cos c, 
we have 

r 

Integrating Eq. ( B 7 )  with respect to x and substituting the 
result in Eq. ( A 1  ) we obtain 

cos lg 
I+r -n 

exp [-v-' (x-Int x - ' / ~ )  (h+4 sin2 (i/2)) 1 ( B 9 )  
s h  [ (2v)  -' (h+4 sin' ( e / 2 )  ) ] 9 

where C is the constant of integration. Substituting Eqs. 
( B 8 )  and ( B 9 )  in Eq. (2 .14 )  and finding C from the identity 
of the dependence f(v, Q) in the special case when cP = 0  
with the dependence deduced from Eq. (2 .16) ,  we obtain 
Eqs. (3 .4 ) - (3 .6 ) .  

If v ( A  ( 1, then the sinh function in the denominator of 
the integrand in Eq. ( 3 . 6 )  is replaced with an exponential 
function. Representing cosh in the numerator by a sum of 
two components and differentiatingf, with respect to x, we 
obtain 

-= S, (Int x-x+l)  -h (z-Int  x ) ,  
dx 

(B10)  

Assuming that y)v, we shall use the familiar asymptotic 
form of the modified Bessel functions when 1 + zZ) 1 (Ref. 
20) ,  so that 

The function which occurs in Eq. (B12)  in the argument of 
the exponential function has a maximum of width Ay at 
y = y, where allowing for A  4 1, we find that 

If l ) A  -'I2, the inequality Ay(y ,  is satisfied, so that S, ( y )  
can be replaced with A,S(y  - y ,  ), where the constant A,  is 
found by integration of Eq. ( B  1 1  ) : 

OD - 

Substituting S, in the form of the S  functions into Eq. ( B  10) 
and integrating with respect to x  allowing forf, ( 0 )  = A l ,  we 
obtain Eqs. ( 3 . 7 )  and ( 3 . 8 ) .  

APPENDIX C 

The expansion of the number @ ( 0  < @ < 1 ) as a contin- 
ued fraction can be written in the form of the following algo- 
rithm: 

(Dh=l/(Nk+,+Qk+,), O<Dk<l; DO=@. (c1) 
Applying Eq. (C1  ) k times, we obtain 

@ = ( M k + t + M k @ h ) / ( L ~ + i + L k @ k ) ,  ( c 2 )  

whereas Mk and Lk in Eq. (C1  ) are described by the recur- 
rence relationships 

Mk+,=NkMk+Mk-t, Mo=l,  Ml=O; 

Lh+t=N,Lk+Lk-,, Lo=O, L1=l .  ( C 3 )  

If @'") = M / L  can be represented by an s-term chain frac- 
tion, then @js' = 0 ,  M = M s + ,  , and L = Ls+ , . 

It readily follows from Eq. ( C . 3 )  that 

M,+iL,-MkL,i=- (MkLk-,--Mk-iL,) ( C 4 )  
. . . = (-l)"M,L,-MoL,)=(-l)k+l. 

Hence, it follows that if Q = Q'"' , the smallest integer such 
that 

WQ'"'=P*I/L,+,, 

where P i s  an integer, is fi = Ls.  We then have 

G(a'=W/L,+,=L,/L,+~=L,/(NIILII+L8-i) 
=l / (Na+Ls-JLS)  = . . . = l / ( N s + l / ( N d - t +  . . . + l / N t )  . . .). 

(C5 )  

We shall consider the difference Lk + , Q - .cl, _ , , ., 
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ing Eqs. (C2) and (C4). we ohtnin 

where a(k) is the approximation of with a k-term chain 
fraction. 

Let us assume that L I:;:) is the denominator of a k- 
term (k <s) approximation for the number 6'",  which in 
turn is an s-term approximation for an irrational number q .  
It then follows from Eq. (C7) that 

Ifs-co, k+m,  andfixeds- k, we findthat Eq. (C8) be- 
comes Eq. (5.9). 

The left-hand side of Eq. (5.10) can be written in the 
form 

The factors Lj",7"/Lj>-,'-') represent ratios of the de- 
nominators of two consecutive approximations of the num- 
ber a'") with j-term and (j + 1 )-term chain fractions, and it 
follows from Eq. (C5) that 

( * - I )  Lj+, /~ jY! ' - ' )= l /  ( N ~ - ~ + I / ( N , - ~ + ~ +  . . . + I/Na) . . . , , (ClO) 

so that 

IfinEq. (C11) wegotothelimitss+ co andk+oo,thenfor 
a fixed value of s - k we obtain Eq. (5.10). 

'P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun. 14,703 
(1974). 
'H. Fukuyama, J. Phys. Soc. Jpn. 45, 1474 (1978). 
3K. Nakanishi, J. Phys. Soc. Jpn. 46, 1434 (1979). 
4V. M. Vinokur, M. B. Mineev, and M. V. Felgel'man, Zh. Eksp. Teor. 
Fiz. 81,2142 (1981) [Sov. Phys. JETP 54, 1138 (1981)l. 

5P. Y. Le Daeron and S. Aubry, J. Phys. C 16,4827 (1983). 
6L. A. Bol'shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fe- 
dorus, Usp. Fiz. Nauk 122, 125 (1977) [Sov. Phys. Usp. 20, 432 
(1977)l. 

'V. L. Pokrovskiiand A. L. Talapov, Zh. Eksp. Teor. Fiz. 78,269 ( 1980) 
[Sov. Phys. JETP 51, 134 ( 1980)l. 

'P. Martinoli, Phys. Rev. B 17, 1175 (1978). 
9P. Bak, Rep. Prog. Phys. 45,587 (1982). 
'OS. Aubry, Physica D (Utrecht) 7,240 (1983); S. Aubry and P. Y. Le 

Daeron, Physica D (Utrecht) 8, 381 (1983). 
'IS. Aubry, J. Phys. C 16,2497 (1983). 
12T. A. Kontorova and Ya. I. Frenkel', Zh. Eksp. Teor. Fiz. 8,89 ( 1938); 

F.C. Frank and J.H. van der Merwe, Proc. R. Soc. London Ser. A 198, 
205 (1949). 

I3A. Ya. Khinchin, Continued Fractions [in Russian], ONTI, Moscow- 
Leningrad ( 1935). 

14L. P. Gor'kov and N. B. Kopnin, Usp. Fiz. Nauk 116,413 (1975) [Sov. 
Phys. Usp. 18,496 ( 1975) 1. 

15D. S. Fisher, Phys. Rev. B 31, 1396 (1985). 
I6G. Gruner, Physica D (Utrecht) 23, 145 (1986). 
17P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36.39 (1964). 
18S. N. Artemenko and A. F. Volkov, Zh. Eksp. Teor. Fiz. 81, 1872 

(1981) [Sov. Phys. JETP 54,992 (1981)l. 
191. V. Krive, A. S. Rozhavskii, and I. 0. Kulik, Fiz. Nizk. Temp. 12, 1123 

(1986) [Sov. J. Low Temv. Phvs. 12.635 (1986) 1. 
20A. ~ r d ~ l y i  (ed.), Higher 6anscendental ~ u ~ c r i o ~ ( ~ a l i f o r n i a  Institute 

of Technolonv H. Bateman Manuscri~t Proiect). Vol. 2. McGraw-Hill. . - .  
New York (1953). 

Translated by A. Tybulewicz 

372 Sov. Phys. JETP 68 (2), February 1989 V. N. Prigodin and A. N. Samukhin 372 


