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A new method is proposed for calculating the coefficient representing the interband absorption of 
light in the deep tail region. If the bending of the energy bands differs and the random fields acting 
on carriers in different bands are positively correlated, the main contribution to the absorption of 
light in the deep tail region comes from indirect transitions of carriers between states in 
fluctuation wells and the absorption coefficient then reproduces a convolution of the density of 
states, exactly as in the case of zero correlation. It  is shown that in the case of a nonpositive 
correlation an allowance for quantum effects reduces considerably the absorption coefficient 
compared with the semiclassical case. 

1. IN1 RODUCTION: FORMULATION OFTHE PROBLEM Here and below we have 

The profile of the absorption edge of light in disordered D~ , I~ (x~-x~)=(VI , (X~)  VI,(X~) ), 
semiconductors depends strongly on the nature of the bend- 
ing (same or different) of the energy bands by a random 
field.'-3 In the semiclassical approximation this dependence 
is explained by postulating that the tail of the interband ab- 
sorption of light is due to different physical factors in the 
cases of the same and different bending. When the band 
bending is the same, i.e., when random potential energies of 
camers in the conduction band Vc (x)  and in the valence 
band V, (x)  are equal ( Vc (x) = V,, (x)  ), the local width of 
the band gap remains constant and the absorption of light is 
possible only because of quantum effects giving rise to "indi- 
rect" transitions.' Following the terminology adopted in 
Ref. 4, the indirect transitions are those interband optical 
transitions which involve the transfer of an electron to the 
band gap and subbarrier tunneling to one of the levels in a 
fluctuation well. 

If the energy bands are bent differently 
( V, (x) # V,, (XI ), which is true when a random field is due 
to the deformation potential or if we allow for the energy 
dependence of the pse~dopotential,~'~ then fluctuations of 
the potential energy give rise to fluctuations of the width of 
the band gap and the absorption of light may be ensured by 
"direct" transitions that do not involve tunneling. For this 
reason the semiclassical description of the absorption of 
light in semiconductors with bands bent in different ways is 
simplified by ignoring quantum effects and adopting a pure- 
l y  classical treatment. This approach showsZ that the tail of 
the absorption coefficient considered on the basis of the 
Gaussian model of a random field is 

where I,, I, = c, v are the correlation functions of the ran- 
dom fields Vc (x) and V,, (x) . 

The exponential function occuring in Eq. ( 1 ) is essen- 
tially the probability for such a fluctuation to appear in a 
semiconductor as a result of which the width of the band gap 
decreases by an amount equal to the photon energy deficit 
A = Eq - h. However, it should be pointed out that ne- 
glect of quantum effects in dealing with the absorption of 
light in disordered semiconductors under conditions of dif- 
ferent band bending is not always justified because-as 
shown below-within the deep tail the inclusion of these 
effects is fundamentally essential and in some cases the con- 
tribution to the absorption of light in this range is from quan- 
tum and not from classical effects. 

For example, we shall consider a situation in which a 
random field displaces the bottom of the conduction band 
and the top of the valence band in the same directions, as 
shown in Fig. 1, and these displacements are different at 
each point in the investigated semiconductor: 
V, (x)  # V,, (x). The contribution of the indirect transitions 
to the absorption of light in the region of the tail where A > 0 
is determined, as is known from Refs. 5-7, by the probability 
of appearance in the semiconductor of a fluctuation that en- 
sures the absorption of a photon with a given deficit P [ A ]  
and by the tunneling probability P, . We shall assume that as 

a(@) =A e~p{-(E,-fio)~/2W,2}, 

light, E, is the renormalized width of the band gap, 
where the quantity A depends weakly on the frequency of 

- - - - - - - 
E,=E,,+(V,(X))-(V,(X) ), ( 2 )  

Eq , is the width of the band gap of the investigated semicon- 

denote here and below (and unless otherwise stated) the 
ductor in the absence of a random field, the angular brackets 

process of averaging over the random field, and the charac- 
teristic energy W, is given by 

FIG. 1 .  Band bending in the case of a positive correlation of the random 
W,'=D,, (0) +D,, (0) -20," (0) .  ( 3 )  fieldsV,(x)andV,(x). 
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a result of some fluctuation in one part of the semiconductor 
the bottom of the conduction band is shifted by V, (x), 
whereas elsewhere the top of the valence band is shifted by 
V, ( y ) .  The absorption of a photon of energy fw < Eq is pos- 
sible if this fluctuation creates fluctuation levels for an elec- 
tron E ' and a hole E ", which are separated from one another 
by h = E ' - E ". It is essential to ensure that the band dis- 
placements satisfy the condition 

(we shall ignore here the familiar limitations on the size of 
the fluctuation wells). The probability for a fluctuation to 
appear for which this condition is satisfied amounts to 

P [A] =(8(V,(y)-V,(X)-A)). ( 4 )  

Here and below the quantity B(x)  is a unit step function 
[ 8 ( x )  = 0 for x < 0 and B(x)  = 1 for x > 01. 

It follows from Eq. ( 4 )  that in the case of large positive 
values of the photon energy deficit A )  W, the probability 
for a fluctuation ensuring the absorption of a photon to ap- 
pear is described by 

where r = x - y. The probability of the tunneling of an elec- 
tron and a hole over a distance of order r is given by the 
following expression, which is accurate apart from numeri- 
cal coefficients in the argument of the exponential func- 
tions-' 

where m, and m, are the effective masses of an electron and 
a hole, and the photon energy deficit A  is of the order of 
magnitude of the ionization energy of the levels at which the 
electron and the hole are located before tunneling. 

In finding the maximum of the product P [  A ]  .P, , which 
determines the absorption coefficient of light representing 
the indirect transitions, we shall consider the specific case 
where 

This function satisfies all the requirements that must be met 
by correlation functions and it is frequently used to calculate 
various characteristics of disordered semiconductors. It de- 
scribes a smooth random field which can be differentiated an 
infinite number of times. We then find that the main contri- 
bution to the absorption in the deep tail region comes from 
the indirect transitions at distances of order 

and the absorption coefficient is given by 

a (01 - exp {-A2/2 [ DCc (0) + Dnv (0) 1 + 0 ( rn~ .~" r~h- ' )  ), 

which shows that the contribution of the indirect transitions 
to the absorption of light in the deep tail region is exponen- 
tially small compared with the contribution of the direct 
transitions described by Eq. ( 1 ). It should be pointed out 
that tunneling makes a contribution of order of m:,fA1/2r,,/fi 
to the argument of the exponential function in the expression 

for the absorption coefficient and the actual form of the mu- 
tual correlation function D,, (r) influences only the loga- 
rithmic term in the expression for r, . Naturally, the relation- 
ships obtained above, like the method used to find them, 
represent only qualitative estimates and the description of 
the absorption of light in the deep tail region requires a more 
rigorous theory. 

We shall propose a new method for calculating the coef- 
ficient representing the interband absorption of light in dis- 
ordered semiconductors, which will not be based on the as- 
sumption that the motion of carriers in the random field is of 
a semiclassical nature. 

We shall consider a model of a disordered semiconduc- 
tor with a Gaussian random field in which the interaction of 
carriers with phonons and the exciton effects are ignored. 
The width of the band gap is assumed to be fairly large, 
Eq )A, which makes it possible to use the effective mass 
method. The unrenormalized dispersion law is selected in 
the simplest form: 

The absolute temperature of the system is assumed to be 
zero. 

In this model the absorption coefficient of light is given 
by8 

i m + b  

where c is the velocity of light, E ,  is the real part of the 
permittivity, e is the electron charge, r is the square of the 
matrix element of the velocity operator, and the function 
Z ( t )  is 

In the path integral we shall carry out integration (both here 
and below) over all the paths satisfying the conditions 

We shall use a system of units in which fi  = 1. 
A method proposed in Ref. 9 can be used to show that 

the function Z ( t ) ,  governed by Eq. ( 8 ) ,  where the correla- 
tion functions are Dl,I2 ( x ,  - x,)  and I , ,  I ,  = c, v are assumed 
to be finite and continuous, is an analytic function of the 
complex variable t in the final part of the right-hand half- 
plane Re t > 0 and the frequency dependence of the inter- 
band absorption coefficient in the deep tail region is gov- 
erned by the asymptotic behavior of the function Z ( t )  at 
high values oft. 
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2. ASYMPTOTIC FORM OFTHE FUNCTION Z(t) 

We shall now consider the case where the correlation 
functions of the random field are finite, can be differentiated 
the required number of times, and are described by 

where ylt12 are arbitrary quantities with the dimensions of 
the square of energy, satisfying the condition 

and f ( x ,  - x,) is a dimensionless function of the coordi- 
nates, but is independent of the energy band number. The 
corresponding renormalized quantity yItl2 can always be ob- 
tained if the condition f ( 0 )  = 1 is satisfied; and in this case 
ycc and y,, represent the dispersion of scatter of the random 
fields Vc ( x )  and V, (x) . 

It should be pointed out that the correlation functions 
of Eq. ( 9 )  are encountered in considering a random field due 
to the deformation p~tential.'.~ In this case the quantities 
ylIl2 are related by 

'I, 'h I ye" I =ycc yw . 
Moreover, the correlation functions of the form ( 9 )  can 

be used as a model of a random field representing the sum of 
the electrostatic .potential V ( x ) ,  which bends in the same 
way the bottom of the conduction band and the top of the 
valence band, and the deformation potential Vdl ( x ) ;  if the 
correlation functions 

have the same coordinate dependences and there is no corre- 
lation between the fields V ( x )  and V,, ( x )  . We then have 

'h H 1 7.. l <ye, y1l0 . 
Finally, the correlation functions of the form ( 9 )  can be used 
in considering the model of statistically independent fields 
on the assumption that y,, = 0.  

We shall now show how we can construct an asymptotic 
expansion of the function Z ( t )  in the limit t -  W .  We shall 
adopt the canonical representation of the correlation func- 
tions'' 

where a, ( x )  are some basis functions. Introducing auxiliary 
integration with respect to 6, and p,, we shall represent the 
function Z ( t )  in the form 

where 
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Here, R  = y, , / (  ycc y,, ) ' I 2 .  The function P[ ... $ ..., 
... p, ... ] obviously represents the probability density of 
normally distributed random quantities 6, and p,, the cor- 
relation moments of which satisfy the relationships 

The correlation coefficient R, which can have any value, sat- 
isfies the condition IR 1 < 1, which essentially determines how 
much the functional relationship between Vc ( x )  and V, ( x )  
deviates from linearity. A linear relationship between these 
fields corresponds to IR I = 1, and in this case the exponen- 
tial function in Eq. ( 1 1  ) reduces to a product of a Gaussian 
distribution function for gn or 9, and a delta function repre- 
senting the existence of a linear relationship between 5, and 
p,, and, consequently, between the fields V , ( x )  
= 2 , l n a n  ( x )  and V, ( x )  = - 2,9,a, (x) .  

Representation of the function Z ( t )  in the form ( 10) is 
convenient because, instead of the double integral along the 
paths in Eq. (8), we are now dealing with a product of two 
single integrals which, as is easily shown, represent one-par- 
ticle density matrices pc ( r /2 ;  - r /2; t )  and p, ( - r /2;  
r /2 , t )  whose asymptotic form in the limit t -  co is known": 

Here, E,, and ( x )  are the energy and the wave function of 
the ground state of a particle which is in a potential V, ( x ) ,  
and which are found by solving the appropriate Schrodinger 
equation. If we now represent the potential V, ( x )  in the 
form 

where 

Here and below the upper indices correspond to 1 = c 
and the lower ones to I = u. The oscillator frequencies are 
given by the relationship 

t 
m r 2 = -  {-Drr"(0) +D,,"(O) 11-0(R) I ) .  

m1 
(14) 

The dependence of the frequencies wl on the correlation co- 
efficient R  reflects the circumstance that different values of 
R  correspond to physically different situations. For exam- 
ple, in the positive correlation case ( R  > 0 )  the bottom of the 
conduction band and the top of the valence band are bent by 
the random field in the same direction (Fig. 1 ). In the nega- 
tive correlation case ( R  < 0 )  we can see from Fig. 2 that the 
bottom of the conduction band and the top of the valence 
band are shifted in opposite directions. Finally, R  = 0  corre- 
sponds to the situation when the band bending by the ran- 
dom field is statistically independent (Fig. 3 ) .  

We shall show that the main contribution to the asymp- 
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where 

FIG. 2. Band bending in the case of a negative correlation of the random 
fields V, (x )  and V, (x )  . 

totic form of the density matrix ( 12) comes from the poten- 
tial VOl (x), and the influence of the potential V, ,  (x)  can be 
allowed for by using perturbation theory. We shall find ini- 
tially the energy and the wave functions for the potential Vo, : 

The corrections to the energy of the ground state derived in 
the first order of perturbation theory in V,,  are12 

E;"= (Oc 1 E.an ( x )  -Voc ( x )  I OC), (17) 
n 

E,?= (Ov 1 - z c p l a n  (x) -v.. (y) I Ou), (18) 

where (01 ) = (To ,  ) . We shall be interested only in the expo- 
nential terms in the absorption coefficient, so that the cor- 
rections to the wave functions will be ignored, since they 
affect only the value of the preexponential factor, which we 
shall later omit. Using Eqs. ( 15)-( 18) and also the relation- 
ship between the path integrals in Eq. ( 10) with the asymp- 
tote of the density matrices of Eq. (12), we find that after 
integration with respect to g, and p, the function Z( t )  be- 
comes 

3 -- t2  

2 
o,t + - (OcOc I D,, (x,-x,) I OcOc) +t(Oc I V,,  I Oc) 

2 

FIG. 3. Band bending in the case of zero correlation of the random fields 
V, (x )  and V, (x)  

It should be noted that in calculation of the matrix ele- 
ments in Eq. ( 19) we can use the smallness of the parameter 
(m,w,L ') - ' I 2  in the limit t+  oo, which represents the ratio 
of the localization radius of the wave function ( 16) to the 
correlation length L of the random field. 

It is clear from Eq. ( 19) that in calculating the integral 
with respect to the spatial coordinate r an important role is 
played by the sign of the correlation function D,, ( r ) .  For 
nonpositive correlations ( R ( 0 )  this correlation function 
obeys D,, ( r )  (0 for all values of r and the important values 
of the coordinates which determine the integral are of order 

In the case when the correlation coefficient is positive 
(R > 0)  the mutual correlation function obeys D,, ( r )  > 0 
for all values of r, so that in the case of integration with 
respect to the coordinates we have to know the actual form of 
the correlation function D,, ( r )  for large values of the argu- 
ment, because-as shown below-the important values of 
the coordinates are much larger than the correlation length 
of the random field. We shall assume that at large values of 
Ir 1 the mutual correlation function is given by Eq. (6). Then, 
after integration with respect to r we find that the important 
values of the coordinates governing the integral are of order 

After integration with respect to position the function 
Z( t )  can be represented in the form 

where 

Wz=Dec ( 0 )  +Duo ( 0 )  -20," ( 0 )  [ I - 8  ( R )  1, (23) 

Q=-D,1"(0) f D,," ( 0 )  [ I-8(R) 1. (24) 

The following point should be made. The expression (22) 
was obtained for R > 0 on the assumption that the fall of the 
correlation function at large values of the argument is given 
by Eq. (6); nevertheless, we can show that it remains valid 
also when the correlation factor drops off more slowly than 
exponential. An estimate of the characteristic values of the 
coordinates naturally changes, but Eq. (21) then plays the 
role of the lower limit. 

Equation (22) was obtained on the assumption that the 
correlation functions of the random field are related by Eq. 
(9) .  We can show that in the case of statistically indepen- 
dent fields, when D,, (x)  = 0, Eq. (22) is valid for any form 
of correlation functions Dcc (x, - x,) and D,, (x, - x,) 
which satisfy the conditions that they are finite and differen- 
tiable the required number of times at the zero. 

In calculating the asymptotic form of the function Z( t )  
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we shall include only the first corrections to the ground-state 
energy. However, we can also find the higher corrections 
and show that inclusion of these corrections does not alter 
the estimate of the accuracy of the function Z( t )  given by 
Eq. (22). We shall show that the potentials V, and V,, 
should be selected to ensure that these corrections are small. 

3. ABSORPTION COEFFICIENT 

We shall now calculate the absorption coefficient for 
light. After integration with respect to t, Eqs. (22) and (7) 
yield 

The important values oft which determine the integral are of 
order 

Hence, it is clear that an asymptotic expansion of the 
absorption coefficient should be made in the argument of the 
exponential function using the powers of (E, - w)-'I2. It 
should be pointed out, however, that although the higher 
terms of the expansion are smaller than the first, neverthe- 
less they cannot be used in the expansion of the exponential 
function because they are much greater than unity. This 
means that all the attempts to obtain an expansion in which 
only the first term is retained in the argument of the expo- 
nential function fail to give the correct result in the deep tail 
region. 

A comparison of Eqs. (3) and (23) shows that in the 
nonpositive correlation case (R <O) we have W2 = Wi and 
the first term of the expansion of Eq. (25) is identical with 
the semiclassical result ( 1 ) and describes the absorption of 
light due to fluctuations of the width of the band gap. We can 
easily see that inclusion of the higher terms of the expansion 
in Eq. (25) reduces considerably the absorption coefficient 
compared with the semiclassical result. This is due to the 
fact that in the case of differences in the band bending all the 
quantum effects are ignored in the semiclassical approxima- 
tion and it is assumed that if a fluctuation of the width of the 
band gap, ensuring the absorption of a photon with a given 
energy deficit, appears in a semiconductor, then a carrier 
undergoes a transition between the top of the valence band 
and the bottom of the conduction band. In fact, because of 
the quantum effects the transition occurs between states in 
fluctuation wells separated by a finite energy from the edges 
of the corresponding bands (Fig. 2). This means that if we 
allow for the quantum effects, the absorption coefficient 
should be less than the semiclassical value. 

In the positive correlation case (R > 0) the first term of 
the expansion (25) is different from the result of the semi- 
classical approximation, because for R > 0 case we have 
W Z  # W :  . As shown above, this is due to the fact that in the e 
case of a positive correlation of the random fields the absorp- 
tion of light in the deep tail region is dominated by the indi- 
rect transitions and these are ignored in the semiclassical 
description. 

The expression for the absorption coefficient of light in 
the case of a positive correlation between the random fields is 
identical with the expression for the absorption coefficient 
corresponding to zero correlation. This is to be expected be- 
cause typical electron tunneling distances are much greater 
than the correlation length of the random field. At these 
distances the correlation between the random fields is so 
weak that they are in fact statistically independent. More- 
over, the function Z( t )  is identical, within the limits indicat- 
ed in Eq. (22), with the product of one-particle averaged 
density matrices.I3 This means that if R>O, the absorption 
coefficient of light in the deep tail region reproduces, apart 
from the terms proportional to (E, - w )  in the argument of 
the exponential function, a convolution of the densities of 
states. The relationship between the absorption coefficient of 
light and the convolution of the density of states is primarily 
due to the statistical independence (in the sense defined 
above) of the random fields V, and V, and, secondly, due to 
the fact that the absorption of light includes contributions of 
transitions between all the tail states separated from one an- 
other by o on the energy scale (Fig. 3). It should also be 
pointed out that in the case of the same band bending, when 
D,, ( x )  = D,, ( x )  = D,, (x), Eq. (25) is identical with the 
result obtained earlier in Ref. 14. 

We shall now discuss the limits of validity of our results. 
Representation of the asymptotic limit of the density matrix 
in the form (12) is justified provided the potential of Eq. 
(13) includes bound states, i.e., E,, < 0, or if 

A X 2 1 W Z / m ,  {Dl, (0)  -D,, (0) [ 1-0 ( R )  ] 1'. (26) 

In finding the asymptotic form of the density matrix we in- 
cluded only the contribution of the ground state, which is 
justified if 

The matrix elements were calculated in Eq. ( 19) on the as- 
sumption that we have (m,w, L ') -I1' 4 1, which is valid if 

Moreover, the influence of the potential V,, is included using 
perturbation theory, the condition of validity of which is in 
this case 

Finally, in calculating the integral with respect to the spatial 
coordinates in the case of a nonzero correlation of the ran- 
dom fields, we use the steepest-descent method which in this 
case is justified if 

When the random fields are uncorrelated the integral with 
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respect to r in Eq. ( 19) can be carried out exactly, so that 
there is no need to satisfy the condition (30). Moreover, we 
can show that in the case of a weak correlation between the 
random fields, when 

Eq. (25) is valid also if 

The above conditions are noncontradictory and can be satis- 
fied simultaneously, which determines the conditions for the 
validity of the asymptotic expansion for the absorption coef- 
ficient of Eq. (25). 
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