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The propagation of an intense surface electromagnetic wave (SEW) along the interface between a 
solid and a low-density gas is analyzed for the case in which the wave is in resonance with the gas 
molecules. A dispersion relation for the SEW is derived to first order in the gas density. Analytic 
expressions are derived for the SEW absorption coefficient in the case in which the saturation is 
determined primarily by molecular collisions and in the case in which diffusion of excited 
molecules dominates. With increasing SEW intensity, the absorption coefficient tends toward the 
value found for a solid-vacuum interface. 

1. The propagation of intense surface electromagnetic 
waves (SEWs) has recently been attracting increasing re- 
search interest, both theoretical and experimental.'-6 The 
SEWs at the interface with a nonlinear medium whose di- 
electric-tensor components are proportional to the wave in- 
tensity were first studied in Refs. 1 and 2. The possibility of 
self-induced transparency for ultrashort light pulses propa- 
gating along a surface coated with a thin film of resonant 
material was predicted in Ref. 3. A dispersion relation for 
SEWs at an interface with a medium consisting of two-level 
atoms was derived in Ref. 4; the effect of saturation was 
taken into account. In those papers the nonlinear medium 
was assumed to be an optically uniaxial medium with a di- 
electric tensor component E, which does not depend on the 
wave field. Experiments were carried out in Refs. 5 and 6 on 
SEWs in a metal-gas system under conditions for which the 
wave is in resonance with gas molecules. The wave intensity 
reached values comparable to the saturation intensity of mo- 
lecular transitions. There is accordingly interest in the satu- 
ration of the SEW absorption at an interface with a gaseous 
medium. 

In the present paper we consider an intense SEW which 
is propagating along an interface between a solid and a reso- 
nant gas. We assume that the wave is propagating incoher- 
ently, i.e., that the duration of the effect of the light is signifi- 
cantly longer than the relaxation times of the gas molecules. 
We seek a solution of Maxwell's equations by perturbation 
theory in which the small parameter is the number density of 
molecules in the gas. We derive analytic expressions for the 
SEW absorption coefficient in two limiting cases: that in 
which the saturation is determined primarily by collisions of 
molecules with each other and that in which a diffusion of 
excited molecules dominates. 

F = ' / , F  (z) exp ( - i o t f i k x )  + c.c., (1 ) 

where the amplitudes Hiy,Eix ,EhPx,Pr (i = 1,2) are non- 
vanishing. Here k is the SEW wave number, and 2 Im k is the 
SEW absorption coefficient. Substituting expressions (1)  
into Maxwell's equations, we find the equations 

where D, = &,El and D, = E, + 4rP. 
Let us assume that the SEW frequency w is approxi- 

mately equal to the frequency w,, of transitions between mo- 
lecular levels I 1 ) and 12) and that we can ignore the interac- 
tion of the wave field with the other levels. The polarization 
can then be expressed in terms of the density matrix element 

j j i2=p12  exp ( - i o t f  ikx )  

in the following way: 

where d,, is the transition dipole moment; Nis the molecular 
density; a = x,z; and the angle brackets mean an average 
over the velocities and the orientations of the molecules. In 
the resonant approximation, the density matrix elements 
satisfy the following equations in the Wigner picture (Ref. 7, 
for example) : 

2. We assume that a SEW is propagating along the inter- 
-=- ~ P Z Z  vVpzz-y , ,  (niepzz-nzepi l )  +'lZiQ (plz-pz i )  +Stz p z z ,  

face between a solid, which occupies the half-space z < 0  d t  
(medium 1 ), and a gas, which occupies the half-space z > 0 
(medium 2). We assume that medium 1 is linear and iso- 

- v v p i 2 - -  [ y l+ i  (A+ ku.) ] p,z+l/ziR ( p a - - p i . ) ,  
at  

trooic and has a dielectric constant F 

pzt=prz', 3 d v S p  p ( v )  =i, (4) 

where v is the velocity of a molecule, y , ,  and y, are the longi- 
We find a solution of Maxwell's equations which corre- tudinal and transverse relaxation rates, n: and n; are the 
sponds to a TM surface wave which is propagating along the equilibrium level populations, A = w,, - w is the deviation 
x axis. We seek the components of the fields and the polar- from the resonant frequency, St, and St, are collision opera- 
ization of the gas in the form tors, and R(z)  = d,,E,(z)/fi is the Rabi frequency. In writ- 
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ing (4) we assumed that the absorption of the SEW along its 
propagation path can be ignored; i.e., 

exp (ik'x) xexp ( ikx)  . 
Simultaneous solution of Eqs. (2)-(4) with the bound- 

ary conditions 

reveals the fields in the two media. In its general formula- 
tion, however, this is a complicated problem, so we will re- 
strict the analysis to a SEW at interface with a low-density 
gas. In this case the terms containing the polarization in Eqs. 
(2) can be treated as small perturbations, and in first order 
we can substitute the value of the density matrix determined 
by the SEW field in vacuum into expression (3). 

3. Let us find a dispersion relation for the SEW to first 
order in the small parameter N. Eliminating the components 

' Hi,, and Eix from the system (2) ,  we find 

(6)  

Equation (5) has a solution which decays with distance into 
medium 1: 

Esz(z) =E,z ( 0 )  exp ( x , z ) ,  (7 )  
where x, = (k  - w ~ E ~ / c ~ ) ~ ' ~ ,  and Re x ,  > 0. We solve Eq. 
(6) by perturbation theory. For this purpose, we construct 
the series 

in (6),  and we equate terms with identical powers of the 
small parameter. The zeroth-order equation 

has a solution which decays with distance into medium 2: 

E:' ( z )  =E$' ( 0 )  exp ( - x f '  z )  , 
where xi0' = (k  'O" - a2/c2) and Re x p )  > 0. Writing 
(7)  in the form 

E, , ( z )=  (E:,O' ( 0 )  +E,':' (0) + . . . )exp[ (xio' + x,"' f . . . ) z ]  , 
and using the boundary conditions 

H 1 f J  ( 0 )  =H~:' ( 0 )  , E,:' ( 0 )  = ~ : , 0 '  ( 0 )  , 
we find the familiar dispersion law for SEWS at an interface 
between a linear medium and a vacuum8: 

We write a solution of the second-order equation, 

in the form 
z 

where F(z )  is the right side of ( 8 1. From the condition that 
the solution decay in the limit z- W ,  we find 

m 

J exp(-x:"6) F ( F ) ~ s ,  cz--- 
2x2(O) 

while the constants C1 and k 'I' are found from the boundary 
conditions 

H (0) H ( 0 ,  EY) ( 0 )  =E::' (0). 

After some straightforward calculations, we find the disper- 
sion relation in which we are interested: 

~(~'=4nk(@)x:"' [E;' ( 0 )  I-' J' exp (-x:"z) P:" dz. 
e ,+l  o 

4. The components of the polarization vector which ap- 
pear in the expression for k (" are determined by the zeroth- 
order perturbation-theory density matrix p'O'. The matrix 
e l e m e n t ~ ~ ' ~ ' i j ( i j  = 1,2) in turn satisfy Eqs. (4) with 

System (4)  gives a microscopic description of the evo- 
lution of the state of the gas in the field of the SEW. If the 
macroscopic characteristics of the gas vary sufficiently slow- 
ly through the volume of the gas, a less detailed macroscopic 
description of this evolution is po~sible.~ In this case we can 
assume in a first approximation that thermal equilibrium is 
established in each separate part of the gas, while the gas as a 
whole is not in equilibrium. We assume the inequalities 

X ~ ( ~ ) V T ,  y,,, Q ( 0 ) K y l r  (11) 

where r is the collision time, and v, is the thermal velocity of 
a molecule. We wish to find an equation for the difference 
between the level populations. For this purpose, we rewrite 
(4) ,  using the substitution ( lo),  in the form 

dp/81= ( L ~ + L , ) ~ ,  (12) 

where we are including in the operator Lo the collision oper- 
ators and also the terms which describe the transverse relax- 
ation, while the operator L,  contains the other terms which 
appear on the right sides of Eqs. (4).  In accordance with 
( 1 1 ), the operator Lo describes the rapid relaxation to a local 
equilibrium, while L,  describes the relaxation to an equilib- 
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rium sfate of the gas as a whole. Since the field is slightly 
nonuniform ( 1 / ~ p '  ) v,r), and since the transitions 
between the levels of the molecule are slow ( yll , no ( T- ' ), 
the macroscopic evolution equations must take the form of 
diffusion equations for the excited and unexcited molecules, 
and they must include terms which incorporate the change 
in the state of the molecule. A diffusion equation can be 
constructed formally by treating the operator L l  as a pertur- 
bation. Omitting the details of the derivation (see the Ap- 
pendix), we write the result: 

where 

j dv[pi:' (v) --p::' (v) I ,  Ro=Q(O) ( 0 ) .  

we is the equilibrium difference between the populations, D 
is the self-diffusion coefficient, 

i s  the shape of the absorption line of the molecule, and 

f ( v )  = x - ~ u ~ - ~  exp ( - V ~ / U T ~ )  

is a Maxwellian velocity distribution. 
We are interested in a steady-state solution of Eq. ( 13 1, 

so we equate the right side of this equation to zero. The sub- 
stitution 

reduces the equation to an inhomogeneous modified Bessel 
equation. In this case, the solution of the equation is ex- 
pressed in terms of Lommel's function,1° but we will restrict 
the discussion to some limiting situations in order to find 
some final results in analytic form. 

a. We assume I<  (D /yll ) ' I2 46 ,  where lis the mean free 
path of a molecule, and 6 =  I/%?' is the depth to which the 
SEW penetrates into the gas. These inequalities are seen 
to have a simple physical meaning when we note that 
(D/yl,  ) 'I2 is the average displacement of a molecule from 
its original position over the lifetime of the excited state. In 
this case the change in the difference between the level popu- 
lations is determined primarily by longitudinal relaxation, 
and the diffusion of molecules can be ignored. Equation ( 13) 
contains a singular perturbation." Its solution contains, in 
addition to a regular part which can be written as a series in 
the small parameter v = 6- ( D  /yil ) 'I2, so-called boundary 
terms, which decay rapidly in a boundary layer 0 < z 5 (D  / 
yll )'I2. By virtue of the inequality v g  1, however, the mole- 
cules in the boundary layer contribute negligibly to the SEW 
absorption coefficient which we calculate below. We accord- 
ingly restrict the analysis to the regular part of the solution. 
To lowest order in v, Eq. ( 13) has the steady-state solution 

we 
""")= l+G ex, (-2xY)z) . 

where G = a, R:/yl, is the saturation parameter at z = 0. 
b. We now assume (D/yl l  )'12$6. We assume that a 

molecule near the surface of the solid is in theromodynamic 
equilibrium with it. Equation ( 13 ) with the boundary condi- 
tions 

has the steady-state solution 

wo(z) =w,Io(g exp (-xz(")z) ) {I+[Io- i (g)- l ]  

X, exp ( - - X ~ ( ~ ' V - ~ Z ) ) ,  
(15) 

where I, is the modified Bessel function of the first kind, of 
order n, and the dimensionless parameter 

is a measure of the saturation. 
The steady-state value of the matrix elementp,,, which 

determines that polarization of the gas in the steady state, is 
found from the last two equations in the system (10).In the 
approximation under consideration here, we find 

5. We can find dispersion relations for the SEWS in the 
limiting cases discussed above. Calculating the components 
of the polarization vector with the help of ( 14) and ( 16), 
and substituting them into (9) ,  we find, for case a, the rela- 
tion 

Er In( l+G) k ' " = 2 n ~  ( a )  k(O) --- 
e t+ l  G ' 

where 

is the linear susceptibility of the gaseous medium. The imagi- 
nary part of relation ( 17) gives us the SEW absorption coef- 
ficient a in the gas: 

ln(1-l-G) 
a=ao 

G 
where a, is the absorption coefficient for a weak SEW in the 
gas. 

Correspondingly, in case b, we find the dispersion rela- 
tion 

and the following expression for the SEW absorption coeffi- 
cient: 

Figure 1 shows plots of a versus the saturation param- 
eter. For G% 1 (g$ 1 ) we have a - 0, and the SEW absorp- 
tion is caused entirely by absorption in the solid. This result 
is a manifestation of bleaching of the gaseous medium. 

The real part of k 'I' determines the dispersion w (Re k)  
for a nonlinear surface polariton and thus the dependence of 
the phase and group velocities of the SEW on its intensity. 

We wish to emphasize that the results derived above are 
valid under inequalities ( 1 1 ) and under the condition for the 
applicability of perturbation theory: 
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FIG. 1. The SEW absorption coefficient corresponding to ab- 
sorption in a gas versus the saturation parameter. a-(D/ 
Y I  )I/'<S; ~ - ( D / Y ~  )'/'bs. 

These conditions can be satisfied, for example, during propa- Using the explicit expression for the matrix of operator L,, 
gation of a SEW of moderate intensity which is resonant and integrating (A3) over velocity, we find equations for n, 
with a molecular vibrational transition at a gas pressure of ad n,. From these equations we find Eq. ( 13) for 
tens of torr. w = n, - n,. ( A  similar method was used in Ref. 7 to derive 

I wish to thank Yu. N. Petrov for suggesting this topic. equations for a photoinduced drift.) 

APPENDIX 

We introduce a projection operator P such that Pp is 
proportional to the steady-state solution of the equation 

dp/dt=Lop. 

Specifically, 

Pp (v) = f  (v) n, 

where f ( u )  is a Maxwellian velocity distribution, and 

From ( 12), and using PL, = 0 and L,,P = 0, we find the 
equations 

where Q = 1 - P. A closed equation for Pp, which is valid to 
second order in L, inclusively, is found after we solve (A2) 
for Qp to first order in L ,  and substitute the result into the 
second term on the right side of (A1 ) : 

ce 

a - Pp ( t )  =PLIPp (l)  + j dr  PLleLaTQLIPp ( t )  . (A3) 
d t  0 
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