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We have investigated the possible types of nonlinear magnetoelastic waves in easy-plane magnetic 
crystals with relatively small anisotropy in the basal plane, i.e., magnets which are close to an 
orientational phase transition. We show that in such magnets it is possible to have spiral and 
periodic nonlinear magnetoelastic waves in addition to solitary waves. We investigate the effects 
of dissipation in the magnetic subsystem. Apparently the experimentally observed lower bound 
on the decrease of the sound velocity in ferro- and antiferromagnets as the orientational phase 
transition point is approached is due to nonlinear effects. 

1. INTRODUCTION 

As a magnet approaches an orientational phase transi- 
tion (OPT) point, the "rigidity" of the magnetic subsystem 
decreases.' As a result, weak external excitation leads to 
large deviations in the magnetization vector M from its equi- 
librium position, and the vibrations in M become nonlinear. 
In addition, there is in this case an effective growth in the 
magnetoelastic (ME) coupling.233 Therefore, nonlinear ME 
excitations become important near an OPT, and can give a 
significant contribution to the thermodynamic and kinetic 
properties of magnets. When the energy of the external exci- 
tation is comparable to the anisotropy energy, solitary, spi- 
ral and periodic types of plane nonlinear waves (NLW) can 
propagate in these magnets. All of these waves reduce to 
plane waves as the excitation energy decreases. Nonlinear 
ME phenomena were studied in Refs. 4, 5 by means of an 
anharmonic expansion. Solitary ME waves were discussed 
in Refs. 6-1 1. In this article we will investigate the possible 
types of nonlinear ME waves in easy-plane ferromagnets 
with weak anisotropy in the basal plane (e.g., 
Mn, - , Cr, Sb). In these magnets an OPT occurs when the 
planar anisotropy constant changes sign. The results ob- 
tained here are also valid for low-frequency excitations in 
tetragonal easy-plane antiferromagnets (e.g., NiF, and 
MnO,) and are easily generalized to rhombohedra1 and hex- 
agonal magnets. 

Experimental investigations of the decrease in the 
sound velocity v as a magnet approaches an OPT point were 
carried out in Refs. 12-15. The measurements showed that 
the velocity decreased by at most a factor of two. This does 
not agree with the theoretical results, according to which v 
should decrease to zero.'g3 One of the reasons for this lower 
bound on the decrease of v could be the circumstance that 
near the OPT the intrinsic ME waves are nonlinear. It fol- 
lows from the estimates presented in the present paper that 
the magnitude of the field at which ME vibrations in hema- 
tite become nonlinear is a few tens of oersteds. These fields 
are also the fields at which the lower bound on the decrease 
of the sound velocity is observed. The study of nonlinear ME 
waves is also of interest in light of the possibility of intention- 
ally exciting nonlinear vibrations of the magnetic subsystem 
with AC elastic stresses. 

2. BASIC EQUATIONS 

We will investigate plane ME waves propagating along 
the symmetry axis of the crystal (thez-axis). In this case the 

free energy density of a tetragonal ferromagnet can be cast in 
the form 

b44 
+(bss-bsl) uZr +-s in  2 20 (u,' cos cp+u,' sin 9 )  1 

Here 8 and p are the polar and azimuthal angles of the mag- 
netic moment M, M, is the saturation magnetization, a is the 
inhomogeneous exchange constant, PI, D,, and P are the 
uniaxial anisotropy and basal-plane anisotropy constants, ui 
is the elastic displacement, and b and c are the ME and elas- 
tic constants. The equations which describe the ME waves 
under discussion here have the form 

a,-' sin 0(o+r$ sin 0 )  =a(q' sin2 0)'-'/2P sin4 0 sin 49 
+'12b4, sin 20 (u,'sin cp-u,'cos c p )  , (2a) 

oo-'(ip sin @-re)  =a(0"--i/2cp'2 sin 20) - ' Iz sin 20(p1 
+2B2 cos2 0-1 sin" sin2 2 9 ) -  (b3,-b3,)uZ1sin 20 
+ b4, cos 20 (u,' cos cp+u,' sin c p )  ; (2b) 

p~,=c~,u,"+'/~b,,M,2(sin 20 cos c p ) ' ,  
pu,=c,4u,"+~/2bk4MoZ(sin 28 s inq ) ' ,  

where w, = gM,, g is the gyromagnetic ratio, r is a dimen- 
sionless damping rate, and p is the density. 

We will investigate solutions of the form 8, p, u = f(c) ,  
where 5. = z - vt, and v is the ME wave velocity. In this case, 
we obtain from the elasticity equations (2b) 

u , ' = ' / ~ x ~  sin 2 0 cos c p ,  u,'='/Z~a sin 28 sin c p ,  
u , ' = ~ ~  C O S ~  0 ,  ( 3 )  

where 

x3= [ (bs3-bS1)Mo2/~33 ] (v2/vi2-1)-'7 

X , = ( ~ ~ ~ M ~ ~ / C ~ ~ )  ( v2 / v t2 -1 )  -'; 
here and henceforth the dash will denote differentiation with 
respect to c. The equations for the magnetization (2a) can be 
transformed to the form 

P .  vao-'s in 0 (O'+r(pf sin 0 )  = - a  (cp' sin2 0 )  ' + - s1n4 0 sin 4cp, 2 
(4) 

326 Sov. Phys. JETP 68 (2),  February 1989 0038-5646/89/020326-05$04.00 @ 1989 American Institute of Physics 326 



where 8, = B1 + b44~4,  B2 = B2 + (b33 - b31 - b44~4.  
Thus, the effect of the elastic subsystem on the magnetic 
sybsystem is to renormalize the anisotropy constantsfi, and 
B2, where this renormalization depends on the sound veloc- 
ity v. The renormalization shows that the effect of the ME 
interaction is most important for v close to u, and v,. From 
the second equation (4) for large anisotropy and small 
damping we obtain 

COS 0=v(fl,oo) -'(p': (5) 

Including the fact that in this case the excursion of M from 
the basal plane is small ( lr/2 - 8 I 4 1 ), and using ( 5 ) ,  the 
first equation (4) can be reduced to an equation of sine- 
Gordon form with damping 

where sZ = aBlo2. Integrating this equation gives 

The meaning of the constant C can be clarified in the follow- 
ing way. Let us rewrite (6) in the absence of damping in the 
form m*x" = - dU/dx, where m* = a(v2/s2 - I) ,  x = q,, 
U= sin22x. Then the quantity C = m*xf2/2 + U is the 
energy of an effective particle of mass m* moving the poten- 
tial U. 

The stationary points of Eq. (6) are the points q, = n r /  
4, q, ' = 0 (n = 0, f 1 ,... ). If we neglect damping, the phase 
portrait in the region 0 < C < p  /4 ( p >  0)  has foci. They are 
found at the points q, = nr/2 for v > s and q, = ?r/4 + nr/2 
for v < s. In the regions C > P /4 and C < 0 the phase trajec- 
tories have saddle points: n?r/2 for v > s and r /4  + nr/2 for 
v<~.ThetrajectoriesforC=8/4 (v>s)  andC=O (v<s)  
are the corresponding separatrices. We note that if q, is a 
solution to Eq. (6), then q, + n ~ / 2  is also a solution. Con- 
stant solutions to Eq. (6) exist in the region O<C</3/4, and 
have the form 

3.TYPESOF NONLINEAR MAGNETOELASTIC WAVES 

We will carry out an analysis of the nonconstant solu- 
tions of Eq. (6) in the absence of attenuation for various 
relations between v and s, and also between the integration 
constant C and p (Fig. 1 ). 

A. v>s. In this case solutions to Eq. (6) exist with 
C>  0. 

1. In the region C > /4, we obtain from (6), (5) and 
(3)  (for the sake of simplicity we present only the n = 0 

Fp FIG. 1 .  Regions where various types o f  nonlin- 
ear waves exist: I ( C >  @/4)-spiral nonlinear 
waves for v >  s; I1 ( 0  < C<@/4)-periodic 
nonlinear waves for v?s; 111 (C<O)-spiral 
nonlinera waves for v <s; the solitary nonlin- 

m I ear waves are at the boundary lines C = @/4 
( u > s )  andC=O ( u < s ) .  

0 C 

solutions) 

Here A = {(a/2B) I 1 - v2/sZ~)1'2 and S = (a/&) 'IZ are 
the characteristic length scales, and q = f 1. The Jacobi 
elliptic functions sn(u,k), cn(u,k) and dn(u,k) have per- 
iods in u which are A, = A, = 4K and A, = 2K respective- 
ly, where 

2n 

K = S  ( ~ - k ~ s i n ~ a ) - ~ ~ ~ d i t ,  
0 

is the complete elliptic integral and k is the modulus of the 
elliptic functions (0 < k < 1 ). In the case under study 
k = (B/4C) 'I2, while the periods with respect to 5 are A, ,  
= 4KkA, A, = 2KkA. Based on the expressions for 8 in 
(9), the condition that the deviation of B from r/2 be small 
takes the form 

The function ~ ( 5 )  in (9) describes a nonuniform rota- 
tion of M around the symmetry axis (i.e., a spiral wave) 
either clockwise or counterclockwise for 7 = f 1, respec- 
tively. The angle 8 and the component of the distortion ten- 
sor uj ( i  = x,y,z) varies periodically with a period A deter- 
mined by the period of the elliptic functions. The rotation 
velocity of the magnetization e, ' also varies periodically. For 
q, ' and u,,, the period is A = A,, while for B and u: the 
period is A = A,. The period and amplitude of these vari- 
ables clearly depend on k. For k+O (C- w ) we have K- ?r/ 

2 and A - 0. The vibration amplitudes e, ', 8and u,, ,  decrease 
in this case, while the amplitude u, increases. The values of 
the quantities e, ', 8 and u; averaged over a period grow; how- 
ever, this growth is limited by condition (10). Thus, the 
rotation M becomes more uniform as k decreases. As k- 1 
( C-+P/4) we have K - co and A -. co . The scale of the nonu- 
niformity of e, ', 8 and ul, which is determined by the quanti- 
ty kA, increases to the value A. In this limit, the amplitude 
variation of these quantities increases while their average 
values decrease. The solution (9) is transformed into a se- 
quence of domain boundaries for e, and a sequence of soli- 
tons with the same sign for 8 and u,!. 

2. In the interval 0 < C <fi /4 we have 
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where k = (4C/fl)'I2. The period of the elliptic functions 
A, = 4KA and A, = 2KA depend on k only through K(k). 
All variables, including p (in contrast to the previous case), 
are periodic functions. Their amplitudes grow as k increases; 
however, the change in Ip I is less than 77/4, while 8 and ul are 
limited by the condition 2k ( 1 - v2/s2)8,/fl 1 )  1 

where 

w and q are the frequency and wave number of the periodic 
nonlinear wave. 

As k - 0 ( C- 0)  these waves reduce to linear (harmon- 
ic) ME waves: 

The magnetization vibrates sinusoidally relative to the equi- 
librium position p, = n?r/2, remaining practically in the 
basal plane (the deviation of 8 from r /2  is quadratic in k)  . 
The dispersion relation for these waves is determined by Eq. 
( 121, in which ij = q, since as k- 0 we have K- ?r/2. From 
this it is clear that in the limit of weak external excitation the 
periodic nonlinear waves transform into the usual linear ME 
waves whose renormalized velocities for small wave 
numbers q have the well-known forms of quasimagnon and 
quasiphonon branches: 

Let us recall that in the case under discussion the system is 
far from the static OPT point, at which there is a static excur- 
sion of M from the basal plane (HA ) H,, ) . 

As k-. 1 (C-B/4) the period A- CXJ and w,,, -0. The 
functions ~ ( 6 )  and 8( f ) ,  ul(6) transform into a periodic 
domain structure and a sequence of solitons of alternating 
sign. 

3. In the case C = p / 4  the solution to the problem con- 
sists of a moving solitary wave: 

This solution is intermediate with respect to q, between the 
spiral wave ( 9 ) for C > /3 /4 and the periodic nonlinear wave 
(11) forO<C<P/4. 

The function q, ( f )  in ( 13 ) describes a domain bound- 
ary involving left-handed and right-handed rotations of M 

( q  = f 1 ) between states with p = + ~ / 4 ,  i.e., between 
states of M lying along the difficult axes. The functions 8(5)  
and u: ( 5 )  describe a soliton and antisoliton respectively for 
q = + 1. As the velocity v decreases, the width of the do- 
main wall and soliton A decrease, while the amplitude of the 
solitons grows to a value limited by inequality (10) for 
k =  1. 

The results obtained so far show that the changes in the 
type of nonlinear wave with decreasing C from spiral to soli- 
tary to periodic wave for C = P/4, and also from periodic 
nonlinear wave to the constant phase with C = 0, occur in a 
way similar to phase transitions. As we pass from one type of 
nonlinear wave to another, the symmetry which character- 
izes the dynamics of the magnetic state changes. Thus, 
whereas the constant phase is characterized by continuous 
translational symmetry, in the region of nonlinear waves the 
translation symmetries have a definite period in 6. As we 
approach the region where the solitary wave can exist (i.e., 
the point C = fl/4) this period satisfies A - CXJ (q - 0). For 
the spiral nonlinear wave, however, the translations are 
characterized by a new finite period. As an order parameter 
for the various phase transitions we can take, e.g., the value 
of the squared angle 8 - ?r/2 averaged over a period. This 
parameter is different from zero in the regions where the 
spiral and periodic nonlinear waves exist, and reduces to 
zero for the solitary wave and constant phases. 

B. v <s. In this case a nonconstant solution to Eq. ( 6 )  
exists for C < p /4. 

1. For C < 0 the solution p(f)  of Eq. ( 6 )  differs from 
the one presented in (9)  by a shift of ~ / 4 .  The other variables 
are determined from (9)  when we replace the function cn 
in u,,, by sn. The modulus of the elliptic functions k 
= ( 1 - 4C/p) - ' I 2 .  

2. In the interval O< C < P / 4  the solution ~ ( f )  to Eq. 
(6) differs from ( 11 ), again by a shift of ?r/4, while the de- 
pendences of 8 and ull on 6 are determined using ( 1 1 ) . In this 
case the modulus satisfies k = ( 1 - 4C//?) 'I2. The relation 
between w and q is determined by Eq. ( 12), once we replace 
0 with - p. In this case, the quasiacoustic branch is stable 
(w2 > 0) for all g, while the quasimagnon branch is stable for 
g > A; '. As ij decreases to the value g = A; ', the nonlinear 
waves corresponding to vibrations of M relative to the diffi- 
cult axis are transformed into a solitary wave of the domain- 
boundary type separating constant states with q, = 0 and 
q, = ?r/2. 

3. For C = 0 the variables are determined by Eq. ( 13), 
with q, replaced by q, - 71/4 and u: and ul  exchanged in this 
expression. 

In case B we obtain the same types of solutions as in case 
A. The only difference is that the easy and difficult axes have 
changed places: in the spiral nonlinear wave the rotation of 
M slows down along the easy, not the difficult axis; the non- 
linear vibration takes place relative to the difficult axis, and 
the solitary wave constitutes a domain boundary between 
the state q, = 0 and q, = r /2  (and not between the states 
q, = f 77/4). An analogous result is obtained when the sign 
ofpis reversed without changing the relation between v and 
s. Consequently, we can assume that when the sign of the 
factor ( 1 - v2/s2) changes a dynamic OPT takes place, anal- 
ogous to the static OPT which occurs when the sign of p 
changes.' 

All the results presented above were obtained for defi- 
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FIG. 2. Regions of nonlinear wave velocities corresponding to the condi- 
tions u b f o r  (a)  u, <so, (b)  u, >so. 

nite relations between v and s ( ~ 2 s ) .  However, the value of s 
itself depends on v. Solving the relation between v and s, we 
find that the condition v > s is satisfied in the regions v > max 
{vl,v2) and min ~u,,v,) < v < v, , while the condition v < s is 
satisfiedfor v, < v < max {v,,v,) and v < min {vl,u2) (Fig. 2). 
Here, 

max (min) { v , ,  v 2 } =  V I ( V Z )  for V ~ S O  

v 2 ( u i )  for vt>sb 

In the absence of the ME interactions = so, and consequent- 
ly for the magnetic nonlinear waves, the conditions listed 
above have the form u?s,,. Inclusion of the interaction leads 
to the appearance of a small interval Iv, - v,l around v, in 
which a relation between v ands is established which is oppo- 
site to the one which holds without the ME interaction. This 
also causes a shift in the boundary u = s from so to v,. 

4. EFFECT OF DISSIPATION 

Dissipation leads to a decrease in the wave energy. 
Thus, if the excitation energy of the wave is initially larger 
than the anisotropy energy, then as it propagates a wave 
which starts out as a spiral wave changes first to a periodic 
nonlinear wave and then to a linear wave. 

For weak damping ( r <  1 ) we can find the following 
relaxation correction to p: 

t E' 

Inthelimitk-1 wehavefrom (9), ( l l ) ,  (15) 

where 

v= { k  for C>P/4 H CcO 
1 for O<C<p/4 ' 

For k = 0, in the case v > s the full expression for the azi- 
muthal angle has the form " C>P/4 

k A  ' 

k sin ---- G-GO O < C < P / ~  
A ' 

From ( 17) the scale of the damping f - 5,- 2awdrv. For 

c - c 0 4 v A ,  i.e., in the initial period of variation of M, for 
any value of k in the interval v > s. 

where 6,, is the Kronecker symbol. 
Relaxation can decrease the solitary wave velocity 

without changing its form. In this case, based on energy 
analysisI6 we can obtain the time dependence of the velocity 
decay: 

For small velocities the relaxation time for the velocity of a 
solitary wave satisfies T, = [rD,w,( 1 - p )  ] -I. Thus, the 
ME coupling increases T, . 

The results presented above were obtained using the 
condition that the velocity v not be close to s. However, for 
v z s  and for large damping the first term in (6) is small. 
Then the solution of this equation has the form 

and describes the motion of a relaxing solitary wave of the 
45" domain wall type between the states p = ~ / 4  and p = 0 
of width A, = rv/(2&,). 

5. CONCLUDING REMARKS 

The results we have obtained are also valid for easy- 
plane antiferromagnets such as, e.g., tetragonal NiF,, rhom- 
bohedral a-Fe,O, and FeBO,, in the presence of interaction 
between elastic waves and low-frequency spin waves. 

We have already noted that as we approach the OPT 
point, e.g., when the constant f l  decreases with tempera- 
ture,I7-l9 the ME vibrations become nonlinear. The system 
can also be made to approach an OPT through elastic stress 
or magnetic fields. In this case, the appearance of a nonlinear 
wave apparently could be the cause of the experimentally 
observed lower bound on the decrease of the sound velocity 
in magnets as the OPT is approached, in particular when this 
approach is mediated by a magnetic field in easy-plane anti- 
ferromagnet~. '~- '~ In this case the value of the field H, below 
which the ME vibrations become significantly nonlinear can 
be estimated from a comparison of the Zeeman and ME en- 
ergy: MH, z b L  2u'0'. Here M = M I  + M,, L = MI - M,, 
where MI and M, are the magnetic moments of the sublat- 
tices, and u"' is the amplitude of the sound wave. Setting 
bL 'z 10' erg/cm3, u'O'=: lop6, M z  1 Oe, we obtain H, z 10 
Oe, which is in full agreement with the results of these ex- 
periments. 

The expressions obtained here for the deformations 
show how nonlinear ME waves can be efficiently excited by 
external AC elastic stresses. For example, setting the values 
of v and k for a specific material, we can determine the ampli- 
tude of the elastic deformations uj using ( 1 l ) ,  and also the 
spatial and temporal periods A and T. If we select an exter- 
nal excitation with such a u,! and T (or A), then nonlinear 
waves described by Eq. ( 1 1 ) should be excited with the given 
v and k. The nonlinear ME wave can also be excited by a 
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variable magnetic field, and also by varying the magnitude 
and sign of the anisotropy constant /3, e.g., by varying the 
temperature. 

We can observe ME nonlinear waves, e.g., by using 
magnetooptic effects such as rotation of the plane of polar- 
ization or Bragg diffraction. 
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