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The balance equation for the total vorticity (the enstrophy ) corresponding to a "strong" 
singularity, i.e., the explosive increase in the enstrophy in a dynamic interaction of two 
regularized point vortex dipoles (infinitesimal vortex rings which have been "smeared out"), is 
derived in the three-dimensional case. The effect of viscous dissipation on the process is evaluated. 
A comparison is made with the dynamics of two-dimensional vortex dipoles which leave the 
enstrophy invariant (in the absence of dissipative factors), despite the possible realization of a 
"weak" singularity for the local properties of the vortex field. 

The regularization problem always arises in the study of 
point vortex entities which ahve an indefinite self-energy.' 
For point vortices in the two-dimensional case (i.e., for rec- 
tilinear vortex filaments) an infinite self-energy is simply 
discarded in the analysis of the interaction of such vorti- 
ces. A more complicated question is whether it is valid to 
discard the self-energy in treating the interaction of point 
vortex dipoles in either two or three dimensions.'' The com- 
plexity stems from the fact that the vortices have an infinite 
self-induction velocity along the symmetry a x i ~ . ~ . ~  The 
mathematical difficulties which arise here (and which, inci- 
dentally, also arise for point vortices in a plane) have the 
same source as in a quantum field theory based on the con- 
cept of a point interaction described by the product of S- 
function operators taken at the same spatial point.' In quan- 
tum field theory this problem of the regularization of 
expresssions containing products of 6-functions has been ap- 
proached by various formal paths which nevertheless lead to 
excellent agreement with experimental data.' Dyson regu- 
larization, for example, can be associated with a subtraction 
of the self-energy of point vortex entities from the total in- 
variant kinetic energy of the system, as mentioned above. A 
somewhat less formal approach to quantum field theory was 
derived by Landau,' who suggested treating the point inter- 
action" ... as the limit of some 'smeared' interaction of finite 
range as this range decreases to zero." In other words, the 
idea is to abandon the use of S-functions to describe a point 
interaction. This idea of Landau's underlies the procedure 
developed in Sec. 1 of the present paper for regularizing the 
self-energy of point vortex dipoles, T, , in which T, does not 
affect the Hamiltonian dynamics of the relative motion in a 
system of such vortex entities. A system of this sort was stud- 
ied in Sec. 2 in connection with an analysis of the problem of 
spontaneous singularities in three-dimensional turbu- 
l e n ~ e . " ~  

of a point vortex dipole, T, , is found from ( 1 ) for the vorti- 
city'v6 

which corresponds to a point vortex dipole at the origin of 
coordinates, with a Lamb momentum y. In (2),  E ~ ,  is the 
Levi-Civita pseudotensor, and a repeated index means a 
summation from 1 to 3. The value of T, is undetermined 
because of the product of &functions, taken at the same 
point, in (1)  [for o from (2) ] .  

We will regularize the energy T, by Landau's approach: 
We replace the 6-function in (2)  by a finite "smeared" modi- 
fication 6(x), where the regular function 6(x) satisfies the 
parity and normalization conditions 

B ( x ) = B ( - x ) ,  J d s x ~ ( x ) = i .  (3  

The distribution of the solenoidal velocity field correspond- 
ing to (2)  takes the following form as a result of the replace- 
ment s - 6: 

where 

C ( X )  =:O(IXI-~) as 1x1 - CO, and we havedivii = 0, regard- 
less of the nature of 6(x), since we have Af = - 6(x), where A 
is the Laplacian. For 6(x) - 0 as 1x1 -0, the velocity field (4)  
of the "smeared" vortex dipole no longer has a singularity at 
the point x = 0, since we have ii(x) -0 as 1x1 -0. 

In general, we can write a regular finite function 6(x) 
which satisfies conditions (3)  as an infinite series in spheri- 
cal harmonics. For simplicity we restrict the analysis to the 
representation (at t = 0 )  

1. REGULARIZATION OFTHE VORTEX SELF-ENERGY 6 (x) =aaGu(r)  [ l+yP2 (cos 8 )  1, (5 

1. In the three-dimensional case, the total kinetic ener- where a, is found from the normaliztion condition 
gy corresponding to the vorticity distribution o(x)  in an un- h 

bounded space is' a. = -1 1 dr  r26, ( r )  I-', 
4n 

T = F  J # x ~  J d s x  ~i ( x r )  0, ( x )  (1)  
8n 1 x-x' I ' P, = (3cos20 - 1/2) is the Legendre polynominal, 0 is the 

s~herical angle measured from the direction specified by the r - 
wherep, is the constant density of the liquid. The self-energy momentum vector y, r r  1x1, b is the scale of the smearing of 
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the 6-function, and y is an arbitrary constant factor. 
Representation (5)  corresponds to expression (A1 ) for 

f(r,8), while for T, we find the following results from (1)  
and (2) ,  respectively, when we make the replacement 6-8: 

2 
f ( r . e ) ] .  (6)  T.=M Jcx~(x ) [~ (x )+ - - -  y 2  dx, axk  

Expression (6)  can also be derived in an elementary way 
from the definition 

for ii from (4),  since in an unbounded space we have 

by virtue of the condition div ii = 0. 
2. We first consider the possibility of separating from T, 

in (6)  that part of the energy (T, ) which is most responsi- 
ble for the existence of a self-induced motion of the vortex 
dipole in the direction specified by the vector y, i.e., along 
the axis 0 = 0. Here we have T, = T, + T,, , where T, is 
given by (6)  when we make the replacement 
f(r,B) - f(r,8 = 0)  [See (A1 ) 1. Note also that the 8 depen- 
dence of f(r,8) is determined by the 8 dependence of8 in (5)  
even in the limit b-0, in which we have, for 8-6, 
f(r,8) + 1/4rrr. In the Appendix we derive an expression for 
T,, specifically, expression (A2), which corresponds to an 
initial (at t = 0)  smearing: 

60 (r) =ra (b-r)?g (b - r ) ,  (7)  

where a > - 3/2, and 

is the unit step function. It follows from (A2) that for real 
values of the parameter y the quantity T, can vanish only 
for large values of the structure parameter a>,a,, = 137 (we 
are rounding to integers). For example, we have T, = 0 for 
a = 137 and y z 3 .  A vortex structure of this sort, corre- 
sponding to ( 2 ) ,  (5) ,  and ( 7 ) ,  is topologically equivalent to 
a vortex ring of radius b which is smeared out toward the 
center of the ring, since we have w + O  at r#O for any 
0 < r < b and w = 0 at r = 0 and r>b. A large value of a here 
corresponds to the greatest concentration of the vorticity 
which is nevertheless near the periphery of the vortex region, 
i.e., at r z b .  The total energy T, of course increases without 
bound in the limit b - 0, although T, no longer depends on 
this limit, remaining zero for arbitrary b (for the values ofy 
and a stated above). As a result, there is a cancellation of the 
energy 

associated with the anisotropic induced motion of the vortex 
dipole. 

3. To evaluate the possibility that the total self-energy 
T, vanishes, we must also consider complex values of the 
parameter y. We assume a factor y = iy ,, where i2 = - 1, 
and y, is a real random quantity with a zero mean, (y,) = 0 
(the angle brackets mean a statistical average). Only the 
values of the vorticity field and the velocity which are aver- 

aged over y,, and which are real in this case, are physically 
meaningful, of course. The same comment applies to the glo- 
bal characteristics of the vortex field: the energy, the integral 
vorticity (enstrophy), etc. Despite the formal nature of this 
statistical approach to the problem of the regularization of 
the self-energy T,, it may be justified by the circumstance 
that in practice only average properties of vortex fields, not 
the fields themselves, are measurable and, correspondingly, 
predi~table.'~." Furthermore, complex vortex structures 
also find applications in elementary particle theory.I2 

For (T ,  ) in this case we find the following expression 
from (6)  and (A1 ), after we average over y,: 

where we should have (yI2) = 7 according to physical con- 
siderations. From the Cauchy-Bunyakovskii inequality we 
find the following estimate of the coefficient in front of the 
parentheses in (7a) : 

11 

This estimate does not depend on the form of S,(r) at 
O(r<b. In the case (y,l)  = 7, however, we have (T,) = 0, 
and this energy no longer depends on the last limit (b-0). 

We wish to stress that the smearing in (5)  and (7)  does 
not by itself determine the steady-state solution of the Helm- 
holtz equations (Ref. 13, for example), but it can serve as an 
initial condition for a time-varying vortex structure (which 
is localized in the limit b-0) for which the self-energy 
should again be zero, (T, ) = 0, by virtue of energy conser- 
vation. It is shown in Sec. 2 that a vortex structure of this 
sort, corresponding to (5)  and (7) ,  is nevertheless a steady- 
state structure on the average. 

We also note that the results of the regularization found 
above agree with the conclusion reached by Goman et al.5 
that it is possible to eliminate the self-induction velocity for a 
localized time-varying vortex region modeled by a set of thin 
vortex rings. Furthermore, Finkel'shteinI4 used arguments 
similar to those presented by Goman et al.' as a basis for 
equating the self-energy for vortex filaments in type I1 super- 
conductors to zero. In quantum field theory also, regulariza- 
tion brings the self-energy of a photon to zero.' 

In the Appendix we present some procedures for regu- 
larizing the self-energy of point vortex dipoles in the two- 
dimensional case. Those procedures are similar to the ones 
discussed in Subsections 2 and 3. 

4. In the three-dimensional case, for a system of Npoint 
vortex dipoles with a vorticity distribution 

a Hamiltonian formulation with a Hamiltonian 

and with canonical variables y" x:(m = 1,2, ..., N),  satisfy- 
ing the system of equations 
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dy," -- a H 
---=- 

dv, (xn') 
d t  

ylm- 
ax,rn axlm ' ( 9  

where 

[i.e., u, = d@,/dx, as ~ - s ( x )  in (4 )  1 ,  was derived in Ref. 
6. An expression for H was found in Ref. 6 from ( 1 ) and (8)  
by considering only the interaction energy of the point vor- 
tex dipoles, W (so that the expression W = p a  /2 resulted). 
I t  was assumed that the invariance of the total energy T of 
the system of vortex dipoles (8)  leads to a regular energy W, 
found from Tby subtracting the singular self-energy T, of all 
of the dipoles. The regularization procedure described 
above, T, - (T ,  ), which corresponds to the possible vanish- 
ing of this quantity, confirms that this suggestion regarding 
the invariance of Wand thus H is feasible. I t  thus becomes 
possible to write down the Hamiltonian dynamic system 
(9) ,  (9 ') .  Furthermore, the possibility of eliminating the 
singular self-induction velocity for point vortex dipoles 
(with T, = 0; see also Refs. 5 and 6)  makes it possible to 
also derive system (9) ,  (9') with an invariant Hamiltonian 
H and ( W) as a weak solution of the three-dimensional 
Helmholtz equation for the vortex field (8)  (see the ,Appen- 
dix). The possible existence of such a weak solution was 
pointed out in Ref. 15 and also in Ref. 3. In Ref. 3, however, a 
wrong sign on the right side of (9 )  led to the incorrect con- 
clusion that the invariance of the total angular momentum 
M was violated for a system of point vortex dipoles (8)., 

5. In the two-dimensional case the Hamiltonian dynam- 
ics of point vortex dipoles can be introduced in a similar way. 
The total kinetic energy corresponding to the vorticity dis- 
tribution in the plane, w ( x ) ,  is' 

For a system of N point vortex dipoles we would have 

where E , ~  is the Levi-Civita density, and a repeated index 
means a summation from 1 to 2. From ( 10) and ( 1 1 ) we find 
the interaction energy of the dipoles, W,, and the corre- 
sponding Hamiltonian H,, which is given by ( W, = p,&/ 
2 

N 

where 

The canonical variables 6, , x g ( a  = 1,2,m = 1,2,.. .,N) are 
described by the system of equations (which corresponds to 
H? ) 

which can also be derived as a weak solution of the two- 
dimensional Helmholtz equations for the vorticity field ( 11 ) 
by eliminating the corresponding singular self-induced ve- 
locity. 

Equations ( 12) leave invariant the Hamiltonian H,, the 
total momentum 

n- 

and the angular momentum 

As in the three-dimensional case,' we can use these invar- 
iants to derive (without any difficulty) an exact solution of 
Eqs. ( 12) for two vortex dipoles. In particular, we consider 
the case Pa = 0, i.e., the case with y '  = - y2 = y. We as- 
sume x,  - x, = 1; then we have 

From ( 12) we then find the system of equations 

where p and p, are the polar angles of the vectors 1 and y, 
which lie in a common plane, so that we have 
s in(p,  - p )  = M /yl. Equations ( 13) can be integrated easi- 
ly; their solution is yo- y ( t  = 0 ) ,  I , ,=I( t  = 0 )  

This solution agrees qualitatively with that found in Ref. 6 
for three dimensions, and it corresponds to Eqs. (9) ,  (9') 
with N = 2. Furthermore, despite the difference between the 
exponents in ( 14) and ( 15), on the one hand, and those in 
the three-dimensional case, on the other [see the expressions 
for yt ) and I( t ) in Ref. 6,  and see also expressions (2  1 ) and 
(22) below], the exponent of the explosive increase in the 
square of the local gradient in a neighborhood Ix - BI < l ( t )  
of the invariant "center of gravity" B = (x '  + x2)/2 [in the 
limit I ( t )  -0 for t-t,+ in ( 14)], i.e., 

is exactly the same as the three-dimensional value q = 2 [in 
Ref.6,R=:O(y2/12) z O ( l / ( t  ' - t )2 ) ] .Hereu(x)  istheve- 
locity field which would be set up at point x by a pair of 
vortex dipoles which are collapsing (closing on each other). 

On the other hand, a fundamental difference between 
three-dimensional vortex dynamics and two-dimensional 
dynamics, which stems from the circumstance that only 
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three-dimensional vortex lies can be stretched, is demon- 
strated by the analysis in Sec. 2 of the evolution of the en- 
strophy, for which there is a "strong" singularity as t- t +. 
This strong singularity is not found for the invariant en- 
strophy in the two-dimensional case, despite the existence of 
a "weak" singularity in the localization of the quantity R for 
t-t2+. 

2. INTENSIFICATION OF THE INTEGRAL VORTlClTY 
(ENSTROPHY) 

1. The regularization of the vortex field G(x)  which 
was introduced in Sec. 1 through the replacement of a S- 
function by a regular finite function &(x)  (with infinitesimal 
support b -0) also makes it possible to introduce, in a cor- 
rect way, the square of the regularized vorticity, w2(x),  and 
corresponding integrals of the enstrophy, I = J  d 'xG2 and 
I, = J d 'xG2, for point vortex dipoles in the three-dimen- 
sional case, (8), and the two-dimensional case, ( 11 ). In con- 
trast with the integral Jd  3G (and J d  'xG), the enstrophy I 
(and I,) does not vanish for the vortex dipoles (8)  [or ( 1 1 ) ] 
and is thus a convenient measure of the integral vorticity 
throughout the volume of the liquid.' In an unbounded 
three-dimensional space, the balance equation for the en- 
strophy is 

where 25, is the regularized vorticity (8),  ii, is the corre- 
sponding velocity field, and v is a kinematic viscosity coeffi- 
cient. Everywhere below, we will consider finite smearing of 
the S-functions in the form of&(x)  [as in (5 )  and (7)  ] and 
the effects of viscous dissipation only in the enstrophy bal- 
ance equation (16); we will be assuming that we have al- 
ready taken the inverse limit 8-6 (i.e., b-0) in the Helm- 
holtz equation (A6). That limit, in contrast with (16) in 
(A6), is permissible [and leads to a weak solution described 
by system (9) ,  (9') 1. At large Reynolds numbers we can 
again use the system (9),  (9'), which follows from (A6), to 
describe the dynamic interaction of vortex dipoles and the 
corresponding evolution in the enstrophy I in ( 16). Since 
the smearing of & ( X I  which we discussed in Sec. 1 corre- 
sponds to only the initial time, t = 0, we must introduce 
some new notation: g( t ) ,  which determines some "average" 
scale of the smearing at t > 0. Specifically, it determines the 
scale for the enstrophy balance equation3' which we are con- 
sidering here, (16), from which we also find the quantity 
b( t )  [and, correspondingly, I ( t ) ]  under the initial condi- 
tion 6( t )  = 0)  = b [for b from (5)  and (7),  for example] 
and for the solutions of Eqs. (9 ) ,  (9') which were found in 
Ref. 6. 

In particular, for a single vortex dipole (in a cylindrical 
coordinate system with z axis in the y = const direction'), 
we have 

r d2f U"&,=--- r azf al=r8(p)+ --, 
4n dzdp' 4x dz2 

8 (x') 
f ( z , p ) = f ( - ~ , ~ ) =  Jd'x-. I x-x' 

[since ii, (z,p) = - ii, ( - 5,p) ] determines, on the aver- 
age, a steady-state solution b = b = const for a smearing of 
the type ( 5 ) ,  (7),  since we have I z O ( y / b  5 ,  = const. 

2. We now consider the balance equation ( 16) for the 
case of two interacting vortex dipoles which satisfy the dy- 
namic equations (9),  (9') in the limit v-0. In system (9) ,  
(9'), conserved along with the energy Hare  the momentum 

and the angular momentum6 

are conserved. 
These invariants were used in Ref. 6 with N = 2 and 

P = 0 to derive an exact solution for the evolution of the 
vectors I ( t )  EX'  - x2, y ( t )  ~ y '  = - y2, which lie in the 
(x,y) plane, with M, = My = 0 and M, = M = const. In 
the coordinate system at the invariant "center of gravity" of 
two point vortex dipoles [i.e., at the point B = (x '  + x2)/ 
21, the regularized vorticity is given by 

The corresponding enstrophy is 

Expression ( 18) incorporates the assumption that the 
smeared vortex dipoles are separated from each other by a 
distance large in comparison with the smearing b (i.e., 
1$6-0). 

When viscous forces are taken into account, the en- 
strophy balance equation ( 16) takes the following form, to 
within, the omitted terms 0(6 2/Z '): 

We ignore the viscous forces only in the balance equation 
( 19); everywhere below we assume that we are dealing with 
large Reynolds number, Re = u(t) l ( t ) /v$l  [for two vortex 
dipoles, the relative velocity is u ( t)  -- y( t )  / 4 ~ 1  ( t )  1, in 
which case we can ignore the effect of viscous dissipation on 
the relative Hamiltonian dynamics of the vortex dipoles de- 
scribed by Eqs. (9),  (9'). 

In ( 19) we are using a rather smooth representation of 
the function 8(x) ,  which corresponds to, for example, (5 )  
and (7)  for a> 137 and for real values of the parameter y 
[corresponding to T, = 0 at t = 0; see (A2) 1. From ( 19) 
we find, in the limit a $1, 

The enstrophy balance equation 
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where and (23) takes the form 

t, is the time at which the two vortex dipoles collapse (at 
which they come together at the same point," 

According to Ref. 6, we have the following expressions for 
l ( t )  and y(t) :  

where 

1 t(*'=4nl.'(- eos )o -t, I sin $0 I )/5yo (1-3 cus' $0) 7 

1'2 

p and p, are the polar angles of the vectors 1 and y in the (x, 
Y plane, 

and yl sin $ = M = const. Since the functions A(T) and 
B(r)  in (20) are given explicitly by expressions (21) and 
(22), a solution of (20) can be found easily under the initial 
condition u(0)  = 1: 

3. In particular, for H = 0 (i.e., for lcos$l = Icos$,l 
= 1 / d )  we have 

~ (a )= lo ( l -~ ) ' " ,  y ( ~ )  =yo(l-T)-"~, (71) =y020/1 /~  M2/yZ12=2/3 

for cos $(, = 1/2/3 > 0. In this case we have 

In other words, we have U ( T )  zO(1  - r) in the limit 
T- 1, where A, =. 0.55 for y z 3 and a = 137. Similar values 
were found in Refs. 16 through numerical analysis of the 
evolution of the enstrophy: A,,z0.8 + 0.1 (Ref. 16a) and 
0.5 5 A, 5 1 (Ref. 16b). 

We thus see from (24) that at finite values of Po the 
viscous forces are not able to balance the three-dimensional 
stretching of vortex lines which leads to an unbounded in- 
crease in the enstrophy over a finite time acvortex dipoles 
close on each other in the limit T - 1. Because of the pro- 
nounced increase in the Reynolds number, R e = ; y ( ~ ) /  
4 ~ 1  2( r )v-  co , as T- 1 the viscous forces furthermore can- 
not substantially influence the relative Hamiltonian dynam- 
ics of point vortex dipoles, described by Eqs. (9),  (9') and 
the corresponding solutions in (21) and (22) in this regime. 
In this situation, the intense acoustic emission of the collaps- 
ing vortex dipoles can apparently act as a dissipative mecha- 
nism which is more effective than the viscosity in limiting the 
explosive growth of the enstrophy [and in eliminating the 
corresponding singularity u(t) - as T- 1 1 .  A lower limit 
( 1 - T) ) ~ a ~ ~ / ~ ,  was derived in Ref. 9. This limit stemmed 
from compressibility effects (Ma, = u,/c is the Mach num- 
ber, and c is the velocity of sound in the slightly compressible 
medium, with Ma, < 1 ) . This limit must be associated with 
an initial restriction on the scale of the smearing, I(t) ) b(t).  
Here, in contrast with the case of an isolated vortex dipole, 
the smearing 6 may depend on the time, since we have 
u ( ~ ) z 0 ( f / 6 ~ ) ~ ( 1  - T ) - ~ I , .  and y( r )= :O( l  - T ) - ' / ~ .  

Accordingly, for y=. 3 and A,z0.55, for example, we have 
6 ( ~ )  z b o ( l  - r ) O o 3  (bo=b) in the limit T- 1. On the con- 
trary foranisotropic (at t = 0)  smearing (5),  ( 7 )  withy = 0 
an expansion of the localization region as 7-1: 
6 ( ~ )  =: b,( 1 - T) since, at y = 0 we have4' A, = 0.2. 
Since we have I(T) = I,( 1 - T) 'I5, in the latter case we find 
from the condition I (T) )&(T)  the lower estimate 
( 1 - T) ) (b,/l,) *'I6. Comparing this restriction on 1 - Tas 
T- 1 with the limit which we noted above for the compress- 
ibility effects, we reach the conclusion that for 
1 >Ma,> (b0/10)5/2-~ the acoustic effect should smooth 
out the singularity in u ( r )  as T+ 1. We also note that we 
have B(, = t,/t, (t, = bo2/6ua2), and we are justified in ing- 
noring the viscous smearing of the vortex-core structure it- 
self, of radius b,, during the collapse time t,, only under the 
condition to < t,, i.e., under the condition Do < 1. In turn, 
this condition can hold only if the Reynolds numbers are 
sufficiently large: Re, = u,/l,/v > (1,/b,)2 ) 1. 

4. We now assume H # O  ( H  < 0 )  and M = 0 [see the 
notation preceding (23)l.  In this case the vortex dipoles 
close on each other (if $, = 0) or move apart (if 1Ct, = a) 
along a straight line which is collinear with the direction of 
the momenta of these dipoles, y = y' = - y2. This situation 
corresponds to the classical problem of the motion of coaxial 
vortex rings with oppositely directed momenta'." in the lim- 
it in which the radii of these rings are arbitrarily small in 
comparison with the distance between their centers. 

We consider vortex dipoles which are moving away 
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from each other under the initial condition tC;, = r. In this 
case we have ( y )  = - yl< 0 at any time t>O; this situation 
corresponds to a positive value A( r )  > 0 and the possi- 
bility that the enstrophy will grown in time. In this case we 
indeed find from (23) [since l (?  = I,( 1 + ?)215, 
y (?=y, ( l  + F ) ~ / "  A 1 + 0(?) =Po/ 
( 1 + T) 12'25 I 

where 

With F> l and Do< 1 it thus follows from (25) that 
there can be a significant power-law increase in the en- 
strophy, since we have u(?) z 0 ( ?  'I5) on the time interval 
1 g i 5  (Bo)-25119. On this time interval we have an expan- 
sion of the localization region, &(?) z O(F 'I2'). Further- 
more, at ? '912",> 1 we find &(?) -- O(F ' I 2 ) ,  since in this 
limit we have u (?) SO (? -"/") and y ( F )  z0(? '"). 
There thus exists an intermediate time interval ?in which we 
have &(?) z0(? 21"; i.e., the increase in the average radius 
of the smearing of the vortex dipole, &(?) in time is propor- 
tional to the change in the distance between the vortex di- 
poles, since we have I ( ? )  ~ 0 ( ? ~ / ~ )  [and the condition 
1(?) & b ( ? )  definitely holds for I,> b,]. The same tendency 
toward an increase in the radius of a spherical vortex, pro- 
portional to the displacement of the vortex, was noted in Ref. 
18, where this process was driven by buoyancy effects. 

It thus obviously follows from (25) that the role of vis- 
cous forces in the case M = 0 ( H <  0), is a very important 
one, and it may differ qualitatively from that in the explosive 
regime (24) for H = 0 and M f 0), since even in the case of 
an arbitrarily small viscosity v the viscous forces will be ca- 
pable in principle, after a sufficiently long time 
F> (B,)-25'19> 1, of cancelling the effect of the stretching 
of the vortex lines.' On the other hand, it follows from (25) 
that at sufficiently large Reynolds numbers Re,> 1 the rela- 
tive increase in the enstrophy can reach extremely large 
maximum values before the viscous damping comes into 
play. Specifically, the function u (F) in (25) reaches its max- 
imum value 

where ?,, > 0 only for sufficiently small values B < 3 
= 1.14, i.e., only at Reynolds number Re, exceeding a criti- 
cal value, 

where a > 1  [for a = 137 we have I,,, /IO=: 0 ( ~ e ~ , " " ~ ) ] ] .  
Consequently, in this case, M = 0 ( H  < 0)  , the enstrophy 
can be significantly enhanced, to a maximum value I,,,,,/ 
I , = : o ( R ~ ~ ~ ~ ~ ~ ~ )  at t = t,,, z ~ , , ~ e , , ~ " ~  only for Reynolds 
numbers above the critical value, Re, > Re:. 

The vorticity bursts of large (but finite) amplitude 
which are observed in turbulent boundary layers are indeed 
linked with an interaction of (coaxial) dipole vortices. '9.'0 

Accordingly, solutions (23)-(25) [especially (25) 1, de- 

rived above, can be of some use in interpreting the corre- 
sponding experimental data.2',22 In fact, the separation of a 
horseshoe-shaped vortex having a dipole structure19 from 
the wall which was observed in Refs. 21 and 22 may be 
thought of as a result of the interaction of this vortex with 
its coaxial mirror image (with respect to the plane of the 
wall) (or with a dipole vortex induced near the wa11I9). 

The conclusions reached in Sec. 2 can also be used to 
model statistically uniform turbulence, if the integral in the 
definition of Z(and 12) is replaced by a statistical averag- 
ing.23 Furthermore, it would be interesting to study the in- 
tensification of vorticity when the effects of buoyancy and a 
temperature stratification of a medium are taken into ac- 
count. 

We also note that the conclusion, reached in Sec. 2, that 
a strong singularity of the enstrophy I can be reached in the 
three-dimensional case (in the limit T- 1 ) is itself indepen- 
dent of the nature of the regularization of the point vortex 
dipole (cf. the case with y = 0 and 3 ) .  On the other hand, the 
index A, of the corresponding explosive increase of Z never- 
theless depends on the nature of the smearing of the S-func- 
tion. This circumstance leads in turn to different tendencies 
in the time evolution of the smearing radius & (in contrast 
with the case in which there is only an expanding vortex 
region, studied in Ref. 18). Consequently, and in contrast 
with the two-dimensional case (in which the enstrophy is 
invariant, and only a weak singularity of the local character- 
istics of the velocity field is possible; see Subsection 1.5), in 
three-dimensional turbulence there can be a special mecha- 
nism by which energy is drained off to point vortex singulari- 
ties. This mechanism would not depend on the presence of 
viscous dissipation, because of the strong singularity of the 
enstrophy which was mentioned in Sec. 2. The possibility 
that a mechanism of this sort would operate to drain off the 
energy of turbulence (and lead to the establishment of a cor- 
responding universal Kolmogorov-Obukhov regime) be- 
cause the solutions of the three-dimensional hydrodynamic 
equations lose their smoothness over a finite time (there is 
no need to introduce viscous dissipation in the region of 
small scales) was apparently studied first in the well-known 
paper by O n ~ a g e r ~ ~  (see also Refs. 6 and 9 and the bibliogra- 
phies there). 

I wish to thank F. V. Dolzhanskii, V. Yu. Tseitlin, and 
A. M. Yaglom for useful discussions. 

APPENDIX 

1. To derive the expression 

1 6 (x' ) 
!(XI= - 4n JO?J.Z~-,  I x-x' I 

which corresponds to 8(x) from (5) ,  we use the representa- 
tion 

where 

cos ~$=cos 0 cos B'+sin 0 sill 0' cos(cp-cp'), 
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0 and q, are the polar angles of the vector x, and 8 ' and q, ' are 
those of the vector x', over which the integration is carried 
out. Making use of the orthogonality of the spherical har- 
m o n i c ~ , ~ ~  
n 2n 

I dBr sin 0' J d ~ '  P,, (cos 0 ' )  P,,, (COS )) 
0 0 

we find the following expression for f (x) :  

To find T,, we substitute ( A l )  into ( 6 )  and set t9 = 0 in 
I(r,O) [P,( 1) = 1 1. For S,(r) from (7),  we then find 

where a > - 3/2. With a = a,, = 137 in (A2) we have T, 
= 0 for y = 3.001 + 0.101; in the limit a- m we have T, 
= 0 for y = 2 and 5. With a decrease in the smoothness of 

So(r) near r = b, the size of the critical structural index a,, 
decreases (only for a>a,, do we have T, =-0 for real values 
ofy). For example, with 6,(r) = ra(b - r)O(b - r) we find 
a,, = 102, while for S,(r) = raO(b - r)  we have an even 
smaller value, a,, = 50 (we are rounding to integers). 

2. We now consider procedures for regularizing the self- 
energy T, in the two-dimensional case, for which T, is given 
by (10) and (11) with N =  1 (xl=O, y=y=const) .  We 
replace the 6-function by the regular function 
8 (x )  = 8( - X )  ( J  d 2 8 ( ~ )  = I ) ,  which we represent by 
the series 

where r = I x 1, and q, is the polar angle in the plane, measured 
from the direction of y. The corresponding velocity field is of 
the form in (4),  with 

We thus have 

In particular, with a,, ( r )  = a,,So(r) ( k  = 0, l)  (k = 0,1), 6 (x) =ao& (r)  (l+iyl cos 2 q ) ,  
a,, = 0 (k > 1 ), a,/ao = y we have the following expression 

where ( y,  ) = 0 ( y,  is a random quantity), we have, corre- 
for T, [T ,  = T, + T,, , where T, is found from T, as spondingly, the following expression for the total self-ener- 
f2(r,q,) + fi(rLq, = 0)  ] in the case So(r) gy, averaged over y,: 
= r "(b - r)t9(b - r ) :  

b 

where 

It follows from (A4) that we have a,, = 98 (we are round- In (A5) we have ( y: ) <2, and at ( y: ) = 2 we have (T, )  
ing to integers), while in the case a - m we have T, = 0 for = 0. 
y = 2 and 1 in (A4) (for a = 98, we have T,  = 0 for 3. In the three-dimensional case, the Helmholtz equa- 
y = 1.388 f 0.009). tion for the vortex field o(x , t )  is given for the case of an 

For the case of complex y, ideal, incompressible fluid by' 
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Substituting the expression for o from (8)  into (A6), and 
multiplying both sides of (A6) by an arbitrary smooth func- 
tion ~ ( x ) ,  we can carry out the integration over the entire 
space, including the region in which point vortex dipoles (8) 
are concentrated. From (A6) we find (ym=dym/dt, xm 
d x m / d t )  

 UP a9 + up ----- "' )+ e , p b y a ' ' L ~ - - ] = ~ ,  du 89 
+ ( axp ax, ax, ax, 

where m = 1,2, ... N. From (A7) we find 

Multiplying (A9) by E ~ ~ ~ ,  we find 

since we have E , ~ ~ E , , ,  = Sp,Sdl - Sp,Sd,, etc., and div u = 0. 
The singular self-induced velocity also enters u in (A8) and 
(A10) [i.e., u is of the form in (4),  if we again replace 8 by a 
6-function in (4)  1. This velocity can be eliminated by means 
of, for example, the regularization of u which is used in the 
theory of generalized functions for the functional d+,/dx, 
(Ref. 6). From (A8) and (A10) we find system (9),  (9'). 

We also note that system (A8), (A10) [and, corre- 
spondingly, (9), (9') ] was derived in Ref. 15 for the particu- 
lar case of a weight function by carrying out a vector multi- 
plication of (A6) [for w from (8)  1 by x, followed by 
integration over the entire volume. Furthermore, the proce- 
dure used above is analogous to the derivation of a weak 
solution for two-dimensional point vortex dipoles which has 
been carried out by V. M. Gryanik (private communica- 
tion) for the two-dimensional Helmholtz equation [in 
which case (A6) does not have the term on the right side]. 

"In the two-dimensional case, a pair of point vortices which have opposite 
signs and which are separated by an arbitrarily small distance in the 
plane (for example) correspond to a point vortex dipole. In the three- 
dimensional case, a vortex dipole may be thought of as an infinitesimal 
vortex ring or a spherical Hill vortex. 

"I wish to thank P. G. Saffman for furnishing a refinement of the conclu- 
sions of Ref. 3 concerning the dynamic system (9),  (9'). 

3'In contrast with average balance equation ( 16), for example, the Helm- 
holtz equations (A6) may give rise, in particular, to delocalization at 
t>Oofaninitialstructureofthe typein ( 5 ) ,  (7) [i.e., b = b(x,t) at t>O, 
although b = const at t = 01. On the other hand, to analyze the evolution 
of the moments J, = J d3xi jZp  ( p = 2,3, ... ) we should also introduce 
the corresponding average scales of the smearing, b, (which regularizes 
J,) which are different for the moments of different index p. 

4'If the parameter y is imaginary and random [y  = iy,, ( y , )  = 0, and 
( d )  = 7 (i.e., ( T , )  = 0),  we have A, = 0.7; Ref. 161. This result holds 
only if a4 1, in which caseall the terms in ( 19) change sign. In this case 
we have I >  0 only for - 0.5 <a < - 0.17 (with a = - 0.2 A,z27), 
but for a<1/2 the integral in (19) which describes the effect of the 
viscosity diverges. 
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