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It is shown that allowance for a strong low-frequency or constant field can alter substantially the 
character of wave-particle resonance interaction in an external magnetic field. In the case of a 
gansverse wave, such as a whistler, propagating quasilongitudinally relative to the field, a 
Cerenkov wave-energy absorption mechanism has been observed, whose contribution to the wave 
absorption is comparable with that ofcyclotron resonance. It is found, in principle, that other 
types of resonance interaction are possible if electric drift and relativistic effects are neglected. 
These include cyclotron resonance in a longitudinal wave and resonance at twice the 
gyrofrequency. 

1. INTRODUCTION 

A consistent theory of resonance interaction between 
charged particles and high-frequency (hf) waves is based, 
subject to rather general assumptions, on the drift-eikonal 
approximation in the case of a weak electric field.'v2 It is 
assumed then that the particle electric-drift velocity in a 
quasistationary field is much lower than its characteristic 
velocity. Drift theory includes also a strong-electric-field 
variant corresponding to the magnetohydrodynamic 
(MHD) approximation,3*4 in which the electric-drift veloc- 
ity is comparable with the particle velocity. The MHD ap- 
proximation accords best with the conditions in space plas- 
ma, particularly of the earth's magnetosphere, where strong 
electric fields are frequently o b s e r ~ e d . ~ . ~  Strong electric 
fields are produced also under laboratory conditions, for ex- 
ample, in a tokamak plasma following particle injection or hf 
heating.' 

Various problems of resonant-particle interaction with 
hf waves are treated in a tremendous number of papers, such 
as Refs. 8-1 1. No account has been taken, however, of the 
influence of a strong quasistationary field. Yet this influence 
can alter substantially the character of the resonance wave- 
particle interaction and the mechanism of energy exchange 
between them 

We report here an investigation of the influence of a 
quasistationary (low-frequency) electric Celd on the 
charged-particle dynamics in an hf field under Cerenkov and 
cyclotron resonance conditions. Weak relativistic effects are 
taken into account. The hf field is represented as a superposi- 
tion of rather arbitrary wave packets within the framework 
of the assumptions of the drift-eikonal theory. 

Averaged equation? are obtained for weakly relativistic 
particle motion in the Cerenkov- and cyclotron-resonance 
regions. It is shown that when a transverse wave propagates 
quasilongitudinally in an external magnetic field a strong 
low-frequency electric field stron$ly influences the wave- 
particle interaction in the case of Cerenkov resonance but is 
generally hardly noticeable under cyclotron-resonance con- 
ditions. 

We consider in detail the case of a whistler propagating 
along a constant magnetic field. We show that the presence 
of a strong electric fieldein the whistler makes it possible for 
a particle to experience Cerenkov resonance which is in prin- 

ciple not realizable in a weak $lectric field. The physical 
mechanism that produces the Cerenkov resonance in the 
transverse electromagnetic wave stems from the Lorentz 
force exerted by the magnetic component of the hf wave on 
the electrically drifting particleLThe nonlinear damping rate 
of the whistler is calculated for Cerenkov resonance and it is 
shown that it can be comparable with the damping rate in 
cyclotron-resonance interaction between a wave and a parti- 
cle. 

The influence of a strong electric field on resonances in 
a longitudinal wave propagating along a magnetic field is 
also considered. It is shown that in this case a quasistation- 
ary field appears only when the relativistic motion of the 
particle is taken into account. The characte~of the particle 
interaction with a longitudinal wave in the Cerenkov-reso- 
nance region is practically unchanged by the presence of a 
quasistationary electric field. At the same time, cyclotron- 
resonance interaction can take place between the particle 
and the longitudinal field, something impossible in principal 
in a weak electric field. Allowance for weak relativistic ef- 
fects leads also to the possibility of a specific resonance at 
twice the gyrofrequency in a strong electric field. 

2. BASIC EQUATIONS 

Neglecting quantum and radiation effects, the motion 
of a charged particle is described in the weakly relativistic 
approximation by the equations 

Here m is the particle rest mass and a = 1 - v2/2c2. 
We assume that the electromagnetic field E(r,t) ,  B (r,t) 

can be resolved into slowly varying (quasistationary) 
E,(r,t), B,(r,t) and rapidly varying (high-frequency ) 
(E-  ,B- ) components. The hf field is represented as a super- 
position of noninteracting wave packets 

E w  = (E.ei"+ c.c.), 
l < s < N  

Here N is the number of packets E, (r , t)  and B, ( r , t )  are 
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slowly varying complex amplitudes, and 0, (r , t)  is the fast 
phase (eikonal) of the sth packet. 

The representation of the hf field in the form (2.2) is in 
full agreement with the actual conditions of numerous ap- 
plied problems. The phases 8, are described by the equations 

where 

o, (r, t )  =-d0,/dt, k , ( r ,  t )  =VBs (2.4) 

are respectively the local frequency and the wave vector of 
the sth quasimonochromatic packet. 

The character of the separation of the particle cyclotron 
rotation in the field B ,  depends on the relation between the 
electron-drift velocity in the fields E, and BO, on the one 
hand, and the characteristic particle velocity, on the oth- 
er.I4 In the case of a strong electric field Eo the cyclotron 
gyration of the particle is described with the aid of the equa- 
tion 

dr 
Y = - = eiul ,+vE+v,  ( e ,  cos B,+e, sin 8 , ) .  

at 
(2.5) 

Here v, = c [E,, X el ] /B, is the electric drift velocity 
e ,  = B,/(B,(, e,, e ,  is the basic triad of unit vectors connect- 
ed with the lines of the magnetic field Bo, ull and u, are the 
longitudinal and transverse particle-velocity components, 
and 8, is the gyrophase. 

It is expedient to represent the particle equations of mo- 
tion (21 ), subject to the substitution (2.5) and with account 
taken of (2.2)-(2.4), in the form of a multifrequency (or a 
multiperiod) system: 

The small parameter E was introduced in accordance with 
the approximation of the drift theory of the motion of 
charged particles and of geometric optics for the waves 
(2.2); x = (r,ull ,u, ) is the vector of the slow variable; 
8 = (80,8,,...,8N ) is the vector of the fast variables that con- 
tain the gyrophase and the phase of the wave packets (2.2). 
The frequency vector is o = (o,, v ,,..., vN ), where 
o, = - eBT/mc=Q,r is the cylotron frequency and 
v, = - a, + kSli 011 . 

The right-hand sides of the system (2.6) are the vectors 
f = (v f f, ) and A = (AO,A ,,..., A, ) where v is determined 
by Eq. (2.5) and 

The quantities f, and A, are similar, with the coefficients ai 
replaced by bi and c,, respectively. Let us write down these 
coefficients: 

V.L U.LUll 
b n - - - - [div uO-el ( e , V ) u , ]  + - F,,,, 

2 c2 
1 1 

bi = - - 9 e-u,' - .--- (ioOR-tu,,FoII) vEe-,  
2c2 

"[ iw, a , = - -  4 e - ( e - ~ ) u o + - ( v E e - ~ z ] ,  c2 

1 
b,. = - s { ( F . , + - - [  [k.F,luol )vE+F,u0 }. 

c2 2 0 ,  

1 i L2,uE2 
C O =  - - e i r o t u o - - e - e + ' - -  

2 2 2c" 
ib, iuL 

C i  = - - - e - ( e - V ) e + ,  
u, 4 

ib, 
C 1 = ,  iu,, 

S1., - - 
"l 2c2wo FOB,, 

ib,. 
C'. = - ib,, + a,+e-,  c,. = - - 

UJ. 
+ a&+, 

UL 

ib,, C,, = - ib,. , c , , = - - .  
U l  

( 2 . 7 ~ )  
V l  

Here 

The quantities A, are defined by the equation 

A ~ , - k , v , + 1 / 2 v , k s  [e- csp( iO,)+e+ esp( - iH, ) ]  . (2.8) 

We use in (2.7) and (2.8) the notation 
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A particular case of the system (2.6) is one with a rapid- 
ly rotating phase, first considered by Bogolyubov and Zu- 
barev. l 2  

The system (2.6) with coefficients (2.7) and (2.8) de- 
scribes only the case of quasilongitudinal propagation of 
wave packets relative to the field B,. If their propagation 
direction is arbitrary, the right-hand sides of the system 
(2.6) become much more ~omplicated.'.~ Below consider 
quasilongitudinal wave propagation. 

3. AVERAGED EQUATIONS OF MOTION OF A RESONANT 
PARTICLE IN THE MHD APPROXIMATION 

Averaging the multifrequency system (2.6) means 
smoothing (integration) over all the fast phases contained in 
this system. This operation simplifies substantially the de- 
scription of the particle motion. When there are resonance 
relations between the frequencies, the descritption of the 
motion is made complicated by the fact that a phase combi- 
nation corresponding to resonant combination of the fre- 
quencies cannot be regarded as a fast variable. The space of 
the slow variables is thereby broadened, and it is necessary to 
add to the averaged equations an equation, smoothed over 
the remaining fast phases, for the resonant dephasing. The 
general scheme for averaging the equations of motion of res- 
onance particles was considered in Refs. 1 and 13. It follows 
from (2.6) and (2.7) that in the zerothvorder of the expan- 
sions in the parameter a there can exist Cerenkov and cyclo- 
tron resonances defined respectively by the following rela- 
tions between the frequencies1' 

A resonance is also possible with a frequency ratio 

It can be seen from the general equations (2.6) and (2.7) 
that the resonances (3. la)  are of purely relativistic origin. 

The frequency combinations (3.1 ) and (3. l a )  corre- 
spond respectively to the phase combinations $=0, 
$ = 0, f 0 and $ = 20, _f 0, where 0 is the phase of one of 
the wave packets (2.2). It is assumed that the resonances 
due to particle interactions with individual waves (2.2) do 
not overlapL 

In the Cerenkov-resonance region ( v  zO), the desired 
averaged equations of particle motions are 

In the cyclotron-resonance region ($ = 0, + 0 )  the aver- 
aged motion of a particle is described by the equations 

dv 
2 = a,+ (a4etV-  c.c.) , - - b0+(heiY+c.c.), 

dt  tlt 

In the resonant region at double the gyrofrequency 
($ = 2Bo + 0 )  the averaged motion of the particles is de- 
scribed by the equations 

dr d$ - = u,, - = 2m0+v+ 2co+kvE+ (2c,ei* f c.c.). 
at dt  

The coefficients of Eqs. (3.2)-(3.4) are described by Eqs. 
(2.7) and (2.8) with the subscript s omitted. 

We emphasize that the equations derived are valid for 
quasilongitudinal wave propagation. Equations ( 3.2)-( 3.4) 
are still quite complicated. To show the effects of a strong 
electric field in pure form, we shall simplify to the utmost the 
conditions of the problem. We assume the magnetic field B, 
to be stationary and homogeneous and the electric field Eoil 
to have no longitudinal component, and we neglect relativis- 
tic effects. 

4. INFLUENCE OF STRONG ELECTRIC FIELD ON PARTICLE 
MOTION IN THE CYCLOTRON-RESONANCE REGION 

Consider a linearly polarized wave E- = (jZ?e'p,O,O), 
propagating at a small angle to a magnetic field B, = (O,O,B,) 
in the yz plane: k = (0,ksin a ,  kcos a), tana 4 1. We assume 
E, = (E,,0,0), and then v, = (0, - v,,O). The system (3)  
takes in this case the simpler form 

It is evident hence that in longitudinal wave propagation 
( a  = 0 )  a strong electric field E,, does not influence the cyclo- 
tron resonance at all. For a small angle a (the only case when 
the system (3.3) is valid) the electric drift causes a shift of the 
resonance frequency. The law governing the transverse ener- 
gy of the particle is determined, according to (4.1 ), by the 
approximate equation 

~ ~ ~ = v ~ ~ ~ + ( e 8 / 4 m o ) ~ t ~ [ o - k ( ~ ~ , ,  cos a-UE sin a )  1%. 

We see hence that a strong electric field hardly alters the 
mechanism of cyclotron-resonance interaction of a particle 
with a transverse wave. 

5. POSSIBILITY OF EERENKOV RESONANCE IN A 
TRANSVERSE WAVE WITH ALLOWANCE FOR ELECTRIC 
DRIFT 

We know that cyclotron resonance of a charged particle 
take place in? transverse wave propagating along a magnetic 
field, but no Cerenkov resonance is possible in principle. The 
situation is radically altered if the quasistationary electric 
field is strong. Let us consider, to be specific, a circularly 
polarized wave, such as a whistler mode. 

Interest in whistlers is due both to their major role in a 
number of magnetosphere-plasma phenomena' and in con- 
nection with active experiments being carried out in outer 
space.9 The choice of longitudinal wave propagation is justi- 
fied because under magnetosphere conditions the averaged 
energy flux of whistler signals cannot deviate from the mag- 
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netic field lines by more than 1Y29' (Ref. 6). 
Putting 

Bo=(O, 0, R,), Eo=(Eo, 0, 0), BU=(Bsincp, Bcoscp, O), 
E,=(Zcoscp,8sincp,0),  k--(O,O,k), 

we obtain from (3.2) under the conditions indicated above 

dvll e8kvz -- --- dv, 
COS $, -= 

dt mo dt 
0, 

V 

Hence if follows that Cerenkov resonance is possible in such a 
wave. There is no such resonance without allowance for elec- 
tric drift. Equations (5.1 ) are entirely similar to the thor- 
oughly investigated equations of motion of a resonant particle 
in the field of a finite-amplitude electrostatic w a ~ e . ~ . ~  

Putting 6 = ( 1/2) ($ - ~ / 2 )  we obtain from (5.1) the 
energy integral 

where 

The constant H is the Hamiltonian of Eqs. (5.1 ). The solu- 
tions of (5.2) are 

Here 6" = 6 1 ,  = , and F(6,x) is an elliptic integral of the first 
kind: 

D 

The values of the parameter x determine the trapped 
( x  >. 1 ) and the untrapped ( x  < 1 ) particles. The quantity 7 
characterizes the trapping region and determines the period 
of the nonlinear oscillations of the particle in the wave field. 
The only difference from the case of an electrostatic waveX is 
that different symbols are used for the parameters x and 7, 

which depend in our case on the electric-drift velocity. 
Starting from the kinetic equation for the resonance par- 

ticles: 

one can obtain by a standard procedureH-I the particle distri- 
bution function in the resonance region 

Here dn(6,x) is a Jacobi elliptic function with modulus x. 
The wave damping rate y ( t )  can be calculated by start- 

ing from the energy conservation law 

where j = - e S vfdv is the density of the wave-induced cur- 
rent. The whistler energy density is 

Performing the calculations, we get 
I 

2nn sin (nntlKxT) 
Y (t) = y L  z y 

a ' l f ( * + q 2 n )  

Here q = exp(n-K1/K), K '  = K ( x ) ( l  - x')"~, 
K ( x )  = F(n-/2,x) is a complete elliptic integral of the first 
kind, and y, is the linear absorption coefficient. 

Passage of a whistler through a plasma is accompanied 
9 absorption of the latter, both in cyclotron resonance and in 
Cerenkov resonance, if the electric field is strong. The whis- 
tler absorption coefficient for cyclotron resonance is given by9 

m 

8 0  
y (t) = --%- 

df o df ( I - ? )  ~dsowo3(-+--) u-5 
kZc2 OC o dul l  kw dw ., ,= - k 

where w,, = 4n-e2n/m. 
We consider now the relative contributions of the two 

absorption mechanisms, assuming a Maxwellian particle dis- 
tribution function. It follows then from (5.5) and (5.6) Lhat 
the ratio of the wave damping rates in the cyclotron and Cer- 
enkov resonances is 

where v,, is the thermal velocity of the particles. This shows 
that the two whistler-absorption mechanisms make compara- 
ble contributions at the frequency w = w, /2 corresponding to 
$e maximum phase velocities of these waves6 For w < w, /2 
Cerenkov resonance is the more effective mechanism for 
w > wc/2 cyclotron absorption. 

6. INFLUENCE OF STRONG ELECTRIC FIELD ON 
RESONANCES IN A LONGITUDINAL WAVE 

Under the simplifying assumptions considered in Secs. 4 
and 5, the effects of a strong electric field in resonance interac- 
tion of particles with a longitudinal wave traveling along a 
magnetic field B, are quite weak. They are due entirely to 
relativistic effects. 

Indeed, from thcgeneral averaged equations (3.2) and 
(3.3) we have in the Cerenkov-resonance region 

~ v ~ ~ ~ + u , ~ + u ~ ~  e 

dt 2c2 );~cos', 

dvL - ev,vll 
dt 

8 cos I#, - = - 
mcZ d' dt o+kvll, 

and in the cyclotron-resonance region 
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4, ev.L -=- dv, 8 v .  sin I), &,sin 9, -= - 
at 2cZm dt 2c m 

$ follows from (6.1 ) that the electric drift has little effect on 
Cerenkov resonance in a longitudinal wave. In a sufficiently 
strong field E,, owing to relativistic effects, particle capture 
by aJongitudina1 wave of finite amplitude becomes weaker in 
the Cerenkov-resonance region. This slows down the estab- 
lishment of an ergodic state of the resonance particles. The 
system (6.1 ) leads to the following energy integral in the de- 
phasing space: 

The depth of the potential well is characterized by the quanti- 
ty 

which determines the possibility of particle trapping by the 
wave. 

V 

Damping of a longitudinal wave by the usual Cerenkov- 
resonance mechanism predominates over the cyclotron 
mechanism if relativistic effects are immaterial. Equation 
(6.2) shows that, if electric drift is taken into account, cyclo- 
tron resonance (with a Doppler frequency shift) becomes 
possible in a longitudinal wave of sufficient amplitude. This 
effect is of purely relativistic origin. 

In analogy with Sec. 5, we can calculate also the damping 
rate of a longitudinal wave for cyclotron resonance. The po- 
tential-well depth is in this case 

The resonances 213, , Y Z O  are realized only in a transverse 
wave propagating along the magnetic field. The average mo- 
tion of a charged particle in the resonance region 2w, + v = 0 
is defined by the equations 

dul l  uL2uE e 
-=--- 8 sin $, 
d t  4 c Z u ,  m 

In analogy with the preceding cases, the particle trajec- 
tories in a wave of finite amplitude can be determined by a 
familiar technique.'-'' The trapping of the resonance parti- 
cles is determined by the quantity 

7. CONCLUSION 

The foregoing analysis shows that the character of the 
resonant interaction between a charged particle and a wave is 
substantially alered in a strong quasistationary electric field. 
In particular, Cerenkov resonance becomes possible in a 
transverse wave propagating along a magnetic field, and cy- 
clotron resonance, which is a purely relativistic effect, is pos- 
sible in a longitudinal wave. Of relativistic origin likewise is 
the resonance at twice the gyrofrequency in a transverse wave 
propagating along a magnetic field. 

Compariscn of the damping rates of a transverse wave in 
cyclotron and Cerenkov resonances has shown that the two 
absorption mechanism are comparable. A similar conclusion 
holds also for a longitudinal wave in the case of an electric 
drift of sufficiently high velocity. 
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