
Low-frequency conductivity of a plasma in a stochastic magnetic field 
Yu. F. Baranov and A. D. Piliya 

Ioffe Physicotechnical Institute, USSR Academy ofsciences 
(Submitted 7 July 1988) 
Zh. Eksp. Teor. Fiz. 95,514-527 (February 1989) 

The low-frequency longitudinal-conductivity operator for a plasma in a stochastic magnetic field 
is obtained in a linear approximation. It is shown that the connection between the electric field 
and the current is essentially nonlocal. Models of a stochastic magnetic field in unbounded space 
and in a bounded layer are considered. They are used to obtain expressions for the plasma 
conductivity in the low-collision-frequency regime. A procedure for renormalizing the 
conductivity is introduced. The expressions obtained for the conductivity operator are used to 
determine the penetration of a field E and of a current j, applied externally, into a plasma. It is 
shown that the E (x,t) and j (x,t) distributions in a plasma with a stochastic magnetic field can 
differ greatly from the corresponding distribution in the case of the classical skin effect. 

1. INTRODUCTION 

One characteristic feature of a plasma confined by a 
magnetic field is its anomalously high thermal conductivity, 
which suggests that the electrons may straggle randomly 
through the confining field. This straggling is characterized 
by a diffusion coefficient of the order of the electron thermal 
diffusivity x. During the time Y '  of an electron-ion colli- 
sion the electron is displaced a distance of order 1 = (x/  
Y )  ' I 2 .  Clearly, at such distances the connection of the low- 
frequency (w < v )  field with the current is nonlocal. More- 
over, anomalous mobility decreases the magnetization of the 
electrons and increases thereby their contribution to the 
transverse components of the dielectric tensor. These effects 
can manifest themselves in time-dependent processes, in 
which strongly inhomogeneous fields can be generated, such 
as in the onset of MHD instabilities in a plasma, in experi- 
ments on rapid increase of the current,Is2 etc. 

It is assumed in the present paper that the cause of the 
random straying of electrons across the confining field is 
stochastic destruction of magnetic surfaces. In other words, 
we assume the magnetic field in which the plasma is located 
to have a random component 6B that leads to spatial diffu- 
sion of the force lines," and consider quasistationary fields 
in such a medium. In the linear approximation, these fields 
are described by the equations 

1 aBM 
rotEM=--- rot BM = - 4n; j", 

c d t  ' c 
div jM=O, jM=6"EM, 

where the superscript "M" labels microscopic (non-aver- 
aged) quantities. The operator 8" depends on SB and is 
consequently stochastic. We assume that the spatial in- 
homogeneity of the medium (transverse to the average mag- 
netic field), which is connected with this dependence, is mi- 
croscopic: our aim is to derive equations for the macroscopic 
fields E and B, i.e., the fields averaged over a physical infini- 
tesimal volume. Under the usual ergodicity assumptions this 
averaging is equivalent to a statistical one, so that 

E=(E">,, ~=<O"E">~,  E"=E+GE, ( 2 )  

averaging Eq. (1 ). To close them we must express j as a 
functional of E. If the microscopic Ohm's law is linear this 
functional is also linear: j = BE, where 8 is some new opera- 
tor. Our aim in the present paper is to calculate the renor- 
malized (macroscopic) conductivity Gin the low-frequency 
limit w < Y. By way of illustration, we consider the skin effect 
in a plasma placed in a magnetic field with weakly disturbed 
surfaces. 

2. MODEL OF STOCHASTIC MAGNETIC FIELD 

We formulate as a preliminary the basic assumptions 
concerning the statistical properties of the magnetic field in 
which the plasma is placed. In the case of an infinite medi- 
um, we represent B by 

B (r) =Bo+6B (r) , (3  

where B, is a constant vector along the z axis and SB(r) is a 
random vector in the xy plane; it is assumed for the time 
being that B is independent of time. We shall assume the 
random field SB to be statistically uniform and isotropic; it is 
then characterized by two correlation lengths, transverse 6, 
and longitudinal ail . For tokamaks it is customary to use the 
estimate all -qR,, where q is the safety factor and R, is the 
major radius of the tokamak, i.e., SII - lo3 cm. The value 
assumed for 6, in theoretical papers is of order c/w,, -0.1 
cm (Refs. 3 and 4), where w,, is the plasma frequency. Ac- 
cording to 6, -0.1 - 1 cm. 

It is phenomenologically convenient to express the field 
lines of the random field ( 3 )  in Lagrangian variables, with 
the coordinates x and y of the point r of a certain line regard- 
ed as a random function of the length s of an arc of this line, 
measured from an arbitrary initial point. We shall need be- 
low the distribution functions of the coordinates x' (s') and 
y1(s') of the points of a field line passing through a fixed 
stationary point r(s),  i.e., the conditional probability den- 
sity W7(r', sl/r,s). In accord with the assumptions made con- 
cerning the statistical properties of the magnetic field, we 
have 

where ( ), denotes ensemble-averaging of realizations of the where A, = r; - r, , A = s' - s. For / A  I ~ 6 ,  the field lines 
random field SB. The desired equations are obtained by diffuse, i.e., 
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where Dm is the diffusion coefficient of the field lines. (The 
condition Dm # O  can serve as a definition of the stochasti- 
city of the field). In a tokamak plasma under quiescent con- 
ditions, Dm - 10-4-10-7 cm.6,9 Henceforth we assume SII to 
be the shortest of the characteristic longitudinal lengths, i.e., 
we use in fact the limit SIl = 0 and correspondingly always 
use for Wo its asymptotic value (5).  

An important property of a stochastic field is an expo- 
nential divergence of the field lines. The corresponding 
length L,  depends on the intensity ISB /B l 2  of the magnetic 
fluctuations. In the magnetic-turbulence case which we have 
in mind6 we have L, )SII. 

In addition to an unbounded medium we consider also a 
stochastic layer-a situation in which the field lines diffuse 
only in the region O(x<a, outside of which Dm = 0. (Simi- 
lar layers are produced, for example, when magnetic islands 
overlap). There is at present no information that permits the 
form of the function W(x1,s'/x,s) to be determined for this 
case [it is assumed that the distribution of y' is given as be- 
fore by Eq. (5)].  Some general properties of this function 
can, however, be indicated. For small A, such that 
Dm 1 A1 ga2, the field line should diffuse "freely," and Dm 
can be a function of x. In the opposite limit, Dm I A I )a2, the 
probability distribution should tend to a certain limiting 
function independent of x' and s'. 

We use for W(x1,s'/x,s) a model function satisfying the 
conditions 

+m 

where Wo is defined by Eq. (5), OGx, and xl(a. If A is small, 
only the first term with n = 0 in the first addend is signifi- 
cant; as A + co , W tends to the limit l/a inside the layer. This 
means that the force lines fill the layer ergodically. 

The function (6)  describes the model of a layer in which 
the statistical properties of the field SB are the same as as- 
sumed above for an unbounded medium, but any force line 
that reaches the layer boundary x' = 0 or x' = a is specularly 
reflected from it in the xz plane. 

Stochastic magnetic fields can be produced by superim- 
posing on the regular component stationary perturbation 
from external sources (as in the case of a stochastic magnetic 
diaphragm). In this case SB(r) is independent of time. A 
different situation is realized when the field component SB is 
the result of development of low-frequency turbulence and is 
a random function of the time. A broad spectrum (from lo3 
to lo6 Hz) of magnetic-field fluctuations is observed in 
many experiments. The role of the oscillation depends sub- 
stantially on whether the plasma motion that accompanies 
them is frozen-in or not. In the former case the oscillations 
do not change the topology of the field lines, i.e., from the 
phenomenological viewpoint they do not alter the realiza- 
tion of the random magnetic field, but cause only some "wig- 
gling" of this realization. More significant are oscillations 
for which the freezing-in condition is not met, since they lead 
to a restructuring of the magnetic field. In first order, taking 
only this process into account, we can assume that the char- 

acteristic frequencies fl, of SB are bounded by the condition 

i.e., fl, SY.  For stationary turbulence, Eqs. (4) and (5 )  
remain in effect also if SB = SB(t). Noted that the familiar 
difficulty raised by the impossibility of uniquely describing 
the field-line motion in time-dependent fields does not arise 
in this case, since we always have in mind a field line passing 
through a certain fixed point r. 

Let us assess now the character of the electron motion 
in a stochastic field for large mean free paths R > SII . At each 
instant of time the electron moves practically along a mag- 
netic field line, but undergoes a slow displacement S( t )  in a 
direction perpendicular to the field B. This displacement can 
be due to collisions or drift, but is assumed to be slow enough 
to neglect its direct contribution to the drift across the mag- 
netic field B,. The time interval to during which the displace- 
ment remains small compared with S, can be called the life- 
time of the particle on the field line. When to is determined, 
account must be taken of the exponential enhancement of 
the transverse displacement by the stochastic divergence of 
the field lines; to can then be estimated from the relation 

where L l l  ( t )  is the characteristic value of the particle dis- 
placement along the line during a time t. For vt,) 1, the 
longitudinal motion has the character of longitudinal diffu- 
sion and L ( t )  = ( D  I I  t )  l t 2 ,  with a longitudinal diffusion co- 
efficient D = v, 2/v. We have then to within a logarithmic 
factor 

An important role is played in what follows by the sta- 
tistical characteristics of the particle trajectories R (t,r) that 
pass through a fixed point r a t  an instant of time t = 0. In an 
approximation in which the Larmor radius is zero, it can be 
assumed, if vt0% 1 that over times short compared with to the 
particle moves along a field line, i.e., 

R ( t ,  r )  =r' [s f  ( t ) ]  , s l = s + A  ( t )  , A ( 0 )  =0. (9)  

If ISBJ g IBoI the influence of the inhomogeneity of the field 
( 3  ) on the longitudinal motion can be neglected. The parti- 
cle displacement A ( t )  along the field line is then determined 
only by its longitudinal velocity v(t) (with collisions taken 
into account), but is independent of SB. 

The sign of the longitudinal electron velocity is reversed 
many times by collisions over a time of order to. The trajec- 
tories (9)  pass therefore many times through a region of 
space in which the values of SB are statistically correlated. 
This regime was first considered by Rosenbluth and Reches- 
ter.' It must be assumed in this regime that fl, to < 1, since 
the change of the magnetic field itself can impose a limit on 
to. 

As the mean free path R increases, the coupling of the 
electron to a definite field line decreases; in the limit R % L,  a 
move of the particle from one line to another can cause prac- 
tically the entire trajectory to pass through field regions that 
are statistically independent of one another. Yet the correla- 
tion between the longitudinal and transverse motions is pre- 
served here: since we have SII <A, the transverse (to the 
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mean field B,) displacement of the particle constitutes 
diffusion with an instantaneous diffusion coefficient 
D, ( t )  = Dm Iv(t) 1, where v(t) is the longitudinal velocity. 
The statistical trajectory characteristics that follow from 
such a picture can be adequately described by the following 
model: the electron moves strictly along a field line, but its 
displacement formally has the form 

I 

~ ( t ) = s i g n [ v ( 0 ) ]  j l v ( t l )  ldt'. (10) 
0 

Since the integral contains the absolute value of the velocity, 
the particle does not return after stopping (after v becomes 
equal to zero) along its preceding path but, moving in the 
same direction as before, reaches the next section of the field 
line, an event statistically indistinguishable from a move to 
"another" field line in real motion. It is readily verified that 
the expression given above for D, ( t )  also holds in this mod- 
el. 

3. LOW-FREQUENCY LONGITUDINAL CONDUCTIVITY OF A 
PLASMA IN A STOCHASTIC MAGNETIC FIELD 

We proceed now directly to calculate the plasma con- 
ductivity and consider first the part a, due to the electron 
contribution. In a sufficiently strong field it can be assumed 
that 

the subscript "e" of j, will be omitted, since the ion contri- 
bution to this current component can be neglected. We have 
here 

At long mean free paths, A $SII ,  it is tempting to represent, 
jll by a path integral. This can be done by neglecting elec- 
tron-electron collisions. In this case the electrons do not 
interact with one another, and the collisions with ions can be 
regarded as motion in specified random external field. We 
assume initially that the magnetic field SB is stationary and 
that the time dependence of E and j is given by 

E=E ( r )  exp ( - i o t )  , j=j ( r )  exp ( - i d ) .  (13) 

We can then write in the zero-Larmor-radius approxima- 
tion, assuming a Maxwellian electron distribution in the ini- 
tial velocities, 

x 

o p e 2  
jlln' ( r )  = - (I ~ ( ~ ) ~ ( t ) ~ , " ~ ~ ( I ) ] e x ~ ( i o t ) d t )  , (14) 

4nuTe P 

where v(t) = R ( t ) ~  = bEM , and ( ), denotes averag- 
ing over the electron initial velocities and over the variables 
that determine the ion configurations. 

When relation (9)  is valid, Eq. ( 14) can be expressed as 
an integral along a field line: 

+ m 

where 

OD 

u p :  
o l  ( s - s f )  = -- 5 ( v  (0) ~ ( t )  6 ( s - s t -A ( t )  ) )p  exp( iu t )  dt,  

4nvT: 

(16) 
or equivalently, 

+ m 

illM ( s )  = .I 01 ( q )  ( 9 )  erp ( iqs)  dq, 
- w  

(17) 

where Ell is the Fourier component of the field with re- 
spect to the variable s. 

We consider ( 17) first for vt,% 1. Clearly, all ( q )  is here 
the usual longitudinal conductivity of a plasma in a uniform 
magnetic field with o g v ,  and the expression for it is well 
known: 

where p = - iw; we have introduced this quantity with an 
aim of using later a Laplace transformation. To obtain this 
expression in the context of the proposed approach we de- 
scribe, following Ref. 10, the electron-ion collisions by a 
Brownian-motion model. Here v(t) is a normal Markov pro- 
cess with a correlation function" 

where v is a constant having the meaning of the electron- 
collision frequency. Just as any linear function of a normal 
function, A ( t )  is a normal function of t, with 

Taking ( 18) into account, we express the longitudinal con- 
ductivity in the form 

x exp ( -p t )  dt, (22) 

and, using the relation 

which is valid for any normal random quantity, we obtain 
(19) in thelimitpgv. 

Returning to expression ( 12) for j, , we recall that it is 
not yet possible to average in it over an ensemble of SB real- 
izations, since SB governs not only the trajectories r1 [ s ' ( t )  ] 
whose statistical properties are assumed known, but also the 
field E I I  in ( 15). To exclude a random electric-field com- 
ponent, we note that the principal mechanism that generates 
this component is variation ofjll along a field line. Conse- 
quently div jll # O  and the current flow is accompanied by 
charge separation and by the onset of a small-scale electro- 
static potential. At low frequencies, the solenoidal part SE of 
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the small-scale fluctuating field is negligible compared with 
the electrostatic part. Thus, 

To exclude the potential field component we use the plasma 
quasineutrality condition 

, -- 

a2q(s') dS, 
div jLM ( T )  - j ull (s-s') -- 

- m 
ds" 

The current component j ,  M ,  to which the electrons make a 
negligible contribution, depends substantially on the trans- 
verse (to B )  scale of variation of the potential. To estimate 
this scale, we examine in greater detail the right-hand side of 
( 2 5 ) ,  which serves in this equation as a source and can alter- 
natively be written in the formpp, ( E  ), wherep, (E  I I  ) is the 
density of the electron charge produced by the field E . It is 
easily shown that 

i.e., p, ( E  ) is a purely fluctuating quantity. It is evident 
from ( 2 5 )  that the value ofp, ( E l l  ) at this point is deter- 
mined by an integral along the field line passing through it. 
The values of p, ( E l l  ) at two nearby points on the xy plane 
will therefore differ greatly if the corresponding field lines 
are not correlated on an appreciable part of their effective 
length that contributes to the integral. This takes place, in 
view of the divergence of the field lines, when the distance 
between the points is still small compared with 6, .  For 
wto- 1 the scale of variation of p e ( E )  and hence also the 
potential is equal to do in ( 8 ) .  Since d&S, and S, , as indi- 
cated, has a value -0.1 cm, i.e., close to or less than the 
typical ion Larmor radius ri  in a hot plasma, we shall assume 
that do < r ,  . The ion motion across the magnetic field B  is 
thus found to be magnetized, and assuming for simplicity a 
Maxwellian ion distribution function we can take the ion 
density to be a Boltzmann distribution, i.e., 

where pi is the perturbed charge density and di = v,/wPi is 
the ion Debye radius. Substituting this result in ( 2 5 )  we 
obtain an integral equation that relates the potential at the 
point r  to its values on a field line passing through this point. 
This equation is solved using a Fourier expansion in the vari- 
able s. The result is 

Using this result, we can, by virtue of ( 2 4 ) ,  express E r ( q )  
in terms of the Fourier transform of the mean field E ( q ) .  
Substituting the resultant expression in ( 17 )  we get 

il?(s) = j~~~ (V-)U~F(~) exp(iqs) dq. ( 2 8 )  

ill" (s) = 1 0:" (s-sl)Bll (s') ds', ( 2 9 )  

where the renormalized quantities p r ( q )  and y ( s )  differ 
from the unrenormalized ones in ( 19)  by the substitutions 

v& - v$, v$ = ( T, + Ti ) / m e .  In the calculation of the con- 
ductivity tensor we confine ourselves to the component 
a, =a, which is needed to solve the skin-effect problem. We 
shall assume that E ( r )  = E ( x ) .  We obtain the current com- 
ponent j, ( x )  by averaging ( 12 )  in which we put b, = 1, and 
by using expression ( 2 9 ) .  The latter depends on SB only via 
the function r1 (s ' ) ,  so that the average ( ), is effected with 
the aid of the distribution function (4)  or ( 8 ) .  The result is 

+ m  

j (x) = j u (x, x') E (xf) ax', ( 3 0 )  
- m 

+ m 

For an unbounded medium we have 

P'" o(x, x') =om (x-x') = u0 -- exp(-P" Ix-x' 1 ), ( 3 2 )  
2 

+ m  

(k) = Sum (z) exp(-ikx) dz=oo/(l+k2/P/B), ( 3 3 )  
-.I 

where 

$= (vp) "'IDmvT, U ~ - W ~ , ~ / ~ ~ V .  

In the case of a stochastic layer of thickness a we have 

We proceed now to the case of extremely large mean 
free paths A  > L, . If the field SB is independent of time as 
before, the preceding expressions remain in force, but the 
explicit form of the function all (q )  is altered, since A ( t )  in 
( 1 8 )  is now given by ( 1 0 ) .  For w < v  we can put w  = 0  in 
( 18 ) .  Describing the collisions again by the Brownian-mo- 
tion model ( 2 0 )  and putting v ( t )  = v, u ( v t ) ,  where u (7 )  is 
a normal random function for which 

we obtain 

(the average in ( 3 6 )  is over the ensemble of realizations of 
the function u ) .  It can be shown that f ( z )  C C Z - ~ ' ~  for Z> 1 .  
Thus averaging the field along the electron trajectory cuts 
off the contribution of the Fourier components with q  > A - ' . 
We shall not analyze this case in greater detail, since in the 
A >  L, regime we can consider the more realistic situation 
SB = S B ( t ) .  If the magnetic field varies with time, particles 
with different prior histories will pass through a fixed point r  
at different instants, and the current will fluctuate. The char- 
acteristic frequency R of these fluctuations becomes higher 
than the frequency R, , owing to the stochastic instability of 
the force lines, in exactly the same way manner in which the 
spatial scale of the p,  fluctuations decreases compared with 
6, : it is easy to obtain the estimate R - RB exp ( - A /L ,  ) . It 
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is natural to assume that n%w,  and then the characteristic 
frequency of the purely fluctuating quantities in p, and e, 
will equal a .  Taking this into account, we can estimate the 
term in the left-hand side of the quasineutrality equation 
(25) in the Fourier representation: 

(div j,") ,-Qcp ( q )  / 4 1 r d , ~ ,  

It follows hence that the electronic term prevails over the 
ionic if (qA12 > Sl/v. Thus, if f l >  v the quasineutrality is 
maintained by ion displacement over the entire range of q, 
which determines the current density according to (35) and 
( 3 6 ) .  Since Cl is exponentially large compared with Sl, and 
RE - v, it can be assumed that the condition Ct $ v is met for 
A > L, . This means that the contribution of the electrostatic 
part of the field to the current jr can be neglected, i.e., it is 
possible to replace E f; by E,, in ( 15 ) and ( 17). 

From the pattern of the particle motion at A > Lk it can 
be concluded that j, = ( j f ; l ) ,  will have the same form in the 
case of a stationary magnetic field as when S1, #O. 

In the calculation of a(x,xf ) it is convenient to carry out 
the average ( 15) in accordance with (3  1 ) . In the case of an 
infinite medium we obtain in this case for 

om ( k )  = o. (z) exp ( - i k x )  dx ,  

the values 

om ( k )  =onF ( k 2 D m k ) ,  
m 

In the limiting cases of large and small z, the function F(z)  
takes the form 

It can be approximated for all z, accurate to about 20%, by 
the expression 

F (s) = ( I +  ( n / 2 ) I h z ) - I ,  (40) 

which leads to the same om ( k )  dependence as in the Ro- 
senbluth-Rechester regime [Eq. (33) 1. In the coordinate 
representation we obtain then for o, (x  - x ' )  the express- 
sion (32) with f l  given by 

For a stochastic layer with A > Lk the relation (34) between 
a(x,xf) and a, (x  - x') remains in force. 

It must be noted that expressions (38)-(40) were ob- 
tained in a model in which a direct correlation exists between 
the transverse and longitudinal motion of the particle, 
so that the instantaneous diffusion coefficient is 
D, = Dm Iv(t) 1. In the other limiting case when the trans- 
verse motion constitutes diffusion that is completely inde- 
pendent of the longitudinal velocity, we obtain the relation 
(33) (where Dm u ,  must be replaced by the test-particle dif- 

fusion coefficient, which can be set equal to the thermal dif- 
fusivity x, so that /? = v/x). This circumstance indicates 
that the longitudinal conductivity has apparently a weak de- 
pendence on the specific anomalous electron-transport 
mechanism. At the same time, the specific dependence of the 
conductivity on v andp in the Rosenbluth-Rechester regime 
is in fact a feature of the stochastic-magnetic-field model. 

4. SKIN EFFECT 

As an example of the application of the results, we con- 
sider (in the model formulation) the skin effect in a plasma 
situated in a weakly stochastic magnetic field. Assume that a 
homogeneous plasma occupies the half-space x > 0 and 
borders on a vacuum at x = 0. We seek an electric field 
E(x,t)  that satisfies the boundary condition E(0,t) = W,(t) 
at t > 0 and E(x,t)  -0 as x -  UJ, and the initial conditions 
E(x,O) = 0 and f(x,O) = 0. 

It is convenient to solve the problem by Laplace trans- 
formation with respect to time. For the Laplace transform of 
the electric field E(x,p) we obtain the equation 

We consider first the case when the magnetic field is stochas- 
tic in the entire plasma volume. Expression (30) for f(x,p) 
cannot be used directly, since it was derived for an unbound- 
ed medium. Assume that the fact that the plasma is bounded 
in space can be taken into account by simply integrating in 
(30) not between infinite limits but over the region occupied 
by the plasma. (This assumption is analogous to the model 
of diffusive reflection of the particles from the surface in the 
theory of the anomalous skin effect in a solidx; as applied to a 
plasma, this can be interpreted as the ideal-recycling hy- 
pothesis.) Equation (4)  then takes the form 

a%($, P )  - b1B"' j 
exp (-B'" I x-x' I ) E ( x r ,  p )  h', (42) 

ax2 o 

where 

This equation has a solution that satisfies the boundary con- 
ditions E(x,p) -0 as x -  UJ and E(0,p) = E,(p), where 
E,(p) is the Laplace transform of E,( t)  , in the form 

E ( x ,  P )  = [Ci exp ( k , x )  f Cz exp ( k 2 x )  ] E, ( p )  ; (43) 

here k ,,, are the roots of the dispersive equation 

that satisfies the condition Re k < 0, and 

For the current density we have from (41 ) 

1 
j  ( x ,  p )  = - [Ciki2  exp ( k , x )  +C2kZ2 exp ( k 2 x )  ljo ( P I ,  (45) 

P 

where 

in ( P )  =c2En ( p )  I h D ,  

is the current density in the field E,,(p) for classical conduc- 
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tivity. Note that for p = - iw expressions (43) and (45) 
describe the form of the field and of the current for the har- 
monic function Eo(r) = Eo exp ( - iwr). 

Let us consider the solution (43) and (45) in the Ro- 
senbluth-Rechester regime, when b= (vp) " 2 / ~ m  uT. We 
introduce in (43 ) and (45), and in the Laplace integrals that 
determine E(x,t) andj(x,t) from the transforms E(x,p) and 
f (x,p ) , the dimensionless variables 

where 

It is easy to verify that in terms of these variables Eq. (42) 
and the functions E({,p) and E(6,r) contain no parameters 
whatever indicative of the properties of the medium. The 
transition to the classical conductivity with Dm + O  is there- 
fore effected by taking the limits (+ co and T- co; this 
means that even for finite Dm the distributions of j  and E for 
T% 1 and () 1 will have classical forms, and will, in particu- 
lar, be functions of a single variable { '/r = x2/D, t that does 
not contain the parameters Dm.  Figure 1 shows plots of 
E({,r)/Eo and j((,r)/jo for several fixed values of T, ob- 

tained numerically using inverse Laplace transformation for 
Eo(r) in the form of a step function (E0(7) = 0 for 7 < 0 and 
Eo(r )  for r > 0). It can be seen that E and j are negative in 
some regions of space; this singularity is attributed to an 
inductive effect when J and E are related nonlocally. For 
small r the current distribution is flatter than classical, so 
that during the initial stage of current penetration into the 
plasma is accelerated. The total current flowing in the plas- 
ma, however, is found to be even smaller than classical, as 
can be seen from Fig. 2, which shows the function 

m 

~ ( r )  = J j  (E, d ~ .  
0 

As T+ the function I(T) takes the asymptotic form 

It can be seen that the limiting value corresponding to the 
normal skin effect (which is described by the first term) is 
reached very slowly. Note also that for { = 0 and as T- 

the current density tends to the limiting value E000/2. The 
factor 1/2 is the result of the influence of the boundary under 
conditions when it is reached by any field line coming from 

FIG. 1. Spatial distribution of the field E ( ( ) / E ,  ( a )  
and of the current density j({)/j, (b) in the II < L, 
regime for several fixed values of .r: 1-r = 0.01; 2- 
0.1; 3-1; W; 5-16. 
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the interior of the plasma. It must, of course, be remembered 
that all the foregoing results are valid only for times not 
exceeding the electron lifetime to on the line. If, however, the 
distributions of the fields and currents become "classical" 
within the time to, i.e., T <  to, it can be assumed that they 
describe the entire process, and then L 5 Dm Lk . 

In the case of extemely long mean free paths R > Lk the 
solution of Eq. (42) can also be recast in universal form 
(independent of the parameters of the medium) by the vari- 
able change (46), but with different values of the character- 
istic scales: L = (7r/2) 1 ' 2 ~ , R ,  T = L ' /Ds .  The values of 
these scales for Dm = lop5 cm and a plasma density lOI3 
cm-3 are equal to L = 5.2 cm and T = 0.78 s for a tempera- 
ture 1 keV and L = 10.4 cm and T = 8.9 s for a temperature 
5 keV. Note also that in the discussed case R  > Lk there is no 
upper limit on the times of these processes. 

We consider now an example in which the stochastic 
magnetic field exists only in a layer 0 < x <a,  but forx > a the 
plasma conductivity is classical. We describe the stochastic 
layer by the model (6).  We have then in Eq. (41 ) 

where o(x,xl) is determined by Eqs. (34) and (32). The 
function E(x,p) should satisfy the boundary conditions 
E(x,p) -0 as x- w and E(0,p) = E,(p), and must be con- 
tinuous together with its derivative at x = a. Outside the 
stochastic layer, x > a, Eq. (41 ) has a solution that decreases 
as x- W ,  in the form 

where C(p) is determined from the condition that the solu- 
tion be continuous on going through the boundary x = a. 

The problem for the layer O(x<a can be reduced to a 
problem for infinite space by noting that 

where the function &(xl,p) was obtained by continuing 
E(x,p) from the segment O<x<a on the entire x axis in ac- 
cordance with the rule 

E (5, p )  =E(x, p ) ,  O<x<a, 

E (AX, p )  =E (x, p ) ,  -a<x<O, 

FIG. 2. Time dependence of the excited current I(T) = J:j(g)d& 1- 
conductivity in a stochastic magnetic field, 2-classical conductivity. 

E(X + 2nag) = ~ ( x , p ) ,  n is any integer. The derivative of 
E(X,P) has finite discontinuities at x = nu whose magnitudes 
are determined from the boundary conditions. Using this 
and the periodicity of the function ~ ( x , p ) ,  we write for this 
function the equation 

where 

6 ( x )  = cos (k ,nx)  

is the periodic analog of the S function, k, = r/a,  and A(p) 
and B(p) are amplitudes determined by the boundary condi- 
tions. It is seen from (52) that &(x,p) can be represented by 
the Fourier series 

Substituting this expression in (52) and taking (53) into 
account, we obtain 

cos (konx) 
(.' ')= ' b:n2+4npum (kon)lC ' 

,I=-m 

Taking into account the explicit form (33) of the conductiv- 
ity a, (k) ,  we can sum the series and obtain 

here x ,  = k,/k,, where the k, are solutions of Eq. (44). 
To calculate E(x,p) in the entire range O<x< w we use 

the boundary conditions on the surfaces x = 0 and x = a to 
obtain the amplitudes A(p) and B(p) from (56), and C(p) 
from (50). The functionj(x,p) is determined from Eqs. (41 ) 
and (49). The current density j(x,t) and the field E(x,t) are 
obtained by inverse Laplace transformations using the trans- 
forms j(x,p) and E(x,p). 

By way of example we consider a case with the field on 
the boundary assumed to be the step function Eo(r). Figures 
3a and 3b show respectively the numerically calculated dis- 
tributions of the field and of the current density in the Ro- 
senbluth-Rechester regime with 6 > 0 for several fixed in- 
stants of time. The width of the stochastic layer is assumed to 
beL ( l 0 = a / L  = 1). 

It is seen from Fig. 3a that in addition to the skin-effect 
(i.e., the field attenuation along the 6 axis), there exist re- 
gions where E(6,r)/Eo becomes negative. These spaces exist 
also in the Spitzer-conductivity region {>go. The current 
density distribution inside the stochastic layer (Fig. 3b) 
differs noticeably from the field distribution E(6,r).  Equal- 
ization ofj(6)  sets in after a time r-0.1 and is followed by 
increase of the overall level to a value j,. A characteristic 
feature of the pattern is the presence of a discontinuity ofj  on 
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the surface 6 = lo. Figure 3b (curve 8) also shows for com- 
parison the j(l) distribution in a plasma with Spitzer con- 
ductivity in the absence of a stochastic layer. 

Turning to the A >  L, regime, we note that the depen- 
dences of E and j on the variables and r are qualitatively 
quite similar to those of the case A <L, . The numerical val- 
ues of the nondimensionalizing parameters can differ greatly 
in these two regimes. 

In closing, the authors thank E. Z. Gusakov and V. I. 
Fedorov for numerous discussions and helpful advice. 
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