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Internal instabilities of the plasma of a diffuse pinch result from the acceleration of the plasma in 
the course of its compression and the expansion of the current channel. The spectra of the growth 
rates u, ,~  of the hydromagnetic instabilities responsible for the disruption of the initial 
cylindrical symmetry during compression are calculated. For a 2-pinch with a Gaussian density 
profile, the major instabilities in the course of the compression are the small-scale sausage and 
kink instabilities with kR ) 1 (R is a typical radius of the pinch). Superimposed on these small- 
scale instabilities is a filamentation instability with m % 1, which develops more slowly. If the 
density instead has a power-law profile, the filamentation instabilities will develop more rapidly 
than the sausage and kink instabilities. Dynamic stabilization of a pinch by a longitudinal 
magnetic field makes it possible to maintain symmetry up to radial compressions of the plasma 
significantly higher than in the absence of a field. A numerical solution of the problem of the 
instability evolution shows that the error of the method used is at most 5%. The method can be 
applied to a long list of problems involving the stability of fast plasma motions. 

1. INTRODUCTION of a Z-pinch by a comparatively weak longitudinal magnetic 

Research on the hydrodynamics of fast plasma mo- 
tions, primarily implosions ("cumulative processes"), is im- 
portant for a long list of applications, including problems in 
inertial fusion, in the development of sources of intense opti- 
cal and neutron radiation, and for studying pinch and liner 
systems. Research on the stability of the plasma motion 
plays a key role here, determining in particular the maxi- 
mum compression which can be achieved while the original 
spherical or cylindrical symmetry is preserved, since it is this 
stage of the motion which is the most important for most 
applications. The theory of the stability of equilibrium plas- 
ma configurations which has been devel~ped',~ cannot be 
applied directly to these problems since the stage in which 
the plasma undergoes acceleration makes a significant, 
usually dominant, contribution to the evolution of instabili- 
ties. Because of this circumstance, the final equilibrium state 
of the plasma which is the object of the stability estimates 
made by the conventional methods may not be reached at all. 

The theory of the dynamic stability of plasmas has been 
developed to a far lesser extent. Several exact analytic solu- 
tions are available for problems concerning the stability of a 
self-similar motion. These solutions have been derived for 
certain special cases in which it is possible to separate vari- 
ables in the perturbation  equation^.^-^ Most of the other re- 
sults concern idealized models of a plane slab6-' or an infi- 
nitely thin shell9; alternatively, they come from numerical 
calculations on the evolution of initial perturbations for spe- 
cific situations. ' 

In the present paper we propose, and derive a theory 
for, a general apprach to research on the dynamic stability of 
fast plasma motions in the linear stage of instabilities. We 
illustrate it in the particular example of the compression sta- 
bility in a diffuse Z-pinch with a longitudinal external mag- 
netic field. We derive explicit analytic expressions for the 
spectra of the hydromagnetic instabilities of diffuse pinches. 
These expressions yield interpretations of some effects seen 
experimentally: the plasma filamentation in compressing 
pinches and the dynamic stabilization of the current channel 

2. DISPERSION RELATION AND ENERGY PRINCIPLE FOR AN 
ACCELERATED PLASMA 

The plasma implosion process in a pulsed system is al- 
ways unstable in the sense that small perturbations of hydro- 
dynamic variables grow during the compression. Instabili- 
ties develop in the course of the acceleration, and often 
during the deceleraton, of the plasma, because of a force 
which is exerted on the plasma by the "lighter fluid." This 
situation is seen in a long list of problems: in the compression 
of shells by the pressure of a plasma corona in laser fusion, in 
the compression of a low-density fuel by a shell, in the com- 
pression of a current channel in a pinch by the pressure of the 
self-magnetic field of the current, in the deceleration of a 
hollow cylindrical liner during magnetic flux compres~ion,'~ 
etc. If this force is concentrated on a certain boundary, the 
stage is clearly set for the onset of a Rayleigh-Taylor instabil- 
ity; in the more general case ofa distributed force, the stage is 
set for a convective (interchange) instability. 

We will be discussing pulsed systems for which the in- 
stability rise time is limited by, for example, the plasma com- 
pression time r. If the instabilities grow at a pace slow 
enough that their typical rise rate satisfies u 5 r-', the dis- 
ruption of the symmetry of the flow by the instability will not 
exceed a certain permissible level, and the flow may be called 
"dynamically stable." 

We will restrict the discussion to the fastest instabilities, 
the convective hydrodynamic or MHD instabilities of a 
moving plasma, which in many cases determine the limits on 
symmetric compression of the system. To describe the un- 
perturbed motion of the plasma we use the equations of ideal 
MHD. We wish to stress that the method which we are pro- 
posing here for studying dynamic stability has a wider range 
of applicability; it can be generalized directly to incorporate 
radiative loss, dissipation, etc. 

We start from the equations of ideal MHD in the form 
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wherep ,~ ,  u, and yare the density, pressure, mass velocity, 
and adiabtic index, respectively, of the plasma, and B is the 
magnetic field. So that we can illustrate the results in the 
examples of plasma compression in pinches, we will assume 
that the unperturbed motion is cylindrically symmetric. 
Only the radial component of the velocity, u,,  is then non- 
zero, and p, p, u,, B,, and B, depend on r and t alone. 

The equations for the small perturbations p', p', u', and 
B' (of the density, pressure, velocity, and magnetic field, 
respectively) are 

dB' -- 
at  

[V[uB'lI=[V[u'BlI, (6) 

In Sec. 5 below we will examine solutions of the com- 
plete system of equations, (5)-(8). At this point we note 
that by virtue of our comments above, dynamic stability can 
be disrupted only by perturbations for which the growth rate 
a is large in comparison with 7-' - u/R, where R is a char- 
acteristic radius of the compressing plasma, and u is a char- 
acteristic radial velocity. For such perturbations we can ig- 
nore the spatial derivatives in comparison with the time 
derivatives on the left sides of Eqs. (5)-(8). In the case of 
the compression of shells whose thickness 6 is much less than 
the radius R, so that we have V - 1/S, this approximation is 
justified in, for example, regimes of uniform compre~sion.~-~ 
This simplification allows us to integrate Eqs. (5)-(7) by 
introducing the vectorl, which describes a displacement of a 
plasma particle with respect to the unperturbed motion, so 
we have u' = d l  /dt. As a result of an integration of ( 5 )-(7 ) , 
the perturbationsp', B', andp' can be expressed explicitly in 
terms of {: 

In our approximation, Eqs. (8)  and (9)  are formally analo- 
gous to the standard formulation of the problem of the sta- 
bility of an equilibrium plasma configuration in an effective 
"gravitational" field. The equilibrium takes the following 
form, when the "gravitational force" or inertial force is tak- 
en into account at each instant: 

where 

is the negative of the local plasma acceleration at the given 
instant. 

We can define the concept of an instantaneous growth 
rate by writing the plasma particle displacement as a func- 
tion of the unperturbed "equilibrium" motion at each in- 
stant, in accordance with 

z (r, t )  =E(r) exp[ot+imcp+ikz]. 

By analogy with ordinary stability theory,I3 we would natu- 
rally call the motion at a given instant "dynamically a-sta- 
ble" if at this instant there exist no perturbations which are 
growing more rapidly than exp(ut). The condition for dy- 
namic a-stability can be formulated as the requirement that 
a corresponding energy functional be positive definite for 
small perturbations. Since we are interested in the stability of 
a diffuse pinch, in which the plasma fills the entire volume, 
out to the conducting walls, we will retain only the volume 
integral in the expression for the energy. Using ( 8 ) and (9 ) , 
we can rewrite this integral as 

In view of the cylindrical symmetry of the unperturbed state, 
condition ( 1 1 ) can be reduced to a one-dimensional energy 
functional which depends on the profile of the radial compo- 
nent of the displacement, &, ( r ) :  

where R, ( t )  is the outer boundary of the plasma in the 
pinch, 

D=p204 + (k' + $) + 1 p )  +1pf2] , 

By virtue of the condition K >  0, a sufficient condition 
for dynamic u-stability is L>O. The minimum value of the 
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parameter 0 for which the motion at the given instant is 
dynamically 0-stable is equal to the largest of the instanta- 
neous growth rates which are found from the following 
boundary-value problem for the Euler-Lagrange equation 
corresponding to the functional ( 12) : 

The boundary conditions 

define a class of convective bulk instabilities and bulk plasma 
oscillations. If the second of these conditions is imposed as 
r+  m, it can be formulated as the weaker requirement that 
the magnetic field perturbations vanish in the limit r +  m . 

It can be shown that the eigenvalues 4 of the boundary- 
value problem ( 14), ( 15 ) are real. Positive values of 4, 
which correspond to various radial perturbation modes with 
given rn and k, form a discrete spectrum, which becomes 
closely spaced toward the origin and which is bounded from 
above. Negative values of c? correspond to eigenfunctions 
which form a continuous spectrum, as for the spectrum of 
perturbations of a steady-state quilibrium Z-pinch.13 The 
relationship between the number of zeros of an eignfunction 
and the index of the eigenvalue in order of decreasing c? for 
the unstable part of the spectrum has the form characteristic 
of a Sturm-Liouville problem. The maximum growth rate 
a,,, for any rn and k corresponds to an eigenfunction which 
has no zeros between the axis and the outer boundary of the 
pinch. 

Figure 1 illustrates the situation with the spectra and 
eigenfunctions of the boundary-value problem ( 14), ( 15) as 
calculated for a steady-state Z-pinch (at the left) and for a 
dynamic Z-pinch with a Gaussian radial profile of the un- 
perturbed plasma density. 

We thus see that for arbitrary wave numbers rn and k 
the solution of the given boundary-value problem reveals the 
perturbation mode which grows most rapidly and whose 
growth rate has the instantaneous value a,,, ( t ) .  TO evalu- 
ate the growth of the perturbations over a finite time interval 
we use the expression 

exp [ J om,,, (t.1 dt.1. 
0 

which corresponds to the ordinary quasiclassical approxi- 
mation. Note that since we are interested primarily in the 
growth rates which influence the dynamic stability of the 
system, our approximation is justified: Growth rates which 
are large in comparison with u/R - r- ' are determined rela- 
tively accurately, and the error in the calculation of the com- 
paratively small growth rates is inconsequential, since the 
total contribution of these growth rates to the growth of the 
perturbations over the time r is small. 

3. SPECTRA OF INSTABILITY GROWTH RATES FOR SELF- 
SIMILAR COMPRESSION OF AZ-PINCH 

The results of Sec. 2 for arbitrary solutions of Eqs. ( 1 )- 
(4), describing a cylindrically symmetric compression of a 
Z-pinch or 0-pinch, can be used to find the maximum instan- 
taneous value of the growth rate a,,, for any perturbation 

FIG. 1. Absolute values of the eigenfunctions, and spectrum of eigenval- 
ues, for a steady-state Z-pinch (at  the left) and for a dynamic Z-pinch (at 
the right), according to calculations for a Gaussian radial density distri- 
bution with m = 0, kR, = 5, = 0.1, and b = 0. The continuum at 2 < 0 
is indicated by the hatched band. Here and below, the time is expressed in 
units oft,,, and the growth rates in units of t ;  '. 

component (rn,k) at each instant. In particular, this method 
can be used to study the dynamic stability of one-dimension- 
a1 solutions found through numerical simulation. Below we 
will illustrate the method in the example of flows describable 
by self-similar solutions of Eqs. ( 1)-(4), for which an ana- 
lytic expression is known for the profiles of the hydrodynam- 
ic variables which figure in (13) for each instant. It thus 
becomes possible to derive some useful analytic estimates. 
The solutions which we are using here, like those studied in 
Refs. 3 and 5, fall in the category of self-similar solutions 
with a uniform deformation. In the present case, however, it 
is not possible to separate variables in the equations for the 
perturbations. 

For such self-similar s ~ l u t i o n s , ' ~ ~ ' ~  the hydrodynamic 
variables depend in the following way on the self-similar co- 
ordinate 7 = r/R ( t )  and on the time: 

where R ( t )  is a time-dependent characteristic radius of the 
pinch; a ( t )  = R(t)/R,; R,=R(t = O);p , , p , ,  B,, and B, 
are normalization constants; and the dimensionless func- 
tions (representatives) N(7) ,  P ( 7 ) ,  H, (7) and Hz (7) de- 
scribe self-similar profiles which remain constant over time. 
The time dependence a ( t )  is determined by the equation of 
motion 

where the parameters p = 471.p0/B :, and b = B S,/B i, 
characterize the relative role played by the kinetic pressure 
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of the plasma and the axial magnetic field. The unit of time 
here is to = (4?rpo)112Ro/~,o; the initial conditions are 
a ( 0 )  = 1 and b(0)  = 0. 

In the case p + b = 1, Eq. ( 17) describes an equilibri- 
um of the plasma: a ( t )  = 1 = const. For 0 <P + b < 1, we 
find periodic solutions which describe radial oscillations of 
the pinch around an equilibrium position with a period on 
the order of to (Ref. 14). For B + b 4 1, the compression of 
the plasma in the current channel of the pinch in the course 
of these oscillations is significant. Finally, the case 
f i  = b = 0 corresponds to an unbounded compression of the 
pinch in the absence of a counterpressure (a  collapse) over a 
finite time T = (77/2) 'I2to. 

As examples we consider the unperturbed flows de- 
scribable by self-similar solutions with a Gaussian decay of 
the plasma density with distance from the axis in an isother- 
mal 2-pinch,I4 

~ ~ ( 1 1 )  =12 exp (-$14, 

and self-similar solutions with power-law decays of the den- 
sity and the pressure, 

(s-l) qi-1 
N(q) = (l+q)-" P(q) = (s-1) (s-2) (I+q)"-' ' (19) 

Since the current flowing through the pinch and the mass 
and thermal energy per unit length of the pinch are finite, the 
plasma density must fall off more rapidly than rP4 at infin- 
ity; i.e., we need s > 4 in ( 19). 

In order to compare our results with existing results in 
the theory of the stability of equilibrium plasma configura- 
tions, we recall that a steady-state diffuse Z-pinch without a 
longitudinal magnetic field is stable against perturbations 
with m)2 (instabilities with m)2 can develop only at the 
pinch boundary), a Z-pinch is also stable against perturba- 
tions with m = 0 (the sausage instability) provided that the 
plasma pressure falls off more slowly than r-2y with dis- 
tance from the axis. lp2 

In a time-dependent problem these results no longer 
hold: In the course of the con~pression, all perturbation 
modes of the accelerated plasma corresponding to a wide 
range of m grow, regardless of the profiles of the plasma 
density and the pressure [see Figs. 2 and 3, which show spec- 
tra of the growth rate om,, for the compression of pinches 
with Gaussian and power-law profiles at the times t = to 
(b # O )  and t = 1.3t0 (b = O)]. We note in particular that 
oo,, is nonzero in this case at all values of k for the compres- 
sion of a pinch with a power-law pressure profile which falls 
off as r-3 in the limit r-+ m ,  i.e., more slowly than r -  2Y, for 
the value y = 5/3, which we have assumed here in all the 
calculations. 

It can be seen from Fig. 3 that the most important insta- 
bilities in the compression of a pinch with power-law density 
and pressure decays are instabilities with rspect to filamenta- 
tion, i.e., with respect to a breakup of the plasma column into 
distinct filaments. For example, for the conditions in Fig. 3a 

FIG. 2. Spectrum of instability growth rates om,, for a pinch 
with a Gaussian density distribution with P=  and p,/ 
p, = 8.1OP4. a-b = 0, t = 1.3 to; b--b = 0.02, t = t,. 
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we see that the maximum growth rate depends weakly on k 
and is reached at mz7-10. A compressing pinch always 
exhibits a filamentation instability, regardless of the density 
profile and regardless of whether there is an external mag- 
netic field. Its growth rate is on the order of the growth rate 
of the fundamental instability mode (Figs. 2 and 3).  The 
onset of all of the instabilities observed in experiments on 
pinches is usually accompanied by filamentation of the cur- 
rent ~hanne l . ' ~~"  

Pronounced compression of the current channel of the 
pinch is obviously the case of greatest interest, in which we 
can expect a high energy density, a high neutron yield, etc. 
We will thus focus on the dynamics of a pinch with a negligi- 
ble counterpressure. For an analytic study of the qualitative 
form of the spectra in this case we consider the com- 

. pression of the plasma in a pinch in the limits P- 0 and b - 0. 
We begin with the m = 0 sausage instability, which is 

the instability observed most frequently in experiments. It 
can be seen from Figs. 2 and 3 that the growth rate of the 
sausage instability is either the very highest growth rate or 
nearly so. Let us consider the limiting case P = b = 0, 
k- W .  In expression ( 12) for the energy integral we have 
K a  k -2-0 as k - +  ; i.e., the highest instability growth rate 
is reached specifically at large values of k. From ( 13) we find 
in this limit 

For self-similar solutions with a uniform deformation we 
have g/r = - ii/a, and in the limit f l=  b = 0 we have g/ 
r = l/a2t t .  The motion at a given instant is thus a-stable if 
a > a,, , where 

FIG. 3. Spectrum of instability growth rates a,,, for a pinch 
with a power-law density profile ( 19) with s = 5 andB = 
a-b = 0, t = 1.3t0; b--b = 0.02, t = to. 

If the expression in square brackets in (21 ) is negative, there 
are no instabilities which grow exponentially against the 
background of the unperturbed plasma motion. A necessary 
and sufficient condition for stability is that energy integral 
( 12) be positive definite. In the limit k- m the energy inte- 
gral is positive if L)O for all possible values of r. Specifically, 
if the relation L < 0 holds near some point r = r,, we can 
choose a displacement {, (r) ,  localized near this point, for 
which the relation W <  0 holds by virtue of the small value of 
Kcck -2. 

It follows from (2  1 ) that the boundedness of the growth 
rate in the limit k - w is determined primarily by the asymp- 
totic density profile. In particular, for an arbitrary power- 
law profilep a r - "n the limit r- w the maximum growth 
rate in the limit k- co is 

For the Gaussian density profile ( 18), on the other hand, the 
quantity - rd(lnp)/dr = [r/R ( t )  ] is formally unbounded 
in the limit r- w , so the growth rate can be arbitrarily large 
at sufficiently large values of k ,  as can be seen from (21). 
However, it is clear from physical considerations that under 
actual experimental conditions an exponential decay of the 
density should give way at a certain level to a slower decay, 
corresponding to an approach to the background, arbitrarily 
low value of the plasma density surrounding the pinch. A 
Gaussian profile must accordingly be cut off at a certain 
density level. 
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Another cutoff possibility corresponds to, for example, 
a sharp decrease in the density at the boundry, associated 
with the skin effect in the part of the pinch current at its 
outer boundary. We can show that in any case the maximum 
growth rate of the convective bulk instabilities will depend 
only weakly on how and where we choose to cut off the 
Gaussian profile. Denoting by p, and p, the values of the 
density at the axis and the pinch boundary, respectively, we 
find from (21) 

This expression for u,,, , which depends very weakly on the 
value of p, /p,, does not depend on whether we cut off the 
density exactly to zero at the sharp pinch boundary or re- 
place a Gaussian profile by some arbitrary power law at a 
level p z p ,  . For the conditions in Fig. 2a, for example, we 
find the estimate (a,,, 16), because the finite coun- 
terpressure plays a stabilizing role. 

We now consider the behavior of the maximum growth 
rate as a function of m in the same limit, in the absence of a 
counterpressure: fl, b ( 1. Assuming m = kg - UJ , we find 
from (13) 

It can be seen from (24) that in the limit kq + UJ the values of 
L and Ware dominated by the term of order k 'q2, so the sign 
of L and Wis determined by the factor in parentheses multi- 
plying k *q2. Hence 

We see that a filamentation instability, with a growth rate 
which can be smaller than the growth rate corresponding to 
the onset of a sausage instability, but comparable in magni- 
tude, should occur regardless of the density profile, at large 
values of m. For a Gaussian density profile, the numerator in 
(25) has the value 12, so filamentation can develop in the 
interior superposed on the formation of necks. This circum- 
stance is caused by specifically the plasma acceleration, and 
as we have already mentioned, it does not occur in a steady- 
state Z-pinch. 

The limit m - UJ in (24) is possible at a finite value of k 
and as q -+  UJ ; alternatively, it is possible at a finite value of q 
as k+  UJ . If q remains bounded, the contribution to L from 
the term containing dp/dr can be important at large values 
of r. For a power-law or truncated Gaussian density profile, 
however, the first term is again dominant; i.e., expression 
(25) continues to hold as k- w . For large values of m and k, 
the growth rate is thus nearly independent of k, and it varies 
slowly with m. For nonzero values fl #O the asymptotic be- 
havior at large m changes, since L is now dominated by the 
positive term f = m2B :/4?r?; the compression of the Z- 

pinch is thus stable against perturbations with sufficiently 
large values of m. The effect of a finitefl is determined by the 
relative magnitude of the terms ypF2 andpc? ( yp + B :/477) 
in expression ( 13 ) for D. The first term, which ensures sta- 
bility at large values of m, is dominant at m 2fl -'I2. Since 
the relation u 0 ,  <a,,, usually holds and since at small val- 
ues of fl the value of a,, increases with increasing m, the 
growth rate will have a local maximum at m > 1 for each 
value of k. As we see from Figs. 2 and 3, this maximum is 
sharper for power-law density profiles than for Gaussian 
profiles. 

A longitudinal external magnetic field makes its pres- 
ence felt primarily through a stabilization of the pinch com- 
pression dynamics; it significantly reduces the maximum in- 
stability growth rates even at b = B $/B ; ( 1. It is easy to 
see that in the presence of a longitudinal magnetic field the 
growth rate is no longer an even function of k. Since the 
stabilizing term f in ( 13) is smaller when kB, and mB, 
differ in sign, the growth rates in Fig. 2b and Fig. 3b are 
larger for negative k. 

In the limit k-, U J ,  for finite b, L is dominated by the 
termf 2 z k  2B ;/4~.Takingthelimit k- UJ in (13) withb +O 
a n d p  = 0, we find that a necessary condition for a-stability 
of the motion is a >  a,,, , where 

1 BZ2 dlnB, B 2  dlnB, 
1x188 .------ on,,- =.-{ at, [ B- dlnl. +L(-+ B2 d ln r  I)]}'" 

is the limiting value of the growth rate in the limit k - w , for 
all m. The m dependence of the growth rate (for m > 2) is 
weaker in the presence of a magnetic field (Figs. 2b and 3b). 
This circumstance may explain the experimental observa- 
tion of a large number of filaments in a situation in which 
filamentation is relatively less pronounced in the presence of 
a magnetic field. 

The asymptotic behavior (26) may not be reached if the 
longitudinal magnetic field falls off sufficiently rapidly with 
distance from the axis; i.e., in order to take the limit we need 
k 2 B,, /B,  = b - ' I2)  1. In this case, the stabilizing contri- 
bution of the thermal counterpressure (fl #O) is more im- 
portant. It leads to a vanishing of the growth rates at suffi- 
ciently large values k2fl-'I2. The growth rates are not 
shown for these large values of k in Figs. 2 and 3. 

4. GROWTH OF PERTURBATIONS IN THE COURSE OF THE 
PINCH COMPRESSION 

The maximum growth rate for each perturbation com- 
ponent (m,k) at each instant can be found with the help of 
the results of Secs. 2 and 3. In principle, we cannot rule out 
the further possibility that the maximum values of a,,, at 
different times in the course of the compression will belong 
to different components (m,k). We will accordingly exam- 
ine the growth of the individual perturbation components 
(m,k), although in the most typical cases one particular in- 
stability mode will dominate the entire compression process. 
As a quasiclassical estimate of the growth of the perturba- 
tions over a finite time interval we adopt the quantity 

Figure 4 shows the time evolution of the growth rate 
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FIG. 4. Time evolution of the perturbation growth rates for a Z-pinch 
with a Gaussian density profile with /3 = 0.1, and p , /p ,  = 8 .  1- 
m = 0, b = 0; 2-m = 1 ,  b = 0; 3-m = 0, b+0.22. The dashed lines show 
the growth rates found for a steady-state pinch with the same density 
profile and B = 1 and b = 0. Upper line) m = 0; lower line) m = 1. 

a( t) of the perturbations with m = 0 and m = 1 of a Gaus- 
sian pinch without an external magnetic field (curves 1 and 
2). Shown for comparison in Fig. 4, by the dashed lines, are 
the instability growth rates of a steady-state pinch with a 
Gaussian density profile under the same conditions, with 
8 = 1 (m = 0 corresponds to the upper line, arld m = 1 to 
the lower line). The imposition of a longtitudinal magnetic 
field stabilizes the compression, reducing a ,  as can be seen by 
comparing curve 3, plotted for b = 0.02, with curve 1. In 
accordance with the equation of motion (17), the plasma 
acceleration g = - ( a / a ) r  initially increases and then 
tends toward infinity as t+  (?r/2)'12t, if there is no coun- 
terpressure; alternatively, it vanishes and then changes sign 
if there is a finite counterpressure, either thermal or magnet- 
ic. In the latter case, the conditions for the occurrence of a 
convective instability will not hold near the time of maxi- 
mum compression, and the motion will stabilize: All the 
growth rates will vanish (Fig. 4).  

Figures 5 and 6 show the growth of perturbations of a 

FIG. 5. Growth of perturbations for a pinch with a Gaussian density 
profile versus the degree of radial compression for m = 0, kRo = 30, and 
p= 0.01 (fur curves 2 4 ) .  1-/3= 0, b = 0 [expression ( 2 7 ) ] ;  2-b = 0; 
3-b = 0.05; 4--b = 0.02. 

FIG. 6. Growth of perturbations for a pinch with a Gaussian density 
profile versus the degree of radial compression for m = 1 ,  kRo = - 30, 
/3 = 0.01, 1-b = 0.02; 2-b = 0; 3-b = 0.24. 

2-pinch as a function of the degree of compression, l /a,  for 
a Gaussian density profile. With P + b 1 and k-, a,, we 
find the following functional dependence from (23) for a 
Gaussian Z-pinch: 

This function corresponds to curve 1 in Fig. 5. The corre- 
sponding expression for a power-law profile differs by the 
factor in front of In( l / a ) .  Note that in the case p = b = 0 
the growth of the perturbations (like the degree of compres- 
sion) is not bounded. In this case, T ( a )  is dominated by the 
singularity in a ( t )  as t-, (?r/2) 'I2t,, which is caused by the 
unbounded growth of the acceleration near the collapse. As 
we see from Fig. 4, the counterpressure eliminates this singu- 
larity in a ( t )  and serves as a factor which stabilizes the com- 
pression. The asymptotic expression (27) gives us an upper 
limit on the growth of the perturbations at a given value of 
p, /p, . Curves 2-4  in Fig. 5 show the corresponding behav- 
ior calculated for the finite values kR, = 30 and P = 0.01. 
For a Gaussian 2-pinch, the perturbation modes which 
grow most rapidly are those with m = 0 and m = 1; for val- 
ues of p which are not too small, the sausage instability 
dominates, while as 0-0 the kink instabilities become 
dominant (Figs. 2 and 5 ) . 

By setting some acceptable level of the growth of the 
initial perturbations (e.g., rmax = loo), we can work in the 
linear theory to determine the maximum plasma compres- 
sion in the 2-pinch before the time at which the cylindrically 
symmetric flow is disrupted. It follows from Figs. 5 and 6 
that in the case p4 1 we can accept a radial compression of 
the current channel by a factor of no more than three to five. 
Even a weak longitudinal magnetic field stabilizes the com- 
pression of the pinch plasma, reducing cr noticeably, so that 
in a sufficiently strong magnetic field it is possible to observe 
radial oscillations of the plasma in the Z-pinch. A few 
successive compression-expansion cycles occur while the cy- 
lindrical symmetry is preserved, until r grows to the limit- 
ing permissible value rmax (curve 3 in Fig. 5),  as was ob- 
served in some recent experiments. l2  For a given permissible 
rmax we can say that there is a certain optimum value of the 
longitudinal field B,, which provides the greatest radial 
compression while retaining the cylindrical symmetry 
(curve 4 in Fig. 5) .  This conclusion agrees well with experi- 
mental results on the dynamics of a high-current gas-filled 
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Z-pinch with a longitudinal magnetic field. 12*" 

We recall that the cutoff of the Gaussian density profile 
which was introduced in the explicit form of the current shell 
of the 2-pinch involves the appearance of surface wave 
modes and instabilities of the pinch. The growth rates of the 
Rayleigh-Taylor instability modes which are localized near 
the surface are not bounded at large values of k. It is thus 
necessary to evaluate the relative contributions of the sur- 
face instabilities and of the bulk instabilities, with which we 
are concerned here, to the growth of the perturbations in the 
volume of the plasma which is being compressed. At large 
values of k, the Rayleigh-Taylor perturbations mode, with a 
growth rate y,, = (gk) ' I 2 ,  falls off exponentially with dis- 
tance into the plasma, with a typical penetration depth of 1/ 
k. In other words, an estimate of its amplitude at the pinch 
axis is 

Corresponding to the maximum amplitude is the value 
k = k, -gt 2/R '. In other words, the corresponding total 
contribution to r can be estimated to be 

t t 

since gt 2/2 - R. A comparison of this expression with (27) 
shows that the bulk instabilities of a diffuse 2-pinch may 
dominate even in the presence of a sharp boundary. 

5. SOLUTION OF THE COMPLETE TIME-DEPENDENT 
PROBLEM OFTHE DEVELOPMENT OF INSTABILITIES IN A 
DIFFUSEZ-PINCH 

The assumption that the drift (convective) terms of or- 
der u/R are small in comparison with the retained terms of 
order a-an assumption we used in deriving the equations of 
the quasiclassical approximation, ( 14), ( 15)-is indeed val- 
id in that stage of the compression which is most important 
for the growth of the perturbations. The self-consistency of 
this approach is therefore confirmed. It is also interesting to 
evaluate the contribution to the growth of the perturbations 
from those stages of the compression in which the accelera- 
tion vanishes and changes sign, and the velocity of the plas- 
ma particles is high. In this case a vanishes, so the approxi- 
mate analytic method developed in Secs. 3 and 4 cannot be 
used, and we are forced to resort to a solution of the complete 
system of equations, (5)-(8). The solution of this problem 
gives us a rigorous quantitative estimate of the accuracy of 
the quasiclassical approximation. 

With an eye toward a direct comparison with the ana- 
lytic results derived in the preceding sections of the paper, 
we seek a solution of Eqs. (5 )-(8) for an unperturbed mo- 
tion described by the self-similar solutions ( 16)-( 19), in the 
form 

~ ' ( r ,  t )  =p0a(t)-'N', p' (r ,  t )  =p,a(t) -Z7p', 

u,' ( r ,  t )  =R,a(t) -'V,', 

where N ', P', H' and V' are unknown functions of the self- 
similar variable 7,1 and the time t. The dependence of the 
perturbations on q, and z is determined by the common fac- 
tor exp(imq, + ikz), which we will not write out any further. 

In terms of the variables in (30), the equations for the 
perturbations are 

d H,' 1 d - = - - [- (VrfH,)'-ix (R,Vqr-H,VJ 1, (34) 
d t a aq 

dH,' im 
-=-- I [ l a  (qR,V..)+- ~ R ~ V ; - H , V ~ ~ ) ] ,  (35) 

at a rl arl 17 

a v; a im imp 
-=-- V,' - - RzHz' - - aZ7-'N l" at u a3qN 17 

av,' 
-=- 

ixa ixB p, 
VZ 1  - - HJI,' - - 

at a N a27-3N 
im 

H,' + - H,H,' , 
r I 

where Bz = b ' 1 2 ~ ,  ,x = kRo. 
The boundary conditions on system (3  1 )-(38) reduce 

to the requirement 

where the normalization of the self-similar coordinate has 
been chosen in such a way that the value 77 = 1 corresponds 
to the outer boundary of the pinch, r = R, ( t ) .  

There is a formal similarity between the right sides of 
Eqs. (3  1 )-(35) and the right sides of Eqs. (5)-(8). By vir- 
tue of the representation (30), Eqs. (31)-(39) are similar in 
form to the equations of the quasiclassical approximation, 
regardless of whether we are dealing with a diffuse 2-pinch 
or a thin shell (Sec. 2 ) .  At each instant, by replacing a /at by 
a ,  we can find the eigenvalues a of the complete system of 
equations (3  1 )-(39) from the boundary-value problem for 
an equation of second order in V ' ,  . The only distinction from 
the boundary-value problem ( 14), ( 15) here stems from the 
drift terms on the order of a = 0 in the equations of motion 
(36)-(38). At the initial time and at the time of maximum 
compression, when we have a = 0, the boundary-value 
problem ( 14), (15) is reproduced exactly; i.e., the values of 
a calculated for these times in the quasiclassical approxima- 
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tion are also exact. For a #0, the eigenvalues u become com- 
plex, and a classification of the corresponding modes as ei- 
ther eigenfunctions or instabilities becomes somewhat 
arbitrary, justified only asymptotically for large growth 
rates and frequencies. 

To solve Eqs. (31 )-(38) we use the collocation meth- 
od, l9 approximating the time-varying profiles at each instant 
by a finite sum of Chebyshev polynomials T,, (7) :  

N' =/I (1)  Y l i  if) Tzj (11). 
j=o 

where I is the number of polynomials, which determines the 
order of the approximation, and the weight functions 

f l  (v ) ,  ...,fs(v) correspond to the asymptotic behavior of the 
profiles in the limit 7 -0. Since we have T,, ( 1 ) = 1, bound- 
ary condition (39) is dealt with by adding the following term 
to the expansion (40) for V',: 

where 

As the collocation points, whose choice results in the 
convergence of the polynomial approximation of the solu- 
tion on the interval (0 , l )  we adopt the zeros of the Cheby- 
shev polynomials. When this choice is made, the method 
which we are using to approximate our original system of 
equations, (31)-(38), is equivalent to the Galerkin meth- 
od.I9 Substituting the expansion (40), (41 ) into Eqs. ( 3  1 )- 
(38), and equating the left and right sides at the collocation 
points 7 = vi ,  we find a system of ordinary differential equa- 
tions for the n = 81 expansion coefficients Y,. ( t )  ( l(s(8, 
0 q . d  - 1): 

d - P,,=D;'F,, ( Y ,  t ) ,  
d t  

where Dv = T,, (7i ) and the linear function of the variables 
Y,. ( t )  designated F,. ( Y,t) is expressed in terms of the right 
sides of Eqs. (31)-(38). 

The finite-dimensional approximation which we are us- 
ing is applicable in this problem by virtue of the spectral 
properties of the problem, which result in the convergence of 
the method. As was shown in Sec. 2, the spectrum of instabil- 
ity growth rates derived in the quasiclassical approximation, 
which corresponds asymptotically to the exact spectrum for 
large growth rates, is discrete and bounded (Fig. 1 ) . Conse- 
quently, the growth of the perturbations is determined pri- 
marily by a finite number of radial modes for given values of 
m and k. 

Solving system of equations (42), we can follow the 
linear stage of the evolution of any initial perturbation pro- 
file. For our purposes, we are interested primarily in the 
invariant properties of the evolution of the instabilities- 

properties which depend on neither the initial profile nor the 
method used for the numerical approximation. We make use 
of the circumstance that the self-similar solutions which we 
are considering are for P + b > 0, periodic functions with a 
period of 2r, where r is the compression and expansion time. 
We denote by x( t)  an n-dimensional vector formed by the 
components of the perturbation Y,. ( t ) .  We know from the 
theory of differential equationsz0 that a system of linear, 
first-order, ordinary differential equations with periodic co- 
efficients 

where A ( t )  is a periodic n X n matrix with a period of 27-, can 
be reduced through a change of variables to a corresponding 
system with constant coefficients. In other words the solu- 
tion of (43) can be written in the form 

x ( t )  = S ( t )  esp  (B t )  x (0), (44) 

where S ( t )  is a periodic n X n matrix with a period of 27, 
S(0)  = I, and I is the unit matrix. Here B is a constant n X n 
matrix, and M = exp(2Br) is the monodromy operator of 
system (43) (Ref. 20). To determine M we should find a 
solution of the matrix equation x = A ( t )X  for the n x n ma- 
trix X(t) with the initial condition X(0) = I; we then have 
M = X(2.r). The logarithms of the eigenvalues pj 
(j = 1, ..., n) of the operator M, divided by the period of 27, 
are exact analogs of the growth rates and eigenfrequencies 
for a periodic motion. If 

OM = max Re (ln yj/2z), 
i=zj&n 

we have the following estimate of the growth of the perturba- 
tion at any instant: 

The right side of (46) is an exact upper limit on the growth of 
the perturbations by the time t. 

To evaluate the accuracy of the quasiclassical approxi- 
mation, we carried out numerical calculations for a time- 
varying diffuse Z-pinch with a Gaussian density distribu- 
tion. The eigenfunctions and the spectrum of the growth 
rates of the unstable modes in the quasiclassical approxima- 
tion for this case are shown at the right in Fig. 1. An estimate 
of the growth of the perturbations for necks with m = 0 and 
x = 5 has been found on the basis of the quasiclassical ap- 
proximation: 

27 

S o,,, ( t )  dl=3.6. 
0 

Under the same conditions we have 2raM = 3.76. The eigen- 
values of the monodromy operator M converge quite rapidly 
as the order of the approximation, I, increases. For example, 
we can achieve a 5% error by retaining only I = 5 terms in 
expansion (40). 

The convergence of this procedure with increasing or- 
der of the approximation is evidence that the eigenvalues 
which are found are exact invariants of our original system 
of equations, ( 3  1 )-(38). The fact that the estimate a,,, is 
close to the results of the analytic estimates in Secs. 3 and 4 
shows that the quasiclassical representation of an instanta- 
neous growth rate and the method described here for calcu- 
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lating this growth rate lead to good results for the type of 
problem considered here. 

6. CONCLUSION 

This new method for studying dynamic stability leads 
to a simple estimate of the rate of the exponential growth of 
convective bulk perturbations in the course of the plasma 
motion. As was shown in Sec. 5, the quasiclassical estimate 
of the perturbation growth rate is a fairly good approxima- 
tion of the exact solution of the problem. This new method 
for studying dynamic stability, which we have illustrated 
here in the example of the stability of the self-similar com- 
pression of a diffuse Z-pinch, has a much wider range of 
applicability. The instability growth rates determined by the 
solution of the corresponding boundary-value problem of 
the form ( 14), ( 15) depend on only the profiles of the hydro- 
dynamic variables of the unperturbed flow. Consequently, a 
method of this type can also be used to calculate the pertur- 
bation growth rate in cases in which analytic solutions can- 
not be found through (for example) numerical solution of 
the problem at each instant. Furthermore, this method can 
also be used, under a wide range of conditions, to calculate 
the perturbation growth rate when dissipative processes play 
a substantial role in shaping the profiles of the hydrodynam- 
ic variables of the unperturbed flow. 

Our study of the dynamic stability of the compression of 
a diffuse Z-pinch shows that the perturbations grow without 
bound in the course of the plasma compression in the current 
channel of the pinch, with an unbounded increase in the 
pinch current. Consequently, radial compression factors 
substantially greater than three to five cannot be achieved, 
regardless of the increase in the current in the pinch, if the 
original cylindrical symmetry is to be retained. Although the 
stabilization of a Z-pinch by a longitudinal magnetic field 
B, -B, is well known from the theory of the stability of a 
steady-state pinch'p2 (the Shafranov-Kruskal and Suydam 
criteria), the dynamic stabilization effect differs substantial- 
ly: Although the growth rates of the instabilities which are 
set by the dynamics of the plasma compression are signifi- 
cantly higher than the corresponding values for a steady- 
state pinch, the condition for dynamic stabilization of the 
pinch by a longitudinal field is incomparably less stringent. 
For example, it follows from Figs. 4 and 5 (in accordance 
with the measurements of Refs. 12 and 21 ) that an energy of 
the longitudinal external magnetic field amounting to only 
2-3% of the self-field of the current in the pinch, B,, is 

sufficient for dynamic stabilization of the plasma compres- 
sion in a pinch. It is this circumstance which makes it possi- 
ble to generate ultrastrong magnetic fields during the com- 
pression of the magnetic flux B, in the plasma of a Z-pinch 
with a radial compression by a factor of 20-30, which is 
achievable in Consequently, pinch systems 
with an axial magnetic field, e.g., a hollow plasma liner with 
a trapped azimuthal magnetic flux and with a thread of solid 
(frozen) DT along the liner axis (a  Z-0 configuration), are 
promising directions for controlled thermonuclear fu- 
 ion.^^,'^ 
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