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It is shown that the angular dependence of the intensity of radiation generated in a nonlinear 
disordered sample should contain characteristic interference peaks due to weak localization of 
the photons. The shape of the peak reflects the electric-field structure of the radiation that is 
strongly scattered in the sample, and is sensitive to Anderson localization effects. The angular 
dependence of second-harmonic generation and of difference-frequency generation in a slab of 
thickness L, > 1 ( I  is the photon mean free path for elastic scattering) is calculated. Photons of one 
of the frequencies participating in the nonlinear process are strongly scattered in the slab. The 
shapes of the interference peaks in various limiting cases are discussed. 

1. INTRODUCTION 2. SECOND-HARMONIC GENERATION 

Light propagation in turbid media has been attracting 
considerable interest lately. This interest is due principally 
to the analogies observed when anomalies of the propagation 
of classical (light or sound) waves in randomly inhomogen- 
eous media are studied and compared with quantum inter- 
ference effects known to cause Anderson localization in sol- 
ids. ' 

Is has been found, however,' that in the case of light it is 
difficult to meet the Anderson localization condition A - 2 ~ 1  
(A is the wavelength and I is the mean free path of elastic 
scattering of photons by inhomogeneities).  experiment^^-^ 
have shown that ordinary inhomogeneous media such as 
suspensions and pressed powders satisfy the inequality 
A < 2 ~ 1 .  In this case the interference effects that lead to local- 
ization are small, of order y = A /2a1< 1 (weak localiza- 
tion). It is known nonetheless that the weak localization ob- 
served in the optics of turbid media cannot be ignored, in 
view of the intensity peak produced in backscattering of co- 
herent radiation.' The intensity of this peak at the maximum 
is equal to the diffuse-background intensity, and its width is 
a small quantity - y (Refs. 3-6, 8-10). Thus, coherent ef- 
fects in multiple wave scattering lead to qualitative irregu- 

We consider SHG in the sample shown in Fig. 1. Let 
light (frequency w and wave vector k,) impinge on the face 
of this sample at z = 0. We assume that the sample is trans- 
parent to this radiation and is optically homogeneous. It is 
also assumed, however, that the second harmonic radiation 
is strongly scattered in the sample. This situation can obtain, 
for example, in doped semiconductors when the frequency 
2w is close to the exciton-resonance frequency w,. In this 
case," elastic scattering of polaritons of frequency 2w by 
impurities is enhanced manyfold and predominates over ab- 
sorption, whereas polaritons of frequency w are very weakly 
scattered and are absorbed. 

We are interested in the angular distribution of the sec- 
ond harmonic leaving the sample. For simplicity, we consid- 
er only the intensity of s-polarized radiation of frequency 2w, 
for which the electric-field vector is directed along they axis. 
The energy flux of the s-polarized second-harmonic radi- 
ation in the direction n = (n, ,O,n, ) is determined by the 
Poynting vector: 

larities in a linear optical process such as light reflection. It is Here = 20,c, while E = E ,  (2w;r) is the second-harmonic 
natural to expect nonlinear optical effects in randomly inho- electric field, which can be expressed in terms of the nonlin- 
mogeneous media also to differ qualitatively from processes ear polargation PNL ( r )  and the wave-equation Green's 
in transparent media. function 9 ( r , r l )  : 

We shall discuss here, using three-wave nonlinear pro- 
cesses as an example, those qualitative effects that result 
from weak localization of photons in a nonlinear disordered 
medium. In Sec. 2 we consider the angular dependence of 
second-harmonic generation (SHG) intensity in a nonlinear 
medium that is transparent to exciting radiation of frequen- 
cy w ,  but scatters the second-harmonic radiation. In Sec. 2 
the cross section is calculated, as a function of angle, for 
difference-frequency generation ( D F G )  in a medium that 
scatters one of the incident waves strongly. It will be shown 
that in both cases the angular dependence of the cross sec- 
tions for the linear processes should contain peaks similar to 
the backscattering peak from a disordered medium. We dis- 
cuss here the shapes of these peaks for various conditions of 
the nonlinear processes and the connection between these 
shapes and the character of the photon distribution in a dis- 
ordered medium. 

Ei (r) =4nk2 ) dr19,,(r, r') P j N L ( r ' ) ,  ( 2 )  

where 

rot rot $-k2e(r)@=f6 (r-r'). ( 3 )  

The nonlinear polarization is defined as 

PiNL (r) =~ i , lE i~Ei l  exp (2iklr) ,  (4) 

where ao, is the intrinsic nonlinear polarizability of the me- 
dium and is assumed to be known El is the amplitude of the 
incident electric field of frequency w and wave vector k ,  in- 
side the sample. The disorder in the system is manifested by 
the fact that the dielectric constazt ~ ( r )  at the frequency 2w, 
on which the Green's function 9 depends, contains within 
the sample a randomly inhomogeneous component 
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FIG. 1. Geometry of experiment. 

E (r) = (5 

which we assume for simplicity to be a Gaussian uncorrelat- 
ed field 

Relation (6) is in fact a definition of the mean free path I. 
The problem of finding the realization-averaged [i.e., aver- 
aged over the realizations of the random field &(r )  ] energy 
flux Szeguces to substituting (2)  in ( 1 ) and taking the aver- 
age (9 9 *) of the resultant pair of Green's functions. This 
averaging can be carried out by the usual cross technique" 
based on summation of perturbation-theory series in S&(r).  
As a result, the electric-field correlator 

in terms of which ( S  ) is expressed directly, can be represent- 
ed in the form (see also Ref. 13 and 10) 

Here 6and  (E ) denote respectively the Fourier components 
of the averaged Green's functions and of the second-har- 
monic electric field in the bulk of the sample. 

The quantity (En  ) (E :) plays the role of a source of 
slow diffusive modes corresponding to an irreducible four- 
pole diagram T. Under weak-localization conditions, the r 
vertex can be represented by an expansion in the parameter 
y. The first two terms of this expansion are sums of ladder 
and fan diagrams and are expressed in terms of the diffusion 
propagator D(r,r') (Refs. 8- 10) : 

where D(r,rl)  satisfies the equation1' 
I 
- V 2 D  (r, 1') =-6 
3 (11) 

and the boundary conditions 

8 
D (r, r') +hl- D (r, 1') =O. 

d n (12) 

The dimensionless constant h depends on the conditions of 
specular reflection of the light from the sample boundaries. 
The specular reflection of the light is usually weak, and h - 1 

(Ref. 14). For an ideally reflecting boundary, however, 
h - a, since the normal (to the surface) component of the 
diffusion flux J, - VD(r,rl) should vanish n this case. It can 
be shown that as R -4 1, where R is the angle-averaged specu- 
lar-reflection coefficient of light impinging on the sample 
from the outside, the following relation holds: 

h- ( I -R)  - I .  (13) 

Before proceeding to discuss effects connected with 
multiply scattered radiation and described by the vertex r, 
we consider the contribution of ballistic photons of frequen- 
cy 2w to the angular distribution of the SHG intensity. This 
contribution is connected with the reducible part ( E  ) (E *) 
of the correlator (7),  and to find it we must use (2)  to calcu- 
late the mean electric field at large distances r& L,, L ,, from 
the sample. The Green's function averaged over the realiza- 
tions of &(r )  and needed for these calculations coincides 
with the Green's function for the case of an ordered system 
in a sample whose dielectric constant has a small imaginary 
part - y (Ref. 10) : 

As a result, we obtain for (E( r )  ) 
eanr 

( E  (r) >=t ,a , j lE1jE, ,  -Z(n), 
4nr 

where t ,  is the amplitude coefficient for transmission of radi- 
ation of frequency 2w through the sample boundary (for 
radiation incident on the sample from the outside). The val- 
ue of l i s  determined by the following integral over the sam- 
ple volume: 

where I, = Ik ,, /k,; k, (n)  is the wave vector of the second 
harmonic in the sample and corresponds, in accordance with 
the refraction law, to the wave vector kn in vacuum. 

In a transparent sample ( I -  a ) I differs from zero only 
in a narrow range of frequencies and observation angles, 
when the phase matching condition, which reflects the pho- 
ton-momentum conservation law, is met: 

For relatively strong scattering, when 21. < L, , a sub- 
stantial contribution to ( 15) is made only by a surface layer 
of thickness -I. This is a manifestation of the fact that only 
photons of frequency 2w generated near the surface (the 
crosshatched region in Fig. 2) can leave the sample without 
being scattered at all. As a result, the characteristics of the 
ballistic peak should be the same in the case 21. < L, as in the 
transparent sample 21. thick. 

As I decreases, an ever increasing role is assumed by 
photons multiply reflected in the sample. Their contribution 
to the SHG intensity is determined essentially by the dynam- 
ics of the diffusion modes and is described by the irreducible 
part of the electric-field correlator ( 8 ) . To calculate this cor- 
relator we find first from (2)  and (4)  the mean value of the 
second-harmonic electric field inside the sample: 
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FIG. 2. Qualitative anomalies of the angular distribution of SHG intensi- 
ty. Here no is the direction along which the photon-momentum is con- 
served. The peak in the - no direction is due to interference in multiple 
scattering of photons of frequency 2 0 .  The inset shows schematically the 
SHG in the sample: the isotropic background is due to SHG in the bulk; 
the peaks are due to SHG in the hatched surface regions. 

where 

h 

and G(p) is the spatial Fourier component of the volume 
part of the averaged Green's function: 

Since radiation of frequency w passes freely through the 
sample, the amplitude of the averaged second-harmonic 
electric field is independent of coordinate. This amplitude, 
however, as seen from ( 19), is significant only when 

12ki-kz 1 =A ( w )  <I/Z. (20) 

Thus, a second harmonic is effectively generated in a weakly 
disordered sample ( y < 1 ) in a narrow range of frequencies 
satisfying Eq. (20), although this range is significantly 
broader than for a transparent sample. 

For a qualitative understanding of the SHG anomalies 
that can result from weak photon localization, we note that 
expression (8)  is valid also for linear reflection of light of 
frequency 2w from a disordered system. In this case, how- 
ever, 

where k, is the wave vector of the incident radiation inside 
the sample. Comparing ( 17) with (2 1 ) we readily note that 
they have roughly the same dependence on position if the 
substitution 2kl F? ki is made. Physically this is quite under- 
standable, since the contribution of a multiply scattered pho- 
ton to the SHG intensity does not depend on whether this 
photon is the result of a nonlinear process or whether it was 
incident on the sample from the outside with the same wave 
vector. In the latter case, however, it is known that the inten- 
sity of the reflected light has a peak corresponding to back- 
scattering: k, = - k,. Consequently, the angular depen- 

dence of the SHG intensity should have a peak at 
k, = - 2k,, i.e., in a direction opposite to that correspond- 
ing to the photon-momentum conservation law (Fig. 2).  

A quantitative description of the contribution of multi- 
ply scattered photons to the SHG intensity can be obtained 
by substituting in (8)  the expression ( 17) for the mean elec- 
tric field, and also the well known expressions for the aver- 
aged Green's functions. In this case the vertex Td'' in (9) 
corresponds to an isotropic diffusive background in the an- 
gular distribution of the SHG intensity [(d@/dfl) is the 
second-harmonic radiation-energy flux in solid-angle 
units] : 

whereas the vertex r"""" [Eq. ( 10) ] yields an interference 
peak at k, = - 2k,: 

Equations (22) and (23) are written here for the stationary 
case when a monochromatic field of frequency w is incident 
on the sample. The factor exp( - (z(/21. ) in (23) shows 
that the interference peak is due to photons generated in a 
narrow surface region - 21. thick (shown singly hatched in 
Fig. 2) ,  whereas a contribution to the diffuse background is 
made by photons generated in the bulk of the sample. For 
I 4  L, therefore, the peak is small (proportional to I /L, ) 
compared with the diffuse background. Note that in pulsed 
SHG faster than the photon diffusion time through the sam- 
ple the relative height of the peak can exceed I/L, signifi- 
cantly.15 The shape of the peak is determined by the struc- 
ture of the diffusion propagator. For a bulky sample with 
L, %d%I, where d = (11, /3)'12 is the damping length con- 
nected with the inelastic processes (I,, = Imk,(w)), the an- 
gular dependence of the SHG intensity near the peak can be 
represented in the form 

Here J ,= ; ( l  + h ) ( 1  + hl/d)-11t,/2clA(w)12~i;(d/I), 

and for the case of normal incidence the function f (6)  which 
depends on the angle 6 between 2k, and k, (21 k ,  I -- / k,l ) is 

h-t ( l + h q l )  
'(')= ( i + n g ~ )  ( i + i q l ) ~  

q 2 ( 8 )  =k;8'+d-'. (26) 

The peak takes an entirely different form for a cavity in 
the form of thin slab with strong specular reflection from its 
faces. For L, g h l < d  the photon diffusion in such a cavity is 
quasi-two-dimensional-the propagator D(r , r l )  does not 
depend on the transverse coordinates z and z'. In this case the 
SHG intensity can also be represented in the form (4) ,  but d 
in (25) must be replaced by the thickness L, of the cavity, 
and the background intensity J, is given by 
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In this quasi-two-dimensional system the function f ( O ) ,  and 
with it the interference peak, takes the Lorentz form 

where x2 = 2(hlLI ) - I .  The quantity D 2?t-c(1 - R)/L, 
( D  is the photon diffusion coefficient) is the reciprocal of the 
time needed by a photon of frequency 2w to leave the cavity, 
and the function f ( q )  [Eq. (28) ] is proportional to the diffu- 
sion propagator for such a cavity with strong Rayleigh scat- 
tering. Neglecting damping, the width of the interference 
peak should decrease without limit2' as R - 1. Its value, how- 
ever, remains fixed here, since it follows from (13) that 
h It, l 2  - 1 as R + 1. On the contrary, theballistic peak vanish- 
es as R - 1. The reason why the contribution of multiply 
scattered photons to the SHG intensity does not decrease as 
R - 1 is that under stationary conditions the SHG intensity 
is determined only by the intensity of the incident light of 
frequency w, which is not strongly reflected. It is this possi- 
bility of separating the contribution of multiply scattered 
photons which ensures constancy of the signal as R - 1 and is 
a major advantage of the use of nonlinear processes to inves- 
tigate the kinetic properties of photons in quasi-two-dimen- 
sional optical systems, where the Anderson-localization ef- 
fects are particularly strong. 

3. DIFFERENCE-FREQUENCY GENERATION IN A 
DISORDERED SAMPLE 

In contrast to the preceding section, we consider here a 
situation wherein the medium scatters strongly not only the 
generated but also the excited radiation. Let two coherent 
light beams with frequencies w ,  and w; and wave vectors (in 
the sample) k ,  and k; be incident on the sample shown in 
Fig. 1. Three-wave mixing results in generation of radiation 
at the difference frequency w, = w, - w;. We assume that 
the sample is transparent to the w; and w, beams, but scat- 
ters strongly thew, beam. This situation is posible, e.g., in an 
impurity semiconductor, when the frequency w, lies near the 
exciton resonance and the frequencies w; and w, lie deep in 
the forbidden band. ' 

The angular distribution of the radiation intensity at the 
difference frequency w, can be easily expressed in terms of 
the correlator of the nonlinear polarizabilities: 

dm 02& -=- (6, ,-n.nj) 1 dr, dr , (PiNL ( r , )  P:" ( r , )  ) 
dQ 8nc3 

where n is a unit vector in the radiation direction, while 
k, (n )  is the wave vector of thew, radiation inside the sample 
and corresponds, according to the refraction law, to a wave 
vector w,n/c in vacuum. Equation (29) can be obtained di- 
rectly from the expression for the cross section for Rayleigh 
scattering of light by the fluctuations SE by replacing the 
inhomogeneous part SEE of the induction vector by 4 r P N L .  
In the case considered here, 

piNL ( r )  =aijiEj (a , ;  r ) E l ' ( o l f ;  r ) ,  (30) 

where E(w,;r) and E(w; ;r)  are the amplitudes of the radi- 
ation electric fields of frequencies w, and o; . Since the sam- 
ple is assumed to be transparent to the frequency w; , we have 
E(w;;r)  = E ( o ;  )exp(rlc;r). Equation (29) is reduced as a 
result to 

where 

The intensity angular dependence ( 3  1 ) thus contains direct 
information on the spatial distribution of the electric field of 
the strongly scattering radiation of frequency w ,. Any singu- 
larity in the correlation function (EE *) of the electric fields, 
particularly one connected with Anderson localization of 
photons having the frequency w,, should be manifested in 
the character of the angular dependence of the generated 
radiation with frequency w,. We shall consider below in de- 
tail the form of the angular dependence ( 3  1 ) in the weak- 
localization case y < 1. 

The electric-field correlator of the radiation scattered 
inside the sample can be obtained from (7)  and (8) .  In this 
case ( E ( r  ) ) is given by l o  

where E'"(w,) is the amplitude of the incident electric field 
of frequency w, and re is the amplitude transmission coeffi- 
cient for this field. Just as in the situation considered in the 
preceding section, the reducible part of the correlator de- 
scribes the contribution of the ballistic photons to the DFG 
intensity: 

(34) 
where 

The DFG angular dependence given by (34) takes the form 
of a sharp peak in the direction corresponding to the momen- 
tum conservation law k, = k ,  - k; (peak a in Fig. 3).  

The diffuse contribution to the DFG is determined by 
the vertex T'diff) [Eq. ( 9 ) ]  in the correlator (8) .  Substitut- 
ing (33) and (9)  in (8 )  and using ( 14) (with replacement 
k, - k ,  for the bulk part of the Green's function G(p) ,  we get 

(E i  (o , ;  r )  E j e ( o 1 ;  r ' ) )  d i f f  

{ sin kl 1 r-r' 1 I r-r' I 
kl 1 r-r /  I e x p [ - ~ l l ~  (35) 
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A& FIG. equal 3. to a)  k,. Geometry b) Angular of dependence DFG. The of radius the DFG of the intensity: dashed the circle peak is 
in the a direction corresponds to the photon-momentum conserva- -x 

--L 
tion law; the peak in the b direction superposed on the broader 

-kf-k'=b \ 
1 1 \, 

diffuse peak is due to weak localization of the photons of frequency 

6.- - /  kl 
0 1 .  

/, , 
a -22 -r _x _rr n 

2 4 !+ 2 

whereN(h,z) = a (  1 + h )  ( h  + L,/21)p1(h + ( L l  - z ) / l ) .  
The correlator (35)  is isotropic. Nonetheless, it makes 

a strongly anisotropic contribution to the angular distribu- 
tion of the DFG, owing to the presence of a preferred direc- 
tion-that of the wave vector k; of the radiation with fre- 
quency o; : 

where we have as lin -+ 00 

3 o ' k  l2 
J t = F r m ( n )  (Blm-n,n,) ( I t h )  / t ,121E("((ol) j 2 ~ ~ , , 2 .  

k13c3 

With this choice of frequencies, when 

the DFG angular distribution should have two peaks of 
width -A / I  (Fig. 3 ) .  It is easily seen from ( 36 )  that the 
integrated intensity of these peaks does not depend on 1 (for 
I < L ,  ), and their height, according to ( 13), does not de- 
crease as t, -. 0. 

The above contributions (34)  and ( 36 )  to the DFG 
intensity contain no information on the structure of the dif- 
fusion propagator D(r,rf ) and are thus insensitive to Ander- 
son-localization manifestations. This information is con- 
tained only in that part of the correlator (EE *)  which is due 
to interference in the case of multiple scattering, and is deter- 
mined in the lowest order in y by the vertex I?"""" ( 10). 
This part of the correlator is determined by scattered-photon 
trajectories located near the sample surface ( / z (  5 I ) ,  and to 
calculate it we must use in ( 8 )  the Green's functions 
Gij (r ,rr)  that take into account surface terms: 

The second term in the curly brackets of ( 40 )  is expon- 
entially small for jzl$ I and Iz' 1 $1, and describes the surface 
contribution to G(r , r f ) .  To avoid misunderstandings, we 
emphasize that expressions (38)-(41)  define the Green's 
function for a system with a single interface, and the disor- 
dered medium occupies the half-space z < 0. In the cases 
L, $1 we are considering, the contribution to G(r,rl)  from 
the second interface is exponentially small, a exp( - L ,  / I ) ,  
and is not taken into account. 

As a result, using (31)-(41) ,  ( 3 3 ) ,  and ( l o ) ,  we get 
from ( 8 )  ( / p  - p ' J $ l )  

XG. (P,,, z,, 2 ' )  exp[ - 1zi1+1~21 ] 
21. 

( 42 )  

For simplicity it was assumed in the derivation of ( 42 )  that 
the incident light of frequency w,  is s-polarized: 
E"'(w,) = (O;E'O)(o,);O), k,  = (k , , ;O;k, , ) .  Expression 
(42)  is substantially simpler for a quasi-two-dimensional 
system with hl$L,,  when the diffusion propagator 
D( p - p', z , ,  z,) is independent of z: 

G d r ,  r ' )  = (G, j+kl-2V,Vj)G(r ,  r'), ( 38 )  where 

where the scalar Green's function is dq d (q) = (ZL,) -' (q2+n2) - l .  

d2P G ( r ,  r') = 1 G (q, z , z ' )  e iq (P -0 '  ' - 
( 2 n I 2  

(39)  ( 44 )  

with 
A 

In the opposite limiting case of a thick sample, L, $ hl, Eq. 
( 42 )  also reduces to ( 43 ) ,  but then 

G(q, z,  z ')  = A { e i h ~ q l ~ - ~ ' l + r , e - ~ k , p ( ~ + r ' )  

2iki,  1. ( 40 )  h+ ( I f q l h )  k lz /2ki  

( l+ylb, . ,k , ) ' ( l+qh)  
In (391, r = (p,z), ri is the amplitude coefficient of specular 
reflection of radiation of frequency w,  from an inner surface Just as the ballistic contribution (E ) (E *), the interfer- 
of the sample, and ence contribution ( 42 )  to the correlator (EE *)  differs from 

zero only in the surface region jz(, / z f (  5 I .  This is precisely 
ki,2=k,2-q2+ikl/1. (41 ) why it depends substantially on the specular-reflection coef- 
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ficient Ri = I r, l 2  of light of frequency w ,  from the inner sur- 
face of the sample. The main distinctive feature of ( 4 2 )  is 
that it contains terms proportional to 

enp[ -ikl(r-r') ] and esp[-ik,*(r-r') 1, ( 4 6 )  

where k: = (k,,;O; - k , , ) .  The presence of the contribu- 
tions (46) means that in a narrow surface layer of thickness - 1 the average energy flux of radiation of frequency w ,  con- 
tains, besides the ballistic part in the k ,  direction, additional 
energy fluxes in the direction of the vectors - k ,  and k:. On 
the whole, the structure of the interference part ( 4 3 )  of the 
correlator (EE *) is similar to the structure of the ballistic 
part subject to the substitution 

As already noted, the ballistic part of the correlator leads to 
a peak in the DFG angular dependence, in a direction corre- 
sponding to the momentum-conservation law: 

The interference part of ( 4 3 )  should similarly lead to peaks 
at 

It must be noted, however, that for 1 < L, , L , where L is the 
dimension of the illuminated part of the plate, the momen- 
tum uncertainties Ak in the longitudinal and transverse di- 
rections can differ greatly. In particular, condition ( 4 8 )  
should be accurate to within ( A k )  ll - L ' in the longitudi- 
nal direction and ( A k ) ,  - 1 - ' in the transverse one. The re- 
lation ( Ak)  < ( A k ) ,  is valid also for Eq. ( 4 9 )  for sufficient- 
ly large h$L,/Z. In these cases, strictly speaking, the 
positions of the peaks are determined by the components of 
( 4 8 )  and ( 19) along the longitudinal direction x. Here both 
equations in ( 4 9 )  yield an identical condition for the inter- 
ference peak: 

kzx=-klz- klX1. ( 5 0 )  

Note that the condition for the appearance of an inter- 
ference peak ( 5 0 )  and the similar condition k , ,  = - 2k ,, 
for SHG can be obtained from the photon-momentum con- 
servation law in the corresponding nonlinear process, by re- 
versing in this law the sign of the wave vector of the strongly 
scattered radiation. This qualitative conclusion is valid for 
any nonlinear process in a turbid medium. It can be applied, 
in particular, also to nonlinear four-wave mixing processes" 
which are not considered in the present article. 

Thus, the positions of the interference peak correlate 
well with the positions of the ballistic peak and are deter- 
mined only by the incident-light direction and by the disper- 
sion law. The shapes of the ballistic and interference peaks, 
however, depend on entirely different factors. The ballistic- 
peak shape is determined by the spatial coherence of the 
incident light and by the dependence of its intensity on the 
coordinates x and y. The shape of the interference peak, on 
the other hand, contains information on the character of the 
diffusion of photons of frequency w ,  and is determined by 
the value of d ( q )  : 

where 

f 
2 = 
the 

is the area of the illuminated part of the sample in the 
0  plane. It is easy to verify that if ( 4 9 )  is exactly satisfied 
maximum of the interference peak coincides in position 

with that of the diffusion peak. The DFG intensity as a func- 
tion of angle is shown for a small deviation from the exact 
equations ( 4 9 )  in Fig. 3. 

4. CONCLUSION 

We note first that we have discussed above only the 
simplest manifestations of localization effects in nonlinear 
optical processes. In particular, we have considered only 
nonlinear processes in which three photons participate. Yet 
four-wave processes, which are so widely used in solid-state 
spectroscopy, are also undoubtedly of interest. In addition, 
we have calculated only mean values, leaving aside the im- 
portant question of speckles, the aperiodic oscillations of the 
intensities as functions of observation angle, which are typi- 
cal of the sample in question. 

An important feature of the analysis above was also the 
fact that we have taken into account the optical nonlinearity 
only in first-order perturbation theory, and that it served 
essentially as a tool for the study of the structure of a random 
radiation electric field in a strongly scattering medium. The 
interaction between photons of like frequency was disre- 
garded in this approximation. Clearly, however, this interac- 
tion sets in even in the Kerr-nonlinearity approximation and 
its analysis under strong-scattering conditions would un- 
doubtedlybe of great interest. 

In the present stage, however, it is important to carry 
experiments out on the simplest situations and to study the 
possibilities of obtaining, with the aid of nonlinear optical 
processes, fundamental information on the structure of the 
electric field in a strongly scattering medium. 

The authors thank I. V. Lerner and V. I. Yusdon for 
numerous helpful discussions. 
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