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The plane-wave approximation is used to consider one-dimensional propagation of an
electromagnetic field in a parametric system. The field is in an arbitrary state which can be
squeezed or have a sub-Poisson photon statistics. It is shown that spontaneous parametric
scattering plays a fundamental role in determining the light statistics at exit from the system.
Conditions under which light with sub-Poisson statistics can be amplified without appreciably
affecting its quantum properties are pointed out. When the system is in the absorption state, this
ensures that the field has quantum properties throughout the spectral band in which observations
are performed. Some of the states of the parametric system can be used, along with heterodyne

detection, to detect squeezed states of the field.

Parametric systems are probably the most promising
for producing quantum electromagnetic fields. Several spe-
cific systems based on this principle have now been pro-
posed. Despite the large number of publications devoted to
such systems (see, for example, the reviews in Ref. 1), sever-
al questions require further discussion. They include the role
of spontaneous parametric scattering (SPS),? the effect of
the dispersive properties of the medium, nonplane electro-
magnetic wavefronts, and so on. The interaction of the quan-
tum field with media is of great interest at present. One of
our purposes in this paper is to elucidate the possibility of
amplification of light by a parametric system, without des-
troying its discrete properties. It is well known that this can-
not be done with an ordinary resonance amplifier.’

Spontaneous parametric scattering, i.e., spontaneous
decay of pump quanta into signal and idler wave quanta,

plays a fundamental part in the correct description of the’

noise exhibited by light as it interacts with a parametric sys-
tem. It is widely believed that a parametric system is a noise-
less system (see, for example, Ref. 4). On the other hand,
this is completely consistent with reality because the intrin-
sic noise level of the parametric system that is due to sponta-
neous parametric scattering is much lower than, for exam-
ple, the intrinsic noise level of a resonance amplifier that is
due to spontaneous emission. Under working conditions,
SPS generates not only the intrinsic noise of the parametric
system, but also beats with the coherently amplified light.
This interference component is appreciable and has a signifi-
cant effect on the light statistics. It destroys the quantum
properties of light when the latter passes through a reso-
nance amplifier.> In our previous paper,” we ignored this
component and were therefore led to the incorrect conclu-
sion that the limiting value of the sub-Poisson distribution
could be reached.

In the great majority of published papers, the evolution
of the statistical properties of light is described exclusively in
the time language (see, for example, Ref. 6). This approach
gives rise to two difficulties. The first is that the original field
can be specified by one-time correlations alone. It is there-
fore impossible to specify the complete spectral and statisti-
cal state of light on the front boundary of the medium. The
second difficulty lies in the formal replacement of the time
variable ¢ with the space variable z/c when an attempt is
made to take the spatial aspect into account. This procedure

267 Sov. Phys. JETP 68 (2), February 1989

0038-5646/89/020267-05$04.00

(like any other intuitive procedure) is undoubtedly correct
for many problems, but it can also lead to inadequate predic-
tions of the statistical properties of light. The correct space-
time problem must be formulated to avoid this. This was
done in Ref. 5 for the case of the parametric system, using a
specially adapted formalism of the transport equations for
the density matrix of the electromagnetic field.”

In some respects, the problem that we shall consider is
similar to that discussed in Ref. 8, which was concerned with
the transformation of laser generation statistics when a para-
metric cell was turned on inside the cavity resonator. How-
ever, several questions are excluded when we consider the
self-consistent resonator problem. Thus, in the case of the
resonator, we cannot vary the different amplification and
absorption states of the parametric system. It will be clear
from our analysis that, by suitably choosing the transforma-
tion conditions, we can identify a range of possibilities of the
parametric system that are of interest for different problems
in statistical quantum optics.

FORMULATION OF THE PROBLEM AND THE OBSERVED
SIGNAL

We shall consider the experimental setup illustrated
schematically in the figure. Light in the form of the signal
wave (SW) with characteristic frequency w,, produced by
the source S, passes through the parametric system and the
filter F with transmission bandwidth Aw. It is intercepted by
the detector D whose output photocurrent is subjected to
spectral analysis. The output characteristic of this experi-
ment is the quantity® (i=c=e=1)

2
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where S is the surface area of the photocathode, ¢ is the
quantum efficiency of the photocathode, and E *, E are the
electromagnetic field operators in the Heisenberg represen-
tation. The first term in (1) is the photodetection shot noise,
whereas the second term is conventionally referred to as the
excess noise. In the case of the quantum field, the excess
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noise can be negative, so that only the entire expression given
by (1) (and not each term separately) has a physical signifi-
cance.

From now on, we confine our attention to the plane-
wave approximation in which the waves propagate along the
zaxis, and take the positive-frequency operator E in the form

o \* ) 0o \* ,
E(z,t)= —_— t '“z(.___) ihoz
(& 2) ,g'( 2LoS) a(t)e 28 Clatyet,

A
C(z, t)=2 (LL) a, (t) eith=roz 2)
R~Ry °
where the sum is evaluated over wave numbers & in the inter-
val [k, — /1, ko + 7/1), ko = 2mw,. The result is a wave
packet with typical linear dimension / = Ao~ '. The param-
eter L, is the length of the auxiliary volume of quantization,
which is eventually allowed to tend to infinity. The operators
a, and a, " satisfy the commutation relations [a,
a'*]= 5k,k'-
Equation (1) can now be rewritten in the form

{n(z)

i =A R fdrewg(z r)} (3)

The constant A4 is not significant and we shall therefore put
= 1. The parameters g(z,7) and n(z) can be expressed in
terms of the operators C and C *, as follows:

g(z, 1)=(C*(z, t)C* (3, t+71)C (3, t+1)C(z, 1),
n(z)=<C*(2)C(2)>. (4)
The operators C * and C can be interpreted as the pho-
ton creation and annihilation operators at the point ¢ be-
cause they obey the commutation rule [C(z,t),

C *(z,t)] = 1. We shall find it convenient to use the follow-
ing commutation relations for free fields:

[C(z,t), C*(z, t+1)] =e™"6,(1),
E ‘ 1 . Isin(1/21)
—_ gt — 5
18:(x) T, ¢ e w2 )

Ry 0

PHYSICAL MODEL AND BASIC EQUATION

The following equation can be written for one of the
possible variants of parametric interaction:
7} 7} . .
(Z+2)cen=—amcr ), CeH=CE D,
at oz
(6)

A derivation of this equation is given in Ref. 5 and involves
the assumption that the medium consists of fixed atoms that
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undergo a special a«>b transition of frequency 2w, (we recall
that w, is the signal-wave frequency). The medium interacts
with the pump wave which is in resonance with the a<>b
transition. We thus have a degenerate parametric system, in
which the idler wave coincides with the signal wave. More-
over, this is a resonant parametric system because the fre-
quency of the pump wave and twice the frequency of the
signal wave are equal to the a<»b transition frequency. The
right-hand side of (6) is written in the lowest order of per-
turbation theory in the interaction between the signal wave
and the medium. Another important point is that we have
neglected variations in the operators C(z,t) over lengths of
order /. This is equivalent to the assumption that the contin-
uous space scale has been replaced by a discrete scale with a
characteristic parameter /. This means that we have to con-
sider the photon creation and annihilation in the corre-
sponding cell and not at a point. Equation (6) must then be
looked upon as written on a “‘coarse” spatial scale.

The coefficient A in (6) represents the effectiveness of
the interaction between the signal wave and the parametric
system, and is given by

A='1,in A, (z,t)a, (z,1),

where a, is the dimensionless complex amplitude of the
pump wave and 4, is the saturated coefficient of amplifica-
tion (absorption) of the medium for the pump wave. The
quantity x = [, /8., is the ratio of two-photon to one-pho-
ton interactions, which has the following explicit form:’

'
g1 215) due™,

fab__z gungnb[ ! ]

(l)a«,;—‘(l)

It is also assumed for the medium that the widths of the
levels that combine with the field are formed largely as a
result of decays to other levels. These widths are assumed to
be equal and to coincide with the transverse relaxation con-
stant. An incoherent system capable of exciting the working
levels is assumed to be present in the medium, so that, in the
absence of external electromagnetic fields, the levels have
their stationary populations.

Strictly speaking, the presence of the filter in front of
the detector (see figure) does not free us from the necessity
of taking into account in (6) not only the one selected quasi-
mode, but also all the others, since the parametric interac-
tion process is nonlinear, and the selected mode may be af-
fected by the others. However, this coupling is determined
exclusively by the phase matching conditions: the coupled
waves are those with wave vectors k, and k, such that
k, =k, + k,, where k,, is the wave vector of the pump wave.
Since the mode with wave vector k, = k, /2 is selected at the
photocathode, it can only interact with itself,

The choice of the magnitude of Aw is dictated by two
conditions. First, this width must be much greater than the
characteristic spectral width of the incident light. Second,
we have ignored the dispersion relations typical for paramet-
ric systems, so that Aw must be much smaller than the corre-
sponding spectral scale.
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LIGHT AMPLIFICATION COEFFICIENT OF THE PARAMETRIC
SYSTEM

If we assume that the pump wave is nonfluctuating and
monochromatic (4 = const(#) ), the solution of (6) at entry
to the parametric system is

C(z, t)=C(0, t—z)ch p+C* (0, t—z)sh ue®. (7)

The quantity
w= 210 |dz' =t (|, (2 |~ 2, @) )>0
0

determines the efficiency of parametric transformation and
is uniquely related, as we shall see, to the efficiency of pump-
wave transformation. The phase

o=arg A=arg (@, + x)+n/2

is the pump-wave phase, except for an unimportant additive
component.

The operators C(0,7) and C * (0,?) at entry to the medi-
um satisfy the commutation relations given by (5) for free
fields. Any average can now be constructed with the aid of
(7). In particular, the signal-wave power liberated at the
photocathode is

P(z)=K(2)P(0)+Pp(2). (8)
The quantity
K (z)=ch 2p+sh 2y cos @, 9

which we shall call the amplification coefficient of the para-
metric system, determines the coherent transformation
(amplification or absorption) of the initial light by means of
P(0). The second term in (8), namely, P,, = w,Awshu, is
the SPS power liberated at the photocathode within the
bandwith Aw. The expression given by (8) takes into ac-
count the fact that P(z) is related to the number n(z) of
photons per cell: P(z) = o,/ ~'n(z).

' The phase ® = $, —2¢ is equal to the difference
between the pump-wave phase and twice the phase of the
signal wave @. Its choice determines the different working
states of the parametric system. When ® = 0, the parametric
system is an amplifier with amplification coefficient
K = e**. We then speak of null amplification. Conversely,
when ® = 7, we have absorption (-absorption) with am-
plification coefficient K = e ~ **. We are interested in a par-
ticular absorption state for which ® = 7 + ¢, and the magni-
tude of £ is much less than unity but, at the same time, still
quite large: e = ** £ <1 for u> 1. We then have

K (z) =/ g%,

The absorption state for which e = ** <£? €e ~ % will be re-
ferred to as g-absorption.

The transparent state of the parametric system, which
arises for cos ® = — shu/chu is also interesting. It is readily
verified that we then have K = 1.

REPRESENTATION OF g(z,7) IN TERMS OF THE
PARAMETERS OF THE SIGNAL-WAVE SOURCE

Several types of correlator arise at entry to the paramet-
ric system when (7) is substituted into the fourth-order
average given by (4). In addition to the normally ordered
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average (C *C *CC ), we acquire, for example the average
(CCC *C ™) with the antinormal ordering. There are also
terms that are sometimes referred to as anomalous, namely,
(CC *CC),(CCCC)), etc. (see Appendix). These averages
refer to the front boundary of the medium, and the operators
in them commute in accordance with the rules defined by
(5).

We shall suppose that a single-wave laser is the source
of the initial radiation, which can be ordinary classical radi-
ation with Poisson or super-Poisson photon statistics, or can
have discrete properties such as sub-Poisson statistics or a
squeezed state. Existing theories of such systems (see, for
example, Refs. 8 and 9) then enable us to construct all the
averages. However, we then encounter the problem of how
to relate the required correlators at entry to the parametric
system with the cavity averages for the laser. The correspon-
dence principle provides us with a recipe for doing this: an
average with normal and chronological ordering of the oper-
ators

KE*(t1) .. .E*({)E(tn') ... E(t)>, t<... Lnytn'> .. 08

on one side of a semitransparent mirror will retain its form
on the other side, and can be expressed in terms of the origi-
nal average, just as in classical electrodynamics in which the
field £ transforms in 7E on passing through the mirror,
where T 'is the transmission coefficient. This can also be stat-
ed in the form of a theorem (I. V. Sokolov and M. 1. Kolo-
bov). Thus, all the correlators on the front boundary of the
medium in the expression for g(z,7) must be suitably or-
dered, so that they can be expressed in the simplest way in
terms of the source averages (which are also given in the
Appendix). The result is the following expression:

1=%g (3, 1) =C"g, (1) +Cg:8,(1) +g4d (1), (10)

where

go=N.p*tNpEep, nop=sh*p, E,p,=ch?y,
g1=4Knn,+ (K—1)n,
g: (1) =Kn[KEg exp (—T.1) +4ny? exp (—Ty1) sh? 2p sin @]

in which # is the stationary number of photons in the cavity,
& is the statistical parameter characterizing the mean square
fluctuations in the number of photons in the cavity,
(n?) —(n)? = (n)(1 4+ &), ¢ is the mean square fluctu-
ation in the phase of generated radiation, I', and I, are the
spectral widths of the photon and phase fluctuations, and C
is the cavity width (rate of escape of the field from the cav-
ity). Terms independent of 7 are discarded in (10).

ROLE OF SPS IN THE EVOLUTION OF THE STATISTICAL
PROPERTIES OF LIGHT

The quantity g, in (10) is related by its origin to SPS
and determines the intrinsic noise of the parametric system
in the bandwidth Aw in which observations are performed.
As already noted, this component plays a relatively unim-
portant role. The quantity g, is due to beats between the
coherent component of light and SPS. The term g, deter-
mines the intrinsic noise of the coherently amplified (ab-
sorbed) light.

We assume that there is no SPS, i.e., g, =g, =0. We
then have
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I72g (2, 1) =C*KnKEg exp(—T,7)

(for simplicity, we take ¥? = 0). However, this means that
the parameter £ transforms into K¢ at exit from the paramet-
ric system, and becomes negative if £ < 0. On the other hand,
because of its significance, it cannot be less than — 1. It can
be verified that, by including the interference term g,, we can
remove this type of difficulty. We may therefore conclude
that SPS must be taken into account not only to achieve the
correct quantitative estimates for the effect, but also from
the fundamental point of view.

Let us now substitute (10) into the original formula
given by (3), so that the photocurrent spectrum becomes

i =T+l +qica +giln, (11)

where the photocurrent shot noise
i=P(z)=KP(0)+P,p

is independent of frequency and is proportional to the power
released at the photocathode. The SPS noise (the intrinsic
noise of the parametric system)

i =P,p(sh® p+ch? p)

is also independent of frequency within the bandwidth Aw in
which the observations are made. The noise of the coherent-
ly amplified (absorbed) light

CT.  8nmy® (T,

.(2)
con =KP 0[ K +
- beok Of2 EI".,z—l-m2 K T+’

4 ch®p sh®u sin? (D]

* has characteristic resonance frequencies due to their pres-
ence in the original light noise. The interference noise

i{2 = KP(0)-4sh’u + P(0) (K — 1)

int
is also independent of frequency within the band-width Aw.

It is readily verified that, unless SPS is taken into ac-
count, the quantity />, known to be positive definite may, in
fact, become negative.

Finally, one important point: the presence of the second
term in the interference noise indicates the statistical depen-
dence of SPS and the coherently amplified field.

AMPLIFICATION OF LIGHT WITH SUB-POISSON PHOTON
STATISTICS

We shall now show that, in the null amplification state,
the parametric system can produce a substantial increase in
thelight power without fundamentally affecting its quantum
properties (in particular, the sub-Poisson statistics). As al-
ready noted, this cannot be done with an ordinary resonant
amplifier.

Wesshall take the laser described in Ref. 10 as the source
of initial radiation. For this system

é—:I-l___i Vb
2 7/0 +7/b
=0, =CI(1+1)"",

where 7 is the dimensionless generated power and ¥, and 7,
are the widths of the upper and lower working levels of the
laser system. The limiting values § = — 1,T", = C are ob-
tained as ¥, -0 (since /- ).

We must now write down (11) for the null amplifica-
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tion state (® = 0,K = e** ), substituting ¢ = 1 and demand-
ing that y, €7,

@) p 2 +KP [ C? o? ]
=2 KR O 8 T K per |

S=K(1+T)Ya/vI, T=IYa/Ys. (12)

Since w € C, the noise level remains substantially below
the shot level, provided

P, (2)<P(0), o<1 (13)

(we are considering only effective processes for which
u>1). If the first condition can be satisfied easily, the sec-
ond is not always satisfied by far because the ratio v,/ is
small and is readily compensated by factors such as the am-
plification coefficient K or the quantity 7 ~', which, in con-
trast to I, can be small.

Conversely, when w > C, the noise level becomes much
higher than the shot level (within the bandwidth Aw) and
amounts to ~K 2P(0).

The ratio of the noise level for w < C to the shot level is
of the order of (I>1) K¥,/y,. The parametric system is
thus seen to destroy the quantum properties of light. Never-
theless, they remain well defined provided the conditions
given by (13) are satisfied.

SUPPRESSION OF SHOT NOISE IN THE OBSERVATION
BANDWIDTH Ao

Let us now consider the 77-absorption by the parametric
system, for which K =e ™ 2¢ and (12) remains valid. When
®>C, the noise level is determined by the quantity
2P, ch’u + K *P(0), and its ratio to the shot component for
P, <P(0) is K<1, ie, definitely small if there is effective
absorption. The quantum effect is observed in a wide band
Aw, and is essentially independent of the statistical proper-
ties of the initial laser radiation.

For frequencies o < C, that are characteristic for the
excess noise of laser radiation, the reduction in the noise
level relative to the shot level continues in the case of 7-
absorption until the quantity KP(0)$ falls to 2P,, ch’x, and
then begins to increase. An analogous increases will, of
course, occur for w > C, as well, but later, depending on how
small the ratio y, /¥, is.

TRANSPARENT PARAMETRIC SYSTEM—A DETECTOR OF
SQUEEZED STATES
(2)

Wenow turn to (11) or, more precisely, to the term i;, .
It contains two resonances at zero frequency, of which the
first is proportional to & and is due to fluctuations in the
energy of the initial light, and the second occurs only when
the source of light (in our case, a laser) contains some stabi-
lizing factors that force the field phase into oscillations about
its mean: ¢ — @ < 1. The first resonance carriers information
about, for example, the sub-Poisson statistics, and the sec-
ond about the squeezed state (for negative values of £ and
#?). When the parametric system is absent, and light
reaches the photocathode directly, it is readily seen that, by
putting £ = 0 in (11), we retain the information about the
sub-Poisson distribution, but information about squeezing is
lost.

Thus, if the initial state is squeezed, it does not directly
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manifest itself. One way of detecting the squeezed state is to
perform heterodyne reception whereby this squeezed state is
transformed into a state with sub-Poisson statistics, which
can then be detected directly. Another method is also implic-
itin our analysis. A transparent parametric system (i.e., one
with K = 1), which can be established by observing the con-
dition cos ® = — sh u/ch y, is inserted into the path of the
squeezed light. The photocurrent spectrum (11) then as-
sumes the following explicit form (g = 1):

— CT
+ 4 sh? ( +8nyt ——— )]
it 4 sh® p\ 1+8ny Tt/

We thus see that the transparent parametric system can
serve as a means of detecting a squeezed state. To estimate
the situation quantitatively, we must take a specific source of
light. Suppose that this is a laser with a parametric cell, or a
resonant parametric generator.®'' These sources can gener-
ate squeezed light for which 8z > = — 1, T, € r,=cC
Consequently, when I', <@ < C, noise remains at the shot
level, whereas, for o > C, it rapidly grows for 4> 1, remain-
ing constant in frequency within the bandwidth Aw. The
presence of the valley in the spectrum up to the shot level is
wholly due to the squeezed state of the initial electromagnet-
ic field.

i =p(0) [1+2§

SUPPRESSION OF SHOT NOISE DURING ABSORPTION OF
SQUEEZED LIGHTBY THEPARAMETRIC SYSTEM

The transparent parametric system will in no way en-
able us to use squeezed light for practical purposes, e.g., to
increase the precision of optical measurements. As already
noted, this essentially distinguishes this type of detection
from heterodyne detection, in which the sub-Poisson distri-
bution is produced. However, the parametric system can be
used for these purposes. Consider g-absorption. It occurs for
® =7+ when e * ge2<e . Let €2 =e~**, so that
K = e~ */4. As aresult, the expression for /> becomes

- +e2“(1+8n\p2 . )]
T to? Totor
i

Suppose now that the source produces squeezed light: 8 ¢~
~ —1,T,<T, =C. It is clear that, for frequencies in the
range I', < w < C, the noise level will be approximately zero,
so that the shot component of noise will almost completely
cancel out. On the other hand, for frequencies @ > C, the
noise will substantially exceed the shot level because of the
presence of the factor e**.

Hence e-absorption by the parametric system can be
used for precision optical measurements along with the
method of heterodyne detection. In some respects, the para-
metric method is simpler because, for example, it is not sub-
ject to power limitations.

(2) 1
l'(,, =KP (O) [—9— §e‘“

APPENDIX
After substitution of (7) in (4), the expression for
g(z,7) becomes
g (z, 1) =ch' u<C,*C.*C.C > +sh' u<C,C.C,*C,™>
+sh® peh? p[<C,C,*C.C > +LCHC.C C o
+((C.CLLC e 2 ™ +(C,C.7C.HC D> Free.) |
+sh pch? u[<C*C,C.C e~ +<C,C,* C.C Ve~ P+ h.c.]
+sh® weh n[<C,C.Co*C > e~ +<C,C.C.C e+ h.c.],
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where the subscripts 1 and 2 on the operators refer to times ¢
and ¢t + T, respectively. The relationship between the corre-
lators at entry to the parametric system and the cavity aver-
ages of the source is given by

(Cy*C,C,C»=(Cl)¥a,*a, asa,),
(C,C.C.HC,")=(Cl)*a, a, a,a,>+1%5,(T)
+(CI16,(7) [Ca,*a>+<a a ],
(C,C.HC.C,"H>=(C\C:C,7C > —(Cl) Ka, T a,>—1,
(C,*C.L,HCo=(Cl)¥a, a, a,a>+(Cl) <a,Tay,

' <C\C,C,C»=(Cl)¥a,aa,a,?,
(C.C.*C,*C>=(Cl)*as*as*aa > +2(CL)18,(7) ay*tay>,
KC,*C.C.CH=(Cl)¥a,Taaa,>,
(C\C,*C.L>=(Cl)as*ara,a )+ (CL)16, (1) <az.ay),
C,C.C,+C»=XCC,*C:C P+ Clayay,
(C,C.C,C,H=(Cl)Xa,"a,a,a>+2(C1)18,(7) aza>.

where C is the cavity width.
It follows from the results reported in Refs. 8, 10, and 11
that the internal cavity correlators are given by

{a,*a.*a,a,>=n*+nke'e",

{@aa:000,> = [P+ nEe T —4nt (1+eTo%) | €@,
{a:*as*a,a> =n*+nEe T —4ny? (1—eTo),
€a,*a,0,0,> =[n“+2n P +nge-To*] e*o,

{asta.a,a,>=<a,*aza.a,>,

Catady=n+[E (1—e %) —ny? (1—e-TyT),

@) =[n—"1& (1—e~") —na (1+¢77¢") |2,
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