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The operations of cutting and sewing Riemann surfaces allow one to express the path integral on a 
Riemann surface in terms of integrals over its pieces, which are Riemann surfaces with 
boundaries. This yields an expression for the determinant of the Laplace operator on a Riemann 
surface in terms of the Krichever maps for its pieces. Possible applications of the proposed 
methods to the investigation of the string perturbation theory series in terms of the universal 
modulus space are indicated. 

I. INTRODUCTION 

Open Riemann surfaces (i.e., Riemann surfaces with 
boundaries) are of interest in string theory for a variety of 
reasons. The most obvious subject is perturbation theory for 
open strings in the formalism of "first quantization." Other 
applications are string propagators and correlators (correla- 
tion functions), which are defined as integrals over open 
surfaces with prescribed boundary conditions. A third sub- 
ject is related to mappings of the Krichever type, which es- 
tablish a correspondence between open Riemann surfaces 
and the points of certain infinite-dimensional Grassmann 
manifolds. 

The Krichever mappings define certain special coordi- 
nates on the modulus spaces given by the A matrices (de- 
fined below in Sec. 2).  The use of these matrices is not free of 
problems, since the matrices A depend on the choice of co- 
ordinates on the Riemann surface. However, in our opinion, 
at the present stage of development it makes sense to do some 
calculations in terms of these matrices. We have shown re- 
cently in Refs. 1, 2 that by means of A one can relate the 
determinants on open surfaces and their doubles, and thus 
express the measures for open strings in terms of the Mum- 
ford measures for closed strings. (Similar relations were ob- 
tained by means of other methods in the papers Refs. 3 . )  

In Refs. 1 and 2 the matrix A was used in the intermedi- 
ate steps of the calculations but did not enter into the final 
result. Now we intend to use the technique of Refs. 1 ,2 de- 
rive expressions for the string propagators, in which A oc- 
curs explicitly. We thus obtain expressions for the determi- 
nants in terms of the matrices A .  Unfortunately, these 
formulas depend on the genus of the surface. Therefore, be- 
fore applying them to the construction of the string measure 
on the universal modulus space in terms of the two-dimen- 
sional field (as proposed in Ref. 4) ,  one has to handle some 
additional problems which are posed in Subsection 3.4. In 
spite of this, the resulting formula looks quite attractive and 
we think that the proposed approach deserves further study. 

phic Z2-isometry 6-6 *, such that S = D /Z2.The Z2-invar- 
iant points of D form the boundary JS so that 
To + . . . + TM are geodesics of the Z,-invariant metric on 
D. 

Another closed Riemann surface 3 of genus p, is ob- 
tained from S by gluing on ( M  + 1) hemispheres (disks) 
do. - .,dM to the components To,. . .,I?, of the boundary. Let 
l,,, be a complex coordinate on S, such that T, coincides 
with the circle 16,,, l 2  = 1 and d, is inside the region 
ll,,, 1 ~ 1 .  

We now consider the space of holomorphic functions on 
S. They can be expanded in terms of a basis consisting of 
functions which have meromorphic continuations to 3. The 
basis can be fixed by prescribing the principal parts of these 
functions on d, . More precisely, we represent the holomor- 
phic function F on S in the following form 

where the basis functions f 2' have the following behavior 
near r, : 

m 

The matrix A = { A  2,"') (considered as a matrix consisting 
of ( M  + 1 ) 2  infinite-dimensional blocks) will be the central 
object of our discussion.'' One can similarly describe the 
space of sections of any line bundle over S, e.g., the bundle of 
j-differentials. We also note that the space of functions 
(j = 0)  is closed with respect to multiplication, i.e., the func- 
tions form a ring, whereas the sections of other line bundles 
are modules over that ring. This property of holomorphic 
functions appears to be quite essential. In particular, this is 
what distinguishes the matrices A corresponding to Rie- 
mann surfaces in the space of all possible matrices of that 
type. However, the details are outside the scope of the pres- 
ent article. 

2. EXPRESSIONS FOR THE STRING PROPAGATORS The matrix A satisfies the important relation 
We recall the main ideas of Refs. 1 and 2 in a form (w) 

suitable for the discussion that follows. We consider a Rie- n~m(y'= mA,, , (3  

mann surface S withp, handles and an ( M  + 1 )-component which follows from the relation 
boundary JS = To + . . . + TM . Two closed Riemann sur- 
faces are associated with S. II1 

The first surface D is the double of S, i.e., a closed Rie- $ fdp) dfjV) e $ fr' df:.) =o. 
mann surface of genusp, = 2p, + M with an antiholomor- as L-o rx 
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Indeed, f $'d f is a holomorphic 1-differential on S, and 
the integral of any closed form over a null-homologous cycle 
vanishes. 

We consider the contribution of scalars on the world- 
sheet to the string action. For this purpose we calculate the 
integral. 

with respect to the anticommuting fields @,@ with fixed 
boundary conditions on as: @ /  ,@ = 4,. We parametrize the 
boundary conditions in the following manner: 

- 
(note that on r,l,,, = 6 ~f ). 

There exist two important orthonormal bases which 
agree with the norm I(@II: the first consists of the eigenfunc- 
tions of the Laplacian, and the second consists of 13 functions. 
In the second basis the integral ID for the surface D split into 
its parts S, can be represented as a product of the I,, integrat- 
ed in a certain manner over the boundary conditions. Here is 
an important example of such a relation: 

for the double D = S + S * of an open Riemann surfaceS(S * 
is a second copy of S equipped with the opposite complex 
structure). The norm IIq51(' of the fields q5 on the boundary aS 
is determined by a contour integral along dS, whereas ll@jI2 
is expressed in terms of the integral over the surface S. (We 

- 
also note that I,. = I,, and ID = detrDA0/det No). The 
equation (6)  expresses a naive unitarity property in the first 
quantized formalism. (I t  is clear that some effort should be 
made to relate this condition with the usual unitarity con- 
cept, in the spirit of second quantization.) 

Since it is easier to compute the integral (6)  in the or- 
thonormal basis {lG)",$G)"} for the boundary conditions on 

it is reasonable to express IS{4) in terms of the coefficients 
{cF',d ?)). For this purpose one must find the (unique) 
solution of the classical equations of motion, i.e., the har- 
monic function @,, on S, satisfying the boundary conditions 

Then by means of a change of variables the integral (4)  re- 
duces to the integral I,{O} with respect to the fields 

which vanish on the boundary. We introduce a natural nota- 
tion for this integral: 

It is clear that the integral equals the determinant of the 
Laplacian with zero boundary conditions on S and at the 
same time it coincides with product of the eigenvalues of the 
Laplacian on the double D, corresponding to the Z,-anti- 
symmetric eigenfunctions. We therefore have 

Is {@) =Is {O)exp S,, {@) =detsA- oxp S,, {d) .  ( 7 )  

Here 

is the value of the action on the classical solution @,, . Ex- 
pressed in terms of the expansion ( 5  ) the classical action S,, 
becomes a quadratic function of the Fourier coefficients 

h 

where the matrix M depends only on the Riemann surface S 
but not on the boundary conditions. 

We now plan to express the matrix M in terms of the 
matrix A introduced in Eq. (2) .  Such a representation is 
quite natural, since any harmonic function @,, (l,$) can be 
written locally as a sum of a holomorphic and an antiholo- 
morphic function. However, these functions need not admit 
continuations to global single-valued functions. Therefore 
we have globally on S 

where F, G are single-valued holomorphic functions on S 
and H i s  a linear combination of integrals 

(here wN is a basis of holomorphic 1-differentials on the 
double D) ,  which is a single-valued function on S. The con- 
tribution of the functions H, which will be neglected in most 
of the cases below in order to simplify the formulas, is re- 
sponsible, in particular for factors such as the volume of the 
Jacobian in the determinant  formula^.'.^ We reintroduce 
these contributions in the final answers, without entering 
into the technical details (cf., e.g., Ref. 2). 

The globally defined holomorphic functions F, Gin Eq. 
(8)  can be written in the form of the expansions ( I ) ,  (2 )  
considered above: 

Making use of Eq. (2)  we obtain the following formula for 
the action on the classical solution a,, = F + c: 

= 6''' (id, -  aid,^^") a $. 6" (ia, - Aia ,d f r )  b 
= a i 1  ( 1  - A A )  id,a + 6 " ( l  - AA) i8,b . (10) 

243 Sov. Phys. JETP 68 (2), February 1989 A. Y. Morozov and A. A. Roslyi 243 



In the last equations we have used matrix notation). We 
have made use here of the relation ( 3 ) which in matrix form 
looks like 

Adt=drAtr. 

The superscript tr denotes matrix transposition and the ma- 
trix 

dl=-i{m8'"'8,,) 

can be interpreted as the operator of differentiation along the 
boundary. 

In order to determine S,,{c,d) one must express the 
right-hand side of Eq. (10) in.terms of c:',d 2'. The equa- 
tions (2),  ( 5 ) ,  and (9)  appliedto#,,, = ( F + ~ ) I , , ,  yield 

or, in matrix notation, 

(clr, dlP) = ( a f r ,  blr) 

1  A  \ ( I  -- AA)-I 
(a", bf') = (c", dtr)  (- A ) ( 0 

Substituting these expressions into Eq. ( 1 ) we obtain for the 
action 

S., (c ,  d ) -  (c f r ,  d r ) 9 i a l  ( cd) , (1 la)  

where 

0 1 (-IA ;A) ( ( I  -RA) - l  - 

( i - A A ) - l ) ( - A  - ; ' l i d t  

( 1 - A A ) - 1 ( 1 + A A )  - 2 ( l - A A ) - l ~  ' 
= ( - 2 (i - AA)-l  A  ( I  - AA1-l ( I  + A A )  ,) id,. 

In the derivation of Eq. ( 11 ) we have made use of the rela- 
tions 

atAtr=A& 

and 

The equations (7)  and ( 11 ) form the basis of the discussion 
that follows. 

We note that the functional 

may be considered as a generalized string propagator (gen- 
eralized, since it corresponds to the correlator not of two, but 
o fM + 1 structure states on the boundaries To, ..., T, of the 
world sheet). It is important that we have defined it only for 
a limited class of metrics on S, since the curves T,, are as- 
sumed to be geodesics. 

3. SOME APPLICATIONS OF EQUATION (1 1) 

The expression for the string propagator given by Eqs. 
(7)  and ( 11 ) can be used for solving various problems in 
string theory. We discuss below some of these applications. 

3.1. Open strings 

The most obvious application, already considered in 
Refs. 1 and 2 is to the theory of open strings. In this case 
scalar fields on an open Riemann surface S with vanishing 
normal derivatives on the boundary are of interest. The cor- 
responding determinant of the Laplacian, detf,A+ can be 
expressed in terms of the determinant det', A on the double 
D and Is{O,O) = det, A -. Specifically, 

detD' Aldet NO=detsf A+/det No dets A-. (12) 

It is known that the left-hand side of this expression equals 

detD' A 
-= (det Im TD) I d e t ~  dl exp (S,) . 

det N ,  

Here T, is the period matrix of the double and S, is the 
Liouville action. The volume of the Jacobian 

det Im TD= V+ V- 

equals the product of its Z2-symmetric and its Z2 antisym- 
metric subtori. As was already mentioned, in this paper we 
shall not worry about factors like V +  , but will simply intro- 
duce them into the equations without dwelling on the details 
of the derivations (these can be found in Ref. 2).  From Eqs. 
(6)  and (7)  we conclude 

det' AD/detNo= (dets A-) ' I  04  DJ e r p ( Z ~ ~ , { $ ,  a)). 
The integral in the right-hand side of this equation is easily 
computed by means of equation ( 1 I ) ,  and we obtain 

det' AD/det No det I111 TD= ( d e b  A- /V- )ZRZ,  ( 14) 

where 

As can be seen from Eq. ( 1 1 b)  , det S = co , R is a divergent 
constant which is unimportant for most applications, ex- 
cept, perhaps, the problem of relative normalization of sur- 
faces of different topology. (For a given p,  R depends only 
on the number of components of the boundary.) We con- 
clude from Eqs. ( 12) and ( 13 ) that 

dots A-=R-'8- I det, esp ( i / 2 S s ) ,  (16) 

det,' A+ -- - RV+ I detD 3 I e xp  ( ' I~S,). 
det No 

The measure on the modulus space, which is determined by 
the ghost determinant, is equal in the theory of open strings 
to 

where 3, is the 3 operator acting on quadratic differentials. 
The equations ( 17) and ( 18 ) allow one to express the open 
string measure in dimension 26 in terms of the Mumford 
form 
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where the measure (det,d) - I 3  detDd, is in fact real and the 
modulus sign may be omitted. The perturbation theory se- 
ries for open strings can thus be written in terms of well- 
studied quantities from the theory of closed strings. Since in 
the final form the result ( 19) does not contain the matrix A, 
the equation (19) can also be derived by means of other 

which make no use of Eq. ( 1 1 ). We now look at 
more interesting applications of the latter equation. 

3.2. Determinants on Riemann surfaces in terms of the matrix 
A 

In the preceding subsection we have discussed the rela- 
tions between the determinants on open Riemann surfaces 
and those on their doubles. We now consider a similar rela- 
tion between the determinants on an open surface Sand  on 
the closed surface Sobtained from S by gluing caps d,, on all 
the components r,, of the boundary 6's = To + - .  . + r,. 
In this case the relation analogous to Eq. (6)  has the form 

Here 

I , { @ )  =acts  A- e x p  s=, {c ,  d )  

where S,, is defined in ( 1 1 ), and I,,, {&,,,, ) are similar func- 
tional integrals over the disks d,,, 

rn 

Id u { @ , . , ) = I d p { e ( ~ ) ,  d('")= d e t d p A  exp L n ( l  c.'"' I '+ ld.''" 1') .  

The determinant detdwA- on a disk with vanishing 
boundary conditions reduces to the exponential of the Liou- 
ville action. These determinants can be omitted if we agree to 
introduce some fixed metric on the disks, for example the 
metric of a hemisphere. The equations (20) and ( 11 ) yield 

de tg 'A  de t sA-  -- - 
de t& 

d e t  {(3 + I )  id,} = R 
d e t g N o  v- V -  d e t  ( 1  - A i i )  

Recalling that the determinant d e t s A  can be expressed in 
terms of the determinant det', A by means of Eqs. ( 14) and 
( 15), we obtain from Eq. (2 1 ) a relation between the deter- 
minants on closed surfaces of different genera: the genus of 
is equal to p,, whereas the genus of D is equal to p, 
= 2ps + M. 

The simplest example is the case p, = 0, p, = M. In 
this case the surface 3; is found to be a sphere and det6A 
reduces to the Liouville factor. In this situation we obtain 
from Eqs. ( 16) and (2 1 ) , neglecting the Liouville factors: 

This relation determines det d only on the real subspace (of 
real dimension 3M - 3) of the modulus space d,-the 
subspace of doubles. However det 3 on the whole modulus 
space A, can be uniquely reconstructed by means of ana- 
lytic continuation. 

As an example we carry out the computation using Eq. 
(22) for the simplest casep, = M = 1. In this case the sur- 
face S is a cylinder which can be defined as the region 
r <  I z I  < 1 on the sphere 5. (The double of this cylinder or 
annulus is a torus D = T, for which the usual parameter 
r = it is related to r by means of r = e"'. We recall that the 
tori, being doubles, have Re T = 0.) In accord with the rules 
from Sec. 2 we choose the coordinate {, = l/z on the disk 
d, ={lzl>l) and {,,, =z/r on the second disk 
do = {lzl <r). The basis functions have the form 

Consequently the matrix A equals 

with the other elements vanishing. Therefore 
OD 

d e t  (I - A A )  = [I1 (1 - rz")]'. 
71=1 

In order to obtain an exact formula for det,J on the double T 
of our cylinder it is necessary to reinsert the omitted Liou- 
ville factor in Eq. (22). If the torus and the cylinder are 
equipped with the flat metric, the only contribution to this 
factor is related to det$/detN, in Eq. (2 1 ). In order to obtain 
the exact formula for det,d on the double T of our cylinder, 
one must reinstate the omitted Liouville factor in Eq. (22). 
If the torus and the cylinder are equipped with the flat met- 
ric, the only contribution to this factor is related to 
det$A/detN, in Eq. (21 ) .  In reality Eq. (21 ) is valid for the 
following choice of metric on the sphere 3. For Izl c r  and for 
/zI > 1 this is the standard metric of the unit hemisphere, and 
in the region r< /z( < 1 which corresponds to the cylinder un- 
der consideration, it is the flat metric Id ln z12. (The metrics 
agree for lzl = rand for lzl = 1. ) Now detiA/detN, reduces 
to the Liouville factor exp S, corresponding to the interpo- 
lation between the metric we have just described and the 
standard metric of the unit sphere. The factor is easily com- 
puted and equals S, = f, In r so that we obtain, finally 

in remarkable agreement with a direct calculation of this 
determinant. Here 7724(r) is the Dedekind function. The for- 
mula holds for the whole modulus space d, if one considers 
it to be analytically continued to complex values of r = e'"' . 
This example shows that Eq. (22) may be considered as a 
generalization of the representation of the one-loop determi- 
nant in the form of an infinite product. If a, are the eigenval- 
ues of the matrix A and t ,  = a ' l n l a ,  1, then 

d e t D  a - d e t  (1 - A d )  - (1 - la, 12)  - n (m + it,). 
n 1 1 ,  111 

Note, however, that at its best the expression (22) for det d 
in terms ofA is in good agreement with the global behavior of 
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det 3 on the whole modulus space only for specially chosen 
coordinates. (It is clear that the matrix A introduced in Eq. 
(2)  depends on the choice of coordinates cp near T, . ) As an 
illustration of possible complications we consider a cylinder 
embedded in a sphere as the region 

{121<1, IZ-Q1>rQ) C O<rQ<l-IQI. 

(The case considered above corresponds to Q = 0.) Then 

T;(m)=l/z, T;<Q)=(Z-Q)/ZQ 

and 
n 

where the binomial coefficents have been denoted by C :  
= I ! /k  !(I - k)!. The nonzero elements of the matrix A are 

A,( ,Q,~)  ,cn-' Qm-nrQn, 
m-i m a n .  (24) 

(As before, it is easy to verify the relation mA ;iQ = nA 2: .) 
We now have 

.. 

1.2r2 2.3i-4 det  (I - AA) = II (1 - r$)2 {I - I 12[---- + 
?I =I 1 - r 2  1 - r 4  

Of course, it is clear from the outset that det ( 1 - A]) can be 
written as an infinite product 

m 

det (I - All)  = TI (1 - FZn)2, (25b) 
71=1 

where the relation between ? and rQ can be defined in the 
following manner. One must make the change of variables z 
-2 on the sphere, transforming the circles lzl = 1 and 

I Z  - Q I = rQ respectively into 121 = 1 and 121 = Ffor some F. 
The general transformation of the sphere which leaves the 
circle /z /  = 1 in place has the form 

and the general transformation which maps the circle 
IZ  - Q I = rQ onto 121 = ? is 

with some complex Pand S. Equating (26a) and (26b) one 
can determine P, Sand F in terms of re .  More precisely, one 
obtains a quadratic equation for F: 

from which it follows that 

in agreement with Eq. (25a). 

3.3.The sewing of open Riemann surfaces 

Until now we have considered only two examples where 
the sewing of open Riemann surfaces leads to a closed sur- 
face: ( i )  D = S + S *  and (ii) 3 = s + d O +  e . .  + d M .  Of 
course, one can use the same method to analyze any sewing 
together of surfaces and one can derive relations among dif- 
ferent determinants. 

We note that the process of sewing together a closed 
Riemann surface out of one, two, or more open ones adds 
free parameters. Specifically, for each pair of identified com- 
ponents of the boundary, T, T there appears one twist. In 
terms of the boundary conditions $(,, (0 and q5(r) (g) a 
twist means that one can set 

In terms of the Fourier components 
- 

@,?) = cn%-n + dnZ-n 

on T and 

on r, we have 

Below we shall use the notation 

We give another illustrative example. We consider two 
different cylinders C,  and C, parametrized by r ,  = e-"'~ 
and r, = e sew them together into a torus T. Then 

We obtain the relation 

I, ar det 'C A- det A- det (.Yc;tUe+Pc2Ue). 
c2 

The factors det,, A in the right-hand side of this relation 
have already been considered in Section 3.2, so that we can 
use the result 

m 

Making use of the matrixes A defined by Eq. (23) we find for 
the cylinders C ,  and C, 

m 
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where S,, and U, are block-diagonal matrices consisting of 
4 X 4 blocks corresponding to the variables 

(O' (,',d ?',d l " ' ) .  These blocks have the following form (c, ,c, 

We thus have 

in agreement with the well-known result for the determinant 
of the Laplace operator on a torus with the T-parameter de- 
termined by the relation e2"" = r,r2eI8. (In fact one must still 
restore the Liouville contribution, leading to the missing fac- 
tor [exp 2n-i~1"~, see above, Sec. 3.2.) 

This method of calculation can, of course, be used to 
sew any Riemann surface from elementary 3-string dia- 
grams (the "pants" diagrams). In this way the contribution 
of an arbitrary Riemann surface can be represented as aa 
combination of fundamental 3-string correlators, integrated 
over the boundary conditions. The fundamental block will 
be an open surface S without handles (p, = 0)  and with 
three boundaries ( M  = 2), i.e., a sphere with three holes. It 
is easy to determine the corresponding matrix A .  Let the 
holes on the sphere be obtained by throwing away the follow- 
ing three disks: 

Then the matrix A is obtained as a direct generalization of 
Eqs. (23) and (24): 

@ 
FIG. 2. 

(all other matrix elements are equal to zero). Thus, the 
problem of calculating the characteristics of sewn Riemann 
surfaces can be reduced to the combinatorial problem of in- 
version with infinite-dimensional matrices and their deter- 
minants. Apparently it is not very simple to relate this repre- 
sentation to other representations which differ in the 
parametrization of the modulus space, e.g., in terms of the 
period matrices.'' We assume, however, that the representa- 
tion we have described may turn out to be useful for various 
problems, independently of its relation to the more usual 
parametrizations. 

The 3-string tree correlator is, of course, not the only 
possible building block. For instance, the following possibil- 
ity seems appealing. Each closed Riemann surface of genus 
p > 1 (Fig. 1 ) can be represented as a chain ofp - 2 one-loop 
propagators (Fig. 2)  and two one-loop caps (Fig. 3) at the 
ends of the chain. We denote the functional integrals I{#) 
for such caps and propagators respectively by I,,, {#) = C 
and I,,,, {#)= P. These are functionals depending on the 
modulus and the boundary conditions, and they can be ex- 
pressed in terms of the corresponding det A -  and the matri- 
ces A. We retain the same notations C and P for analogous 
functionals which take into account the contributions of 13 
commuting scalars and anticommuting ghosts. It is better to 
write them as C d 3m and P d 'rn, since these quantities are 
defined as measures on the modulus spaces of the caps and 
propagators. (Each of our caps has three real moduli, and 
each propagator has six, so that the total number of param- 
eters 3 X 2 + 6(p - 2) = 6p - 6 is exactly the dimension of 
the modulus space of closed surfaces of genus p. If we had 
used spherical caps in place of the one-loop caps, the number 
of parameters would have been incorrect and in the process 
of gluing we would have had to eliminate six redundant pa- 
rameters. Hemisphere-caps may turn out to be convenient in 
the analysis of amplitudes for surfaces with distinguished 
points. ) 

Thep-loop contribution to the cosmological constant is 
given by the integral 

Here * denotes the integration over the coinciding 
boundary conditions for adjacent propagators and/or caps 

FIG. 1. FIG. 3 
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and with respect to the twists. As is known from Ref. 2, C 
and P are exponentials of quadratic forms in the boundary 
conditions and therefore * is just a trivial Gaussian integra- 
tion; in Eq. (32) g is just the string coupling constant and Np 
is an (infinite) combinatorial factor equal to the number of 
times a combination of modulus spaces for two caps and 
p - 2 propagators covers the modulus space of closed Rie- 
mann surfaces of genus p. We define 

which are functionals of the boundary conditions which do 
not depend on the moduli. They can be determined by means 
of the methods of the present paper. In fact it is rather com- 
plicated to carry out the calculation, but such a calculation is 
of manifest interest. Let us assume that Hand  G are known; 
then 

where the multiplication is to be understood in the sense of *. 
This representation is very good for a summation of the per- 
turbation theory series. If, for instance, g / N p  = g for 
some (renormalized?) constant g  (independent of p ) ,  we 
would obtain - 

This expression expands equally well for small g (reproduc- 
ing the series in terms of the genera) and for small l / g ,  lead- 
ing this time to the strong coupling expansion. 

It seems likely that with some efforts one can find all the 
quantities entering Eq. (33). Similar representations exist 
also for scattering amplitudes. In this case all external ends 
can only be connected to caps, without changing the propa- 
gators. Now there arises a covering of the modulus space 
with distinguished points (punctures) and the coefficients 
Np can change. We are not in a position to discuss this more 
fully here. However, we think that it deserves to be investi- 
gated. It is not excluded that this construction has some ad- 
vantages over the generally adopted approach to second 
quantization. 

3.4 Grassmannians and the universal modulus space 

Another method of dealing with the whole perturbation 
theory series, which is possible in the case of strings, is less 
well known to those active in ordinary field theory. The idea 
consists in expressing the determinants on Riemann surfaces 
of arbitrary genus in terms of a unique infinite-dimensional 
universal modulus space. One of the constructions of such a 
space is based on the so-called Krichever mapping. We con- 
sider a closed Riemann surface of genusp and remove a disk 
from it. Then we obtain an open surface S with p, = p and 
M = 0. The matrix A corresponding to S (after the introduc- 
tion of a coordinate near the boundary of the removed 
disk), can be considered as an element of an infinite-dimen- 
sional matrix space, or rather as a point of an infinite-dimen- 
sional Grassmannian (Grassmann manifold) G. In order to 
sum the perturbation theory series it 5 necessary, at a mini- 
mum, ( i )  to determine the subspace G in G consisting of all 
the matrices A which indeed correspond to some Riemann 
surfaces, and (ii) to relate the Mumford measures on the 

modulus subspaces of Reimann surfaces of finite genera with 
an appropriate measure G. Until now it was only possible to 
express in terms of Grassmannians simple factors distin- 
guishing the correlators of fields on Riemann surfaces from 
the determinants (Ref. 6 ) .  It was much more complicated to 
express the Mumford measures, i.e., the determinants them- 
selves, in terms of the matrices A (see Ref. 7 for some simpli- 
fications arising in the super-case). In the preceding subsec- 
tions we have succeeded in constructing such expressions, 
e.g., Eq. (22),  but in terms of somewhat different matrices A. 
The A matrices used there define a mapping of the Krichever 
type for a sphere with several (versus one) removed disks. 
Utilizing Eq. (22) (and analytic continuation) one can 
write the determinant on a surface of genusp in terms of the 
A matrix corresponding to a sphere with p + 1 pucture~.~ '  
These matrices can then be embedded in the Grassmannian 
G. We do not discuss this possibility in more detail. We only 
note that the structure of the determinant det (1  - AA) 
which appears in our calculations is very similar to the expo- 
nential of the usual Kahler potential In det ( 1 + AX) on the 
standard Grassmannian. The geometrical meaning of det 
(1  - AA), particularly the consideration of the "minus" 
sign, may deserve clarification. 

The collection of ideas described in this paper may find 
applications to various problems in ongoing string theory. 
Of course, for this it is necessary to solve certain technical 
complications, but in itself the representation of different 
objects in terms of explicitly known infinite-dimensional 
matrices seems to be useful for further work. 

"In the general case on a Riemann surface of genus p, there exist only 
meromorphic functions for which the total order of the poles exceedsp, . 
Therefore in Eqs. ( 1 ) and ( 2 )  n takes values in the interval fromp, + 1 
to + W ,  and the sum with respect to m in Eq. ( 2 )  must extend over all 
integers from -p, to + W .  Moreover, if M >  0, i.e., the number of 
boundaries exceeds one, the system of basis functions must be supple- 
mented by functions with principal parts <,b,k' with Z,.k,.  >ps  and 
k,. <p, + 1 for all v. We will, however, omit all these technical details 
below. Equation ( 2 )  and several other relations involving the matrix A 
are literally true in the the case P, = 0 for any M, but their qualitative 
structure is the same in the general case. 

"For this purpose a different method of cutting a surface into elementary 
blocks is more suitable. It corresponds to the usual second-quantized 
picture.5 The blocks are cylinders and degenerate pants, the first corre- 
sponding to string propagators, the latter ones to 3-string vertices. This 
representation may be analyzed by means of the same method. 

%this case an arbitrary closed surface of genusp can be transformed by 
means of cutting along a p  + 1-cycle into two pieces, each of which is a 
sphere withp + 1 punctures. Instead, one could cut the surface alongp 
nonintersecting noncontractible cycles. This yields one sphere with 2p 
punctures. 
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