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The nonperturbative dynamics of the breaking of chiral symmetry and scale symmetry in 
asymptotically free and asymptotically nonfree (with an ultraviolet-stable fixed point) gauge 
field theories is investigated. The hypothesis of soft behavior of composite operators in 
asymptotically nonfree gauge theories with a fixed point is put forward and justified. It  is shown 
that in these theories the form of the scale anomaly depends on the type of phase (with respect of 
the coupling constant) to which the anomaly pertains. A two-component concept of the breaking 
of scale symmetry in gauge theories is proposed and a mass relation for the singlet scalar fermion- 
antifermion bound state is obtained. An important ingredient of the proposed approach is the 
large ( d z  2) dynamical dimension of the composite chiral fields. The application of this 
approach to QCD and to models of electroweak interactions with technicolor is considered. 

1. INTRODUCTION 

In this paper we investigate the nonperturbative dy- 
namics of the breaking of chiral symmetry and scale symme- 
try, and, in particular, the formation of a chiral condensate 
and a gluon condensate' in vectorlike gauge field theories. 
We consider both asymptotically free (AF) theories of the 
quantum chromodynamics (QCD) type and asymptotically 
nonfree (ANF) gauge theories (these can be either Abelian 
theories of the quantum electrodynamics (QED) type, or 
non-Abelian theories with a sufficiently large number offer- 
mions). For theories of the latter type the possibility of the 
existence of a nontrivial S-matrix in the local limit has been 
pointed out and investigated in Refs. 2 and 3 (see also the 
review Ref. 4). This possibility is realized when the theory 
contains a critical coupling constant a, > 0 (a nontrivial ul- 
traviolet-stable fixed point) separating two phases with dif- 
ferent renormalization structures. The critical value a = a, 
is the point of the second-order phase transition associated 
with spontaneous breaking of the chiral symmetry. 

At the present time ANF gauge theories are under in- 
tensive study: The existence of a critical coupling constant 
ir, > 0 is confirmed by the results of computer calculations in 
lattice QED (Refs. 5 , 6 ) ;  the use of ANF gauge theories for 
the description of dilaton dynamics and in electroweak mod- 
els with technicolor (in which at the same time it has proved 
possible to ensure the necessary suppression of flavor-chang- 
ing processes induced by neutral currents) has been consid- 
ered in Refs. 7- 1 1. 

In Ref. 7 the important question of the mechanism of 
the breaking of scale symmetry in ANF gauge theories with 
a fixed point was raised. The central result of the present 
paper is connected with this question and consists in the 
following: The form of the scale anomaly in ANF theories 
depends on the type of phase (in terms of the coupling con- 
stant) to which the anomaly pertains, and the short-distance 
behavior of the composite operators in such theories is softer 
than in asymptotically free theories (the exact meaning of 
the term "soft" will become clear from what follows). We 
shall discuss these questions in more detail. 

As is well known, in vectorlike gauge theories, in all 
orders of perturbation theory, for the divergence of the dila- 
tation current Dp (the trace 8 ;  of the energy-momentum 
tensor) we have a relation of the form" 

where N(8: ), N(FpvFp, ), and N ( @ ~  Yi ) are appropriately 
defined composite operators(i = 1, 2, ..., NF is the index of 
the flavor group), ym (a) is the anomalous dimension of the 
operators N ( @ ~  Yi ), and m, is the current mass of the ith 
fermion. If we adopt the generally accepted point of view 
that in asymptotically free theories there is only one phase in 
terms of the coupling constant, with fixed point a = 0, then 
the relation ( 1 ) with the usual functions P ( a  ) and ym ( a )  
should be exact in this phase. A different situation can obtain 
in ANF theories with a fixed point a, > 0. The critical cou- 
pling constant a, then separates two phases with different 
renormalization structures-in particular, with different 
functions P ( a )  and ym(a ) .  The question arises as to the 
form of the scale anomaly in the nonperturbative (supercri- 
tical) phase. In the present paper it will be shown in the two- 
loop approximation that for the vacuum expectation value of 
the divergence of the dilatation current the relation ( 1) still 
holds, but with nonperturbative functionsp(a) and ym (a) 
pertaining to this phase: 

{ P (4 
(0 I N o  (8,M) 10) = l im - (0 I N o  (FMVF,,) 10) 

A 4a 

where A is the ultraviolet-cutoff parameter and the symbol 

lim implies that the local limit is taken together with the 
A -  m 

(a-a,) 

coupling-constant renormalization that fixes the value of the 
coupling constant (see Sec. 2).  By definition, the composite 
operators 

N, (8,') , N,(FP~F,,), and m,iNo (piyi) 

are the canonical operators minus their vacuum average per- 
taining to the free massless fields: 
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N ,  (0," =0$-<0 1 (0,') f l e e  10) l -01 

m c i N 0 ( T i Y i )  r m i ( A )  ( SiYi) for (3 )  

( o ~ ( @ ~ \ v ~ ) , ~ ~ / O ) , , ~ = ,  =O). Heremi(A) is the bare mass 
of the ith fermion and the current masses mci that we are 
using pertain to the normalization point ,u = 0. Since the 
functions B(a) and y,,, (a) are different in the phases with 
a <a ,  and with a > a, ,  the form of the scale anomaly de- 
pends on the type of phase the anomaly pertains. 

It will also be shown that in this approximation in the 
local limit ( A  -+ 0 3 ,  a -+ a, ) the vacuum expectation value of 
the divergence of the dilatation current is 

N, 

where N is the dimensionality of the fermion representation 
of the gauge group, m, is the dynamical (i.e., associated with 
the spontaneous breaking of the chiral symmetry) mass of 
the fermions, m,i = m, + mCi is the total mass of the ith 
fermion, and v=: 1 (see Sec. 2). In the chiral limit (mci = O), 
from (4)  there follows the simple relation 

4NNj 
<O (No (0'') 1 0)= - - qmd. 

5c4 

Together with the relation obtained recently in Refs. 13 for 
the chiral condensate: 

for nlCi <md 

the relations (4)  and (5)  express in the two-loop approxima- 
tion the principal characteristics of the breaking of the chiral 
symmetry and scale symnetry in terms of the fermion 
masses. We note that, as can be seen from (4)  and (6),  the 
chiral perturbation-theory series converge in the region m ci/ 

m,gl.  
The fact that in ANF gauge theories with a fixed point 

the one subtraction (3)  ensures the finiteness of all the ma- 
trix elements in the relation (2)  is very remarkable. For 
comparison we point out that this property is not fulfilled in 
asymptotically free theories, in which, in the definition of the 
renormalized composite operators, it is necessary to subtract 
the vacuum expectation value that includes the entire per- 
turbative contributioni; e.g., 

N(0,") =Ovp-(O1 8,'1 O),,,,, m c i N ( Y  ,Y i )  
= lim mi ( A )  [ ( Y  iY i )  -(O I FiYi I O)pe r l l  etc. 

A+ m 

In this sense the short-distance behavior of the composite 
operators in ANF theories with a fixed point is softer than in 
AF theories. We shall give arguments that this soft short- 
distance behavior of the composite operators is a character- 

istic manifestation of the presence of a nontrivial nxeu point 
in the theory. 

All these relations have been obtained in the local limit 
(A+ a, a -a, ). It is clear, however, that under the condi- 
tion m,/A < 1 (the near-critical regime, a - a, < 1 ) they 
are also fulfilled with good accuracy in the theory with a 
cutoff (A < m ). If we assume that in a certain asymptotical- 
ly free theory in the region M <q2 5 A2, M < A* a regime 
with a near-critical slowly varying running coupling con- 
stant (a (q2) - a, < 1 ) is realized, these relations can also be 
used in this case (recently, such AF theories have been con- 
sidered in a technicolor scheme). In this case they reproduce 
that part of the scale anomaly which is due to the presence of 
the scale A at which the change of dynamical regime occurs 
[the dynamics of the spontaneous breaking of the chiral 
symmetry is "switched on" in the near-critical regime with 
a (q2 )  -a ,  $11. 

In the present paper we also propose a two-component 
concept of the breaking of the scale symmetry in gauge theo- 
ries and consider a modified effective Lagrangian that real- 
izes, in the tree approximation, the low-energy theorems of 
broken scale symmetry.16 Whereas in the standard ap- 
proach'7.'8 the role of the dilaton is played by gluonium and 
there is necessarily strong mixing between the gluonium and 
the scalar fermion-antifermion bound state (the a boson), 
the modified effective Lagrangian contains two dilatons- 
gluonium and the a boson. In other words, it is assumed that 
in the low-energy region these two states saturate the matrix 
elements of the operator 0; [the hypothesis of partial con- 
servation of the dilatation current, PCDC]. The scalar a 
boson is connected with that part of the scale anomaly (a  
small part, in the case of theories with a large number of 
colors) which is due to the dynamics of the spontaneous 
breaking of the chiral symmetry. In such an approach the 
mixing between the gluonium and the.a boson can be arbi- 
trarily small (in this sense, the indicated approach is close to 
that of Refs. 7,9, and 19). This circumstance makes it possi- 
ble to overcome a number of the difficulties of the standard 
approach. 

Following this route, in the chiral limit we shall obtain 
the following mass relation for the a boson: 

where the parameter F, is determined from the relation 

1 
(0 1 No (8," 10) = - (6,"M,2-q'q,) F,. 

3 (8)  

Moreover, taking into account that in the dynamical regime 
with a nontrivial fixed point the anomalous dimension satis- 
fies y, = 1 (Refs. 3, 7) and that, therefore, the dynamical 
dimension of the composite field a- @Y is d, = 2, we obtain 
the following relations: 

where F,, is the decay constant of the pseudoscalars. Using 
next the relation 
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which has been discussed in Refs. 20, we find that ( 7 ~  1) 

The relation M, = 2m, was first obtained in the classic pa- 
per of Nambu and Jona-Lasinio21 in the Hartree-Fock ap- 
proximation for a model with four-fermion interaction. 
Comparatively recently, this relation has been considered in 
QCD and in theories with technicolor. In the present paper it 
is obtained in gauge theories within the framework of the 
PCDC hypothesis for the dynamical regime with a fixed 
point. 

The principal method used in the present paper is that 
of the Schwinger-Dyson equations and the effective poten- 
tial for the Cornwall-Jackiw-Tomboulis composite opera- 
t o r ~ . ~ ~  As already noted, we work in the two-loop approxi- 
mation. Of course, this approximation can be regarded only 
as a model for the investigation of such a complex phenome- 
non as the nonperturbative dynamics of the spontaneous 
breaking of chiral symmetry in gauge theories. The results of 
numerical computer studies5s6 suggest that the proposed 
model reproduces qualitatively a number of characteristic 
features of this dynamics. We should also like to stress the 
fundamental point that the main results of the present paper 
(the dependence of the form of the scale anomaly on the type 
of phase of the theory, the soft short-distance behavior of the 
composite operators in ANF gauge theories, and also the 
large anomalous dimensions of the composite fields) are not 
rigidly tied to the approximation under consideration but 
are a characteristic manifestation of the dynamics with 
a nontrivial fixed point (or of a dynamics that simulates 
itl4,1S). 

2. NONPERTURBATIVE SCALE ANOMALY ANDTHE GLUON 
CONDENSATE 

In this section we shall consider, in ANF theories with a 
fixed point, the scale-symmetry breaking due to the nonper- 
turbative dynamics of the breaking of the chiral symmetry. 

AS is well known, the divergence of the dilatation cur- 
rent D, coincides with the trace of the energy-momentum 
tensor: 

We shall use the energy-momentum tensor No (OVi') defined 
in (3).  The necessity of subtracting from OVw the vacuum 
contribution of the free massless fields is due to the fact that 
for these the scale invariance is exact, and, therefore, in this 
case the dilatation current is conserved: dpD, = 0. The im- 
portant point is that it is found in the case of ANF theories 
with a fixed point that this one subtraction ensures (at least 
in the two-loop approximation) the finiteness of the opera- 
tor No ( O t  ). This circumstance reflects the softness of the 
breaking of the scale symmetry in such theories. Another 
important point is that this property does not hold either in 
the perturbative phase of ANF theories or in asymptotically 
free theories (for more detail, see below). 

In investigating the problem of the dynamical symme- 
try breaking it is convenient to start from the formalism of 
the CJT effective potential for the composite  operator^.'^ 
The expression for the CJT effective potential has the form 

whereG(p) = (jA - B)- 'andS(p)  = ( p - & ( A ) ) - ' a r e  
the exact and free fermion propagators respectively, & ( A )  is 
the matrix of the bare masses, and V, is the sum of all the 
two-particle-irreducible n-loop vacuum diagrams, in which 
the exact fermion propagator is used [the integration in ( 13) 
is carried out in the Euclidean region]. The normalization of 
the effective potential ( 13) corresponds to the normaliza- 
tion (3); then, at the stationary point G = G the potential 
v(F) is 

The stationarity condition 6 V/SG = 0 is none other than the 
Schwinger-Dyson equation for the fermion propagator G ( p )  
(Ref. 22). 

Our aim is to prove the relations (2)  and (4) .  As fol- 
lows from Lorentz invariance, 

Thus, the problem reduces to the calculation of the potential 
~ ( 6 )  at the stationary point. 

We shall consider a vectorlike gauge theory with a bare- 
mass matrix of the general form Aii (A) = mi (A)&,, , where i 
j = 1,2, ..., N f .  In the two-loop (ladder) approximation the 
effective potential has the following form in the Landau 
gauge22: 

N mi (A)Bi  ( u )  
v ~ ( B ) =  --- xj d u u -  

4n2 ,=1 o u+Bi"u) 

[in this approximation, A ( p2) = 1 (Ref. 22) 1. Here, 

[ C ( N )  is the value of the quadratic Casimir operator of the 
fermion representation { N ) ] .  We note that the choice, in 
this approximation, of the Landau gauge is not accidental: 
In the ladder approximation it is precisely in this gauge that 
all the necessary Ward identities are f~lf i l led.~ The transfor- 
mation to other gauges requires a change of the fermion- 
antifermion-gluon vertex (recently, such a transformation 
was considered in Ref. 23). 

The stationarity condition SV/SB, = 0 leads to the fol- 
lowing nonlinear Schwinger-Dyson integral equation: 
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Although an analytical expression for the solutions of this 
equation has not yet been found, a number of their principal 
properties are known. It is known that in this equation the 
coupling constant value A = 1/4 is the critical value separat- 
ing the perturbative ( A  < 1/4) phase and the phase with 
spontaneous breaking of the chiral symmetry24s24 (from a 
mathematical point of view, the critical value A, = 1/4 is a 
bifurcation point). In the perturbative phase with A < 1/4 
the Johnson-Baker-Wiley (JBW) solution obtains25: 

-1 

a (p2) x m,, (.$ ) for P ~ + W ,  

where 

1 
y = [I- (1-4h)"], m,, = lirn m (A) z:"" (A) +0, 

A- Ca 

2,'" (A) 2: (1-Y) (A2/pZ)-T. 

The JBW solution corresponds to explicit breaking of the 
chiral 

In the supercritical ( A  > 1/4) phase the solution has 
asymptotic behavior of the f ~ r m ~ . ~  

+ P (v) - a r c ~ g  2v ] for P2-+w, (21) 

where 

and m, =B(O). As is shown by numerical analysis of Eq. 
( 19), we have 7 7 ~  1 (Ref. 10). The quantity m,,  which we 
shall call the total fermion mass, can be written as a sum of 
the dynamical mass m,, which is the value B(0) in the chiral 
limit, and the current mass 

mc= [z:' (A) ] -'m (A), 

which pertains to the value p = 0 of the renormalization- 
group parameter. The renormalization constant Z :'(A) in 
the approximation m, gm, [the situation of partial conser- 
vation of the axial currents (PCAC)] was determined in 
Ref. 3: 

2;'' (A) -tItia2mdlA. 

In Appendix I it is shown that for an arbitrary value of m, 
the expression for Z :'(A) in the ladder approximation has 
the form 

The dynamical mass m, is334, 

&I a p [ - 2 1  for vg1, 
2v 

and in the local limit A + a, it remains finite if the following 
renormalization of the coupling constant is implemented394: 

From (22) and (24) we find the functionsp(a) and y, (a)  
in the supercritical phase: 

3a  (A) YI , P(a)=-= - --- 
d InA 3 C ( N )  

d In z A O '  (A) 
ym(a)=- = i  for R-tm. (25) a 1nA 

It can be seen that this p-function has an ultraviolet-stable 
zero at a = 77/3C(N). The critical value a, = .rr/3C(N) 
corresponds to a second-order phase transition: The dimen- 
sionless correlation length 6 = A/m, is equal to infinity at 
this point. 

We emphasize the following point. In this approxima- 
tion the running coupling constant is constant. This implies 
that the perturbative p-function is equal to zero. In the su- 
percritical phase, however, the p-function (25) is nonzero, 
although, as before, the running coupling constant in this 
approximation is constant. Therefore, in this phase the usual 
relationship between the behavior of the running coupling 
constant and the form of the &function is violated (there is 
an additional nonperturbative charge renormalization). 

To derive (2)  and (4)  we shall need the relation 

It follows from the fact that Bi is a stationary point of the 
effective potential. In fact, considering, in particular, the 
variations 3, -. B I"' = sBi ( p2/s2) under scale transforma- 
tions (at the same time, V(B 1"' A2, mi ( A ) )  = s ~ v ( B , , A ~ /  
s2, mi (A)/s)),  we find 

It is not difficult to verify that the relation (26) follows di- 
rectly from (27). 

From (IS) ,  (16), and (26) we find 

This relation, together with the relation 

which follows from Eq. (19), will be a key relation in the 
determination of the vacuum expectation value 

We shall start from the case of the chiral limit 

235 Sov. Phys. JETP 68 (2), February 1989 V. P. Gusynin and V. A. Miranskil 235 



[mi (A)  = 0, V, = 01. Since in the approximation used the 
perturbativeQ-function is equal to zero, it would appear that 
in this case, in the local (A - UJ ) limit, Eq. ( 19) should cor- 
respond to a scale-invariant theory in which 

For subcritical values A <A,  = 1/4 of the coupling constant 
[ o r a < a ,  =r/3C(N)] ,Eq.  (19)withmi(A) =Ohasonly 
the trivial solution ai = 0, and, therefore, in this case the 
relation (30) is fulfilled. The situation, however, changes in 
the supercritical [ a  > a, = r /3C(N)]  phase. From (21 ), 
(28), and (29), we find 

Using next the well known relation 

(0 I No (FwF,,) lo)=-4a 
a V (a, A) 

da ' 

which follows, e.g., from the representation of the energy 
density of the vacuum in the form of a functional integral, 
and the relations (23) and (29), from (31) we obtain (2)  
(in the chiral limit, i.e., for mCi = 0).  We note that in the 
approximation under consideration the relation (32) can 
also be obtained directly by calculating the matrix element 

(see the figure ) . 

We emphasize that, as can be seen from (3  1 ), the scale 
anomaly is completely determined by the dynamics at short 
distances r - 1/11. 

We now consider the case of PCAC dynamics, when the 
current mass satisfies 

mCi = lim mi ( A )  [Z,'" ( A )  1-'20. 

For it < 1/4 the JBW solution (20) holds. Substituting (20) 
into (28) and using Eq. (29), we find for A- UJ 

Thus, in the PCAC situation the vacuum expectation value 
of the energy-momentum tensor operator defined in this way 
diverges in the perturbative phase. 

A different situation obtains in the supercritical phase. 
Proceeding in the same way as in the case of the chiral limit, 
we obtain the relation (4) .  In this phase the vacuum expecta- 
tion value of the operator No (8  ) is finite. In this case the 

derivation of the relation (2)  is somewhat more complicat- 
ed. To derive (2 )  using the equalities (22) and (23), we 
must represent the expression 

from (4) as an (implicit) function of the parameters a ,  
mi (A),  and A, and then make use of relation (32). As a 
result, we obtain 

[in the approximation under consideration this relation can 
be verified by direct calculation of 

(see the figure) 1. Taking into account next the equalities 
(6)  and (25), we find the relation (2) .  

The soft character of the breaking of scale symmetry in 
ANF gauge theories is manifested, in particular, in the fact 
that the mass renormalization (22) and coupling-constant 
renormalization (24) ensure the finiteness of the vacuum 
energy density 

We shall show that the relation (2) is a direct conse- 
quence of this property. In fact, by virtue of this property we 
have 

In the derivation of (35) we have made use of Eqs. (25) and 
(32), and also of the relation 

av 
= m, (*I) - 

am, 
for 

which follows, e.g., from the representation of the vacuum 
energy density in the form of a functional integral. Taking 
into account the fact that the expression for V(a(A),  
mi (A) ,  A) has a structure of the form 

we obtain from (25 ) the relation (2 ) . 
Thus, in ANF theories with a fixed point the mecha- 

nism of the scale-symmetry breaking is closely connected 
with the soft short-distance behavior of the composite opera- 
tors. We note that in AF gauge theories renormalization of 
the coupling constant and fermion masses does not ensure 
finiteness of the vacuum energy density. In these theories the 
behavior of the composite operators at short distances coin- 
cides to within logarithmic factors with the behavior of the 
composite operators in the free theories. Therefore, in this 
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case a subtraction of the type (3)  does not ensure finiteness 
of the operators and it is necessary to subtract the contribu- 
tion of the vacuum expectation values, including the entire 
perturbative contribution: 

N ( 0 , ~ = = 8 , ~ ( 0 ~ 0 , w ~ 0 > , , , t ,  mciN(qiY,) 
= lim m,(ll) [ (fFiYi)-(01 TiYi  10)pertI etc. 

'i-r m 

In this sense one can state that the short-distance behav- 
ior of the composite operators in ANF theories with a fixed 
point at short distances is softer than in AF theories. The 
general reason for this is as follows. Whereas in AF theories 
the perturbative and the nonperturbative dynamics pertain 
to the same phase, in ANF theories with a nontrivial fixed 
point the perturbative phase and the nonperturbative phase 
are separated. Therefore, in this case the question of the sub- 
traction of the perturbative contribution in the supercritical 
phase does not arise at all. 

The relation (2)  and (4)  have been obtained in the local 
limit (A- W ,  a-a, ) .  It is clear that under the condition 
m,/A < 1 [the near-critical regime, a - a, < 1; see (23) 1 
these relations will also be fulfilled with good accuracy in the 
theory with a cutoff (A < w ). If we assume that in a certain 
asymptotically free theory in the region M * <q2 < A2 a re- 
gime with a "frozen" near-critical running coupling con- 
stant is realized [a (q2)  - a, < 1 ], these relations can also be 
used in that theory, though their meaning changes some- 
what. In this case, they reproduce that part of the scale 
anomaly which is due to the presence of the scale A at which 
the dynamical regime with this a (q2 )  is established. We 
stress that, in accordance with what has been said above, the 
B-function (25) specifies here the dependence of the phys- 
ical observables on the scale parameter A, but does not deter- 
mine the behavior of the running coupling constant, which, 
in this regime, is almost constant (frozen). Therefore, (25) 
should not be confused with the true p-function 0 ,,of the 
asymptotically free theory, which determines the behavior 
of a (q2) .  In AF theories the &function (25) should be re- 
garded as an auxiliary quantity that makes it possible to ex- 
tract from the total scale anomaly 

the contribution due to the dynamics of the spontaneous 
chiral-synmetry breaking in the regime with a (q2 )  =.a,. 

In the next section we shall consider the question of the 
mass of the scalar meson (dilaton) associated with scale 
transformations. 

3. THE DILATON MASS AND DILATON EFFECTIVE 
LAGRANGIAN 

Foril >A, = 1/4 ( a > a ,  = 37-/3C(N)) Eq. (19) has a 
solution corresponding to spontaneous breaking of the 
chiral symmetry. Therefore, in the chiral limit the theory 
should contain N; massless pseudoscalar bosons [in the lad- 
der approximation and, in general, in an approximation with 
planar diagrams, the U(  1 ) anomaly does not affect the mass 
of the singlet boson] . This fact can be verified by direct anal- 
ysis of the Bethe-Salpeter equations in the ladder approxi- 
m a t i ~ n . ~  As was shown in the preceding section, because of 
the presence of the nonperturbative scale anomaly in the 
local (A- a, a -a, ) limit the breaking of the scale symme- 

try is explicit. Therefore, the mass of the scalar boson (dila- 
ton) associated with the scale transformation should be non- 
zero. 

The fact that in the critical (A -. W ,  a - a, ) regime the 
scalar bosons are massless was first established in Ref. 26 by 
means of an analysis of the Bethe-Salpeter equation (see also 
Refs. 4 and 15). The value of their mass, however, was not 
estimated. In order to estimate the mass Mu of the singlet 
scalar we shall make use of the method of the effective dila- 
ton Lagrangian.17 This Lagrangian, incorporating the com- 
posite spinless fields, realizes the low-energy theorems of 
broken scale symmetryI6: 

where 

(a) N (FbvF,) (s) 0 (x) = N (o,,~) (x) = - 
4a 

(all quantities here are defined in Minkowski space). 
In the standard apprach,'7.18 the role of the dilaton is 

assigned to gluonium. In the present paper we propose a two- 
component concept of the breaking of scale symmetry in 
vectorlike gauge theories. The initial step consists in repre- 
senting the gluon condensate H r  - (010 10) in the form 

where H,, is the contribution associated with the dynamics 
of the spontaneous chiral-symmetry breaking and H,, is the 
remainder of the condensate, associated with the dynamics 
of the self-interaction of the gluons. For example, in QCD 
with the color group SU(N,) the contribution H,, is the 
main contribution in the limit N, - w (H,, cc N: and H,, 
a N, ). We assume that the singlet fermion-antifermion 
bound state (the a boson) can be regarded as the dilaton 
associated with the part If,, of the gluon condensate. We 
also assume that the mixing between the u boson and the 
gluonium is small. 

The self-consistency of the proposed approach is dem- 
onstrated in Appendix 11, in which it is shown that in the 
two-loop approximation for the dynamics with a fixed point 
the identities (38) are fulfilled (the general case of arbitrary 
mixing between the u boson and gluonium is discussed at the 
end of this section). 

Henceforth, for simplicity, we shall consider the case 
with two fermion flavors: Nf = 2 (in reality, the mass Mu 
does not depend on Nf; see below). In this case there are 
three pseudoscalar .rr bosons and one scalar a boson, which 
belong to the representation (2, 2) of the chiral group 

We shall use the basic relation of the method of the 
dilaton effective Lagrangian,17." but with one important 
modification: Besides the gluonium, the chiral fields will 
also give a contribution to 0;. This relation has the form 
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where h (x)  is the gluonium field,p(x) = (77' + 2)  'I2 is the 
singlet chiral field, h, = (O(h (0),  a, = (O(a(O), and d, and 
d, are the dynamical dimensions of gluonium and of the 
chiral fields, respectively. The expression (39) guarantees 
the correct transformation properties of the operator N( 8 ) 
under chiral and scale transformations [N(BPp) is a chiral 
singlet and has dynamical dimension do = 4, which coin- 
cides with its canonical dimension]. 

Following the method of Ref. 17 it is not difficult to 
show that in the absence of mixing between the a boson and 
gluonium the simplest effective Lagrangian realizing the re- 
lation (39) has the form 

y,=-d in 2;'' (A) / a  In A. (48) 

As was shown in Sec. 2, in the ladder approximation in the 
regime with a fixed point we have Z c ) ( A )  a A-I. There- 
fore, the dynamical dimension d, = 2. 

From this and from the relation (3 1 ) we find (Nf = 2) 

[for arbitrary Nf the constant 

and the mass relation (49) does not change]. 
Using next the relation 

where 

which was discussed in Refs. 20, from (49) we obtain 
( 7 ~ 1 )  

It is remarkable that this result is close to the relation Mu 
= 2md obtained in the Hartree-Fock approximation in the 

model of Nambu and Jona-Lasinio." For QCD it was dis- 
cussed in Refs. 20. 

The relation (49) shows that the a-boson mass is ex- 
tremely sensitive to the value of the parameter d,. This is 
also true for other physical observables. For example, from 
the Lagrangian (40) we find that in the tree approximation 
the width of the decay a- ar is In the tree approximation that part of this Lagrangian which 

contains the gluonium field h (x)  realizes the identities (38) 
with (018 10) = - H,, while that part with the chiral fields 
realizes these-identities with (018 10) = - Hch. 

From the Lagrangian (30) in the tree approximation 
we obtain the relations 

We shall apply these relations to QCD ( N  = 3, Nf 
= 2). In QCD the dynamical quark mass is equal to md 
- 350 MeV, and the parameter A, which is determined from 
the condition 

is equal to A - 700 MeV (Refs. 4,20). Therefore, in this case 
the ratio mi/A2 - 1/4 is comparatively small. From (5 ), 
(6),  (50),and (51) wefind (d, =2 ,7-1)  

Since the axial current for the Lagrangian (40) is 

jpsi= ( P / ~ e )  2(1-do)'do(~apni-nidv~) , 

in the tree approximation we have a, = - F,. Therefore, 
the relations (43) and (44) can be rewritten in the form 

H,,,-4. GeV4 M,-700 MeV, I',--300 MeV. 

An important point is that these relations are not tied closely 
to the explicit form of the effective Lagrangian: If we assume 
that the identity (38) with n = 1 and (018 10) = - H,, is 
saturated by the ustate, they can be obtained from this iden- 
tity and Eq. (39). 

The dynamical dimension of the composite fields 
a a @ Y  and?r'a\I/y,r'Y is 

The value obtained for the chiral condensate is close to the 
generally accepted value.' The quantity Hc, is small in com- 
parison with the standard value H-0.012 GeV4 of the gluon 
condensate, and this agrees with the generally accepted hy- 
pothesis that in QCD Hch 4 H,, . 

Of course, in QCD the PCDC hypothesis is consider- 
ably less well-founded than the PCAC hypothesis. However, 
we are encouraged by the success of the analogous approach 
using the vector-dominance hypothesis, for which the sym- 
metric limit, where M,,,,, -0, is also absent. Since the value 
M, -700 MeV obtained for the u-boson mass is comparati- 

where y, is the anomalous dimension of the operators @Y 
and @y, ri VI: 
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vely small, we may hope that the results obtained reproduce 
the properties of the u boson qualitatively. We note that al- 
though the a boson cannot be manifested as a narrow reso- 
nance in a scattering cross section, at the present time there 
are experimental indications of the existence of a scalar me- 
son with M, - 700 MeV (Ref. 27). 

Since the dynamics with a fixed point, and also the dy- 
namics that imitates it, make it possible to solve the problem 
of the suppression of flavor-changing processes in 
electroweak models with t e c h n i ~ o l o r , ~ - ' ~ ~ ' ~ ~ ' ~  it seems natu- 
ral to apply the present approach to the description of the 
properties of the Higgs boson. Taking into account that the 
dynamical mass of the technifermion is m, - 500 GeV (Ref. 
14), from (50) we find that the mass of such a composite 
Higgs boson is m ,  - 1 TeV. The decay of such a heavy state 
into the longitudinal components of the Wand Z bosons can 
be described qualitatively by considering the latter as mass- 
less t e ~ h n i ~ i o n s . ~ ~  The decay constant of the technipions is 
Fr -250k ' I 2  GeV, where k is the number of doublets of 
technicolor fermions.I4 Using next the relations (9a) and 
(51 ), we find that the partial width of the decay of the Higgs 
boson to the longitudinal components of the vector bosons is 

We note that a substantial contribution to the total 
width T, can also be made by the decays of the Higgs bosons 
to the other ( N j  - 1 ) - 3 = N j  - 4 technipions, if their 
masses are not large. These questions will be considered in 
more detail in another paper. 

To conclude this section we shall discuss briefly the case 
of arbitrary mixing between the a boson and gluonium. Fol- 
lowing Refs. 18, we obtain in this case the mass relations 

In the standard approach of Ref. 18, where H,, = 0, H,, 
= H, and dh = dm = 1 ,  it follows from (54) that in this case 

there is strong mixing between the u boson and gluonium 
( M  2 = F,M : / h ,  ) . This, in its turn, leads to an undesira- 
ble consequence-strong coupling of gluonium with two 
pions. Since in the approach under consideration the mixing 
parameter M k  can be chosen arbitrarily, this difficulty is 
absent here. 

4. PHYSICAL CONTENT OF ANF GAUGE THEORIES WITH A 
NONTRIVIAL FIXED POINT 

What can presently be said about the physical content 
of ANF gauge theories when one goes beyond the frame- 
work of the ladder approximation? In the case when the bare 
coupling constant a is sufficiently small, for the running 
coupling constant a ( r )  we can make use of the formula of 
the one-loop approximation 

a 
a ( r )  = r L  1/A 

l+Ca In (Ar) ' (55) 

where C >  0 is a certain constant. In the local ( A  -. w ) limit, 
if a is kept small, the running coupling constant a ( r )  vanish- 
es over all distances: a ( r )  = 0 for r > 0, and 

a (0) -- lim a ( I lA)  =a. 
A-m 

Therefore, in this case, the trivial free theory (the 
"zero-charge" situation of Landau, Pomeranchuk, and 
F r a d k i r ~ ~ ~ . ~ ' )  arises in the local limit. Whereas in the exact 
theory the ultraviolet-stable fixed point a = a, found in the 
ladder approximation "survives", the situation in the super- 
critical (a > a,  ) phase of the theory should change substan- 
tially.' A characteristic feature of this phase with spontane- 
ous breaking of the chiral symmetry is the formation of 
strongly bound meson states, and, as a consequence, the ap- 
pearance of new induced types of interaction (a  fermion- 
antifermion-meson interaction of the Yukawa type and a 
meson-meson interaction) consistent with the chiral dy- 
namics. As was pointed out in Ref. 3, a sufficient condition 
for such an induced interaction to survive in the local limit is 
that a second-order phase transition associated with the 
spontaneous breaking of the chiral symmetry be present in 
the theory. The presence of such a phase transition in non- 
compact lattice QED is confirmed by the recent numerical 
calculations of Kogut et aL6 

If we start from a lattice version of the theory, the local 
theory with a = a, can have new (in comparison with the 
naive local limit) types of interaction vertices. In the lan- 
guage of the renormalization group this implies that in the 
theory there are several types of relevant induced opera- 
t o r ~ . ~ '  As has been pointed out by Bardeen, Leung, and 
Love,' because of the large anomalous dimension y,,, = 1 at 
the point a = a, a natural candidate for the role of a relevant 
induced operator in QED with a = a, is the chiral-invariant 
combination 

where G = g2/A2 and in the local limit the dimensionless 
coupling constant g should be fixed: g = g, . For a = a, the 
dynamical dimension of the vertex (56) is equal to four, and 
the appearance of this vertex does not spoil the renormaliza- 
bility of the theory. 

Can the appearance of the new induced vertices in the 
theory eliminate the nonperturbative scale anomaly? As was 
shown in Ref. 7, in QED with the induced vertex (56) in the 
local limit the scalar a boson is also massive. That this result 
is not accidental is illustrated by the following consider- 
ations. As we see, the presence of a scale anomaly is connect- 
ed with the fact that the potential satisfies ~ ( 3 )  #O. Using 
(16) and Eq. (19), it is not difficult toshow that in QED 
( N  = 1) the expression for v(%) in the chiral limit can be 
written in the form 

rn 

V (8) = - -5 duuY (B2(u)  iu)  , 
83t2 

where 

Y ( 2 )  =ln ( l f s )  -z /  (zf I) for z>0. 

Therefore, it already follows from this that for the nontrivial 
solution the value of v ( B )  is nonzero. It can be shown that in 
the case of QED with the induced vertex (56) a relation of 
the type (57) also holds for the effective potential v(B) 
(Ref. 7 ) .  Therefore, in this case too, spontaneous breaking 
of the chiral symmetry leads to explicit breaking of the scale 

239 Sov. Phys. JETP 68 (2), February 1989 V. P. Gusynin and V. A. Miranskil 239 



symmetry, i.e., to a scale anomaly. 
In Ref. 3 it was postulated that in the local limit in ANF 

gauge theories with a fixed point a = a, there is complete 
screening of the charge at all nonzero distances [ a ( r )  = 0 
for r > 0, and a (0)  = a, 1 .  Here, however, the appearance of 
new induced vertices ensures the existence of a nontrivial 
interaction between bound states in the local limit. This pic- 
ture appears to be confirmed by recent numerical calcula- 
tions in noncompact lattice QED (Ref. 6).  It follows from 
these calculations that in the supercritical phase the poten- 
tial of the interaction between a heavy fermion and antifer- 
mion has the form 

v ( r )  -exp (-kAr) ,'r, 

where k- 1. Therefore, in the local (A- co ) limit the pho- 
ton acquires an infinite mass. Nevertheless, despite the com- 
plete screening of the charge, at a = a, > 0 a second-order 
phase transition associated with spontaneous breaking of the 
chiral symmetry occurs in the theory, and, therefore, in the 
local limit there is interaction between bound states. 

If the results of the numerical calculations of Ref. 6 are 
confirmed, this will imply the existence of a new class of 
local four-dimensional theories with nontrivial interaction. 
In contrast to the asymptotically free theories, the fixed 
point in these theories is nonzero and, as a consequence, the 
composite operators have large anomalous dimensions. 

5. CONCLUSION 

The results of the present paper show that ANF gauge 
theories with a fixed point can furnish an example of theories 
with a new (soft) type of scale-symmetry breaking. In con- 
trast to AF theories, the dynamics of the interaction in them 
at short distances is characterized by large anomalous di- 
mensions of the composite operators. The dynamics of the 
near-critical regime with a (q2)  =ac can also be formed as a 
component part of the dynamics in AF theories. 

This dynamics can lead to a number of interesting phe- 
nomenological applications. It can ensure the necessary sup- 
pression of flavor-changing processes induced by neutral 
currents in models with t e c h n i c o l ~ r , ~ - ' ~ ~ ~ ~ ~ ~ ~  and it can have 
an effect on the form of low-energy Lagrangians. In particu- 
lar, the results of this paper show that the dynamical dimen- 
sions can be important parameters in low-energy effective 
Lagrangians-parameters that contain information on the 
dynamics of the formation of composite particles. In the 
framework of this approach we have considered the proper- 
ties of the @ meson in QCD and of the Higgs boson in 
electroweak models with technicolor. 

The change of the structure of the divergences in the 
supercritical phase of ANF theories leads to a dependence of 
the form of the scale anomaly on the type of phase to which 
the anomaly pertains. We consider that this phenomenon for 
anomalies (and not only for the scale anomaly) deserves 
further study. 
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tenko, P. I. Fomin, and V. Elias for useful discussions. We 
also thank E. Dagotto for correspondence on the results of 
numerical calculations in lattice QED. 

APPENDIX l 

In this Appendix we shall prove the relation (22) for 
the renormalization constant Z g'. 

As is well known, the renormalization constant Z 2' is 

2:'' ( A )  = m ( A )  lm. for A+ 00, (11) 

where m, is the current fermion mass, associated with the 
subtraction point p = 0. To determine this ratio we shall 
make use of Eq. (19). It is not difficult to verify that the 
solution of this equation satisfies the boundary condition 

d  
--- [q2B (q2)  ] I ,LAZ = m ( A ) .  
dq2 

(12) 

Substituting into this boundary condition the asymptotic 
form (21) of the function B(q2) we find the relation 

cth nv  A 
( - - ) 'hs in(2vin-+~(V))=m(~)~ '* T n v  ( v ~ + ~ / . )  mi 

Taking into account that m, = m, + m, and using the cou- 
pling-constant renormalization (24), from (I1 ) and (13) we 
obtain in the local limit the desired relation (22). 

APPENDIX It 

In this Appendix it will be shown that in the local limit 
in the approximation used in this paper the low-energy theo- 
rems of Ref. 16 are fulfilled: 

G(.+I)-  (-2) J dx, . . . ~ x . < o  1 TO (x,) . . . 0 (2.) 0 (0 )  lo),. 
= 4"(01010)=4"+'lirn V ( a ( A ) ,  A) .  

A*- 
(111) 

Using the representation for the vacuum energy density 
v ( B ( a , ~ ) )  in the form of a functional integral, it is not 
difficult to show that 

Using next the explicit expression for V(a, A) [see (3  1 ) and 
(23) 1 

V (a ,  A) = -- qNNf (md (a ,  A) ) 4 

n4 

from (112) we obtain the relation (I11 ). 
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