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We obtain an invariant solution of the generalized Dirac equation in the field of a circularly 
polarized plane wave for an uncharged particle possessing an anomalous magnetic moment. We 
determine the probability and intensity of photon emission by a neutron in such a field. It consists 
of four contributions, stemming from wave capture at four frequencies, three of them 
nonmultiples of the fundamental. To first order in the energy of the wave, the results agree with 
those previously obtained by the author for this special case. Thus, in conjunction with previous 
work, this completely solves the problem of the emission by a neutron in the standard set of plane 
wave fields (linear and circularly polarized waves and crossed constant fields). 

Consideration of the electromagnetic interaction of = z e-""', 
particles with the plane wave field A = A(p),  p = kx is an (2po) "* . . 
important element of quantum theory, since on the one hand 
it is a generally applicable approach in a constant crossed where the matrix satisfies Eq. (21, and3 

- - - -  - - 
field A = aq, at ultrarelativistic particle energies,' and on the B = -?-- (LAP + pis). (4)  
other, it makes it possible in certain cases to calculate proba- 2 ( k ~ )  
bilities for various processes in terms of the wave amplitude. Here u ( p )  is a Dirac spinor, and,u is the anomalous magnet- 
Besides constant crossed fields, other examples of simple ic moment of the neutron. For the potential ( lb ) ,  we have 
configurations of plane wave fields include those with linear 

B2=B'2=-Z2, ~ = ( - ~ 2 ~ 2 ) ' " ,  (5a) 

A=a sin cp 

or circular 

A=a, cos cp+az sincp, alz=az2=a2, (ala2) =O ( lb )  BB'=z2N, ( 5 ~ )  

polarization. N = -  
- a2 (5d) 

In the presence of charged-particle interaction, the 
Dirac equation reduces to the form2 

with N independent of q. @ should thus be expressible as a 
(D1=B'@, (2)  linear combination of three linearly independent matrices 

specific to the problem, namely B, B ', and BB ', and the unit 
where B ' is a matrix that combines A and A ', and the deriva- matrix, i.e., 
tives are taken with respect to the phase. If the commutator 
of B and B ' vanishes, the solution of Eq. ( 2 )  will take the @ = f ~  (cp)+fz (cp)B+fs(cp)Br+fc(cp)BB', (6) 
form 

O=exp (B) @,. (3) 

This is true for any potential involving charged-particle in- 
teraction, and the corresponding Volkov solution is univer- 
sally applicable. l s 2  

In the generalized Dirac equation, which describes the 
interaction of an uncharged particle that possesses an anom- 
alous magnetic moment with the field of a plane wave, the 
form of B is such that [B,B '1 = 0 only for potentials of the 
form A = af(q,), and the approach to obtaining a solution 
then remains unaltered. For example, in two previous pa- 
p e r ~ ~ . ~  we have derived a relativistically invariant solution 
for this case, and more specifically have calculated the prob- 
ability and intensity of photon emission by a neutron in the 
field of a linearly polarized wave and in a constant crossed 
field.4 In the present paper, we obtain an invariant solution 
in a circularly polarized wave ( [B,B '1 # O ) ,  as well as the 
probability and intensity of photon emission by a neutron. 

The neutron wave function in a plane wave field takes 
the form 

where theA are phase-dependent scalar coefficients. Substi- 
tuting 4) into Eq. ( 2 ) ,  equating factors of identical matrices 
on both sides of the resulting equation, and making use of 
(5a)-(5d), we obtain the system of differential equations 

f,'+Z2fs=o, fz'-fg-zy~=o, 

f1-f2-f5'=0, f2+f"=O, (7 )  

which has the solution (up to an overall constant factor) 

where 
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If we substitute these values into ( 6 ) ,  we obtain 

When there is no field (z- O), we ought to have @ = 1. 
This is satisfied uniquely (with normalization &@ = I) by 
the combination 

@= [a, (1, -1) +a, (-1, -I)] /2e", 

and after some rearrangement, we finally obtain 

relativistic generalization of the usual Pauli spin operator3 
for the interaction of a magnetic moment fi with an external 
field ( fi H). The basic prerequisite for its applicability in 
the present instance is that the interaction energy be small, 
and that the wave frequency be low compared with the ener- 
gy difference between the ground and first excited states of 
the quark system responsible for the neutron's anomalous 
moment. The information at our disposal inclines us to be- 
lieve that this condition is satisfied by a large margin in all 
cases of present interest. 

2. The matrix element of the process n - ny in a circu- 
larly polarized wave consists of four noninterfering contri- 
butions which describe the capture of the aforementioned 
frequencies, and by analogy with Ref. 4, we find the follow- 
ing expressions for the corresponding emission probabilities 
per unit time for unpolarized particles ( p  andp' are the ini- 
tial and final neutron momenta, x is the photon momen- 
tum): 

el/%@ = cos cp- + 6- 
2 (kp) z (- a2)'lr [ iA+p + $A+] - N sin cp-, 

w,=w. (:);,{$~p[ (j'+m) ( - M ' ~ F N  

where 

A+=al cos cp++az sin cp,, ~ = 1 + 6 - ~ / z ~ ,  cp*=~*cp, 1 w l ~ = w , ( ~ ) ' a l ~ { i ;  sp [  ( jr+m) ( - - M ~ U ~ P *  
6,=[ ( 1 + 4 ~ ~ ) ' k l ]  12, (10a) 

and N is defined by Eq. (5d). The validity of the solution + N'owM) ( i+m)  (N'oaBM'*-M'oaBN') ]gMaxvx~ , 
( 10) can, with (3)  taken into account, be checked by direct 

1 
substitution into the generalized Dirac equation [Eq. ( 1 ) of (12b) 

Ref. 31. It can be seen that in the process n -ny, the present A 

solution leads to the capture from the wave (or release to the { ' l r  Sp[ (p'+m) 
wave, in other processes) of four frequencies 

kl=k, kl'=k(1+4z2) ", kz=2k6+, kZf=2k6-, ( 11) x M'IJWVM (i+m) M'oaB~' ']  g,x,?c~), 

where three of these are nonmultiples of the fundamental. ( 1 2 ~ )  

The latter circumstance is quite surprising, and was first 
pointed out by Ternov et aL5 In a low-intensity wave (z-0) W,'=W,~-, '{ ' /~S~ [ ( p ' + m ) ~ ' o p v ~ * ( p + m ) ~ * o a B ~ ' ] g P a x V x B ) ,  
we have 

which can be interpreted as one- and two-photon capture. where we use the notation 
On an elementary level, one can discern the reason for 

the appearance of anharmonic frequencies, which is formal- 
R = l + i N ,  M =  

1 
ly a result of the harmonic time dependence of the matrix 2 (kp) (-. a"Jz 

(kip + pi;), 

( 10) with argument S + wt,(w is the wave frequency), in the 
complicated way in which the spin moves in a circularly - a = a  + ia,, 
polarized wave ("precession" relative to the magnetic field 
of the wave, and "rotation" relative to k at frequency w), p2m4 U? -- 

- 4p,$ ' (13a) 
which leads to the mixing of the two kinds of corresponding 
quantized transitions in the process n - ny. A related prob- 
lem is solved by Landau and Lifshitz6 for the nonrelativistic "'[GI3= j d3X jc6(p+kl-pr-x)~,  2p0. (13b) 
theory: they find the wave function of a neutral spin-1/2 
particle with an anomalous magnetic moment that is moving 

and the operators y,, S;, y; are obtained from ( by in a constant-amplitude magnetic field. The latter is inclined appropriately transforming the captured momentum to k,, 
at an angle 8 to thez-axis and rotates about it at anglar veloc- ;, and ;. Furthermore, 
ity w. When 8 = 7~/2, the time dependence of the wave func- 
tion is identical to our result expressed in appropriate nota- M'=M(p+pf ), m'=m(p-+pf), 
tion. 

The term - iPaaBI;"P/2 in the "Dirac equation" is the and in M * and * we put a, + - a,. 
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Applying the conservation laws to the expressions in the same order, the result is the same as that obtained in Ref. 
curly brackets ( 12) leads to the following results: 4. Note that we then have W2-z4, W ;  -z6. 

3. The emitted "intensity" of the four photon momenta 

{ (12a) }  =32(k1p) ( k , ~ ' ) [ 2 + m ' ( & - - - ~ $ ) ~ ] ,  in a completely circularly polarized wave can be obtained by 
adding a factor x,  to the curly brackets in ( 12). Making use 

1 1  of the integral relations from Ref. 4 once again, we obtain 
{( 12b)}=64m2L ( k l ' p ) - ( k l ' p ' )  I [ 2+m2( k , ~  7-- - k * ~  -)I , four expressions for the emitted intensity, corresponding to 

the four types of capture: 
( ( I B ) }  =16(k2p) (k2p1)  [2+m2(&-  &)'], 

where we have used the identity' 
I ~ " ' = W ~ ( ~ ) ~ [ ~ ( U , ~ )  k,.'+?i(u,')p.l, (16b) 

' A '  

a2p' 1  alp alp' 2 +  P' - )  ( kpl 

The invariant integral relations in Ref. 4 may be used to 
z:"='i2wO (P ) ~ f ( u z ) k 2 . + h ( u 2 ) p . l .  ( 1 6 ~ )  

calculate the phase-space integrals. As a result, we obtain 

~ , ' " ' = ' / ~ w ~ [ f  ( u z f )  k2, '+h(u2')p,] ,  

(14a) 
where 

2 (k2'P) 
W ~ = 1 / z ~ a g ( ~ 2 ' )  3 UZ' = 

12 
m2 ' (14d) h ( u ) =  3 ( I f  u ) ~  ( ~ ' - ~ ~ - 2 2 u ~ - 3 0 ~ - 1 2 )  +4 In ( I+u)  , 

(17b) 
where 

4u (u+2) 4u 
Z ( U ) =  - 81n(l+u), (1%) K ( u )  = 3(l+u)'  (2u2+9u+6) -8 1n ( l + u ) ,  (17d) 

and in the nonrelativistic limit, we have 
and in the nonrelativistic limit, 

g ( u ) = z ( u )  =+13u3. 
f(u)eiVilu4, h(u)=V3u4, ~ ( U ) - - V ~ ~ U ~ ,  E ( U ) = ~ / , U ~ .  

The functionsg(u) and g(u)  are plotted in Fig. 1. For z< 1, 
the quantity W, + W ; , which is proportional to z2, can be The functionsf( u and h (u are plotted in Fig. 2 and y( u 
interpreted as the probability of one-photon capture, and to and h ( u )  are plotted in Fig. 3. For z < 1, the quantity 

I:' + I bl" is proportional to z2, and we can interpret it to 
be the radiation intensity in one-photon capture, in agree- 
ment with the result obtained to the same order in Ref. 4. 

I l  'MI a 2 4 6 a u l D  

FIG. 1. FIG. 2. 
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FIG. 3. 

4. For neutrons, the largest value of z obtainable with 
high-power lasers is - lop3, so that while the capture effect 
at anharmonic frequencies in a circularly polarized wave is 
not very large, it is nonetheless observable. Experimentally, 
this would typically require being able to distinguish 
between the contributions due to W, and W ;  (or 12 and 
I p' ). The latter would go a long way towards elucidating 
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the applicability of allowing for the anomalous magnetic 
moment of uncharged particles using the generalized Dirac 
equation. 

I am grateful to V. G. Bagrov for bringing this problem 
to my attention. 
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