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The Berezinskii diagram technique is used to study the fluctuation moments of the local density of 
electron states in a one-dimensional conductor with weak disorder. It is possible to reconstruct 
from these moments the distribution functions of this density. It is found that the distribution of 
the density of states depends substantially on the conditions on the sample boundary. If the 
electron is able to leave the sample, its local density of states has a logarithmically normal 
distribution. One can speak of the distribution of the density of states in a closed sample only after 
regularizing the density, i.e., after broadening the exact energy levels. The distribution turns out 
then to depend not only on the broadening scale, but also on the type of regularization. The 
fluctuation moments of the density of states are determined for arbitrary regularization. Also 
calculated are the moments of the participation ratio. The distribution of the Knight shifts is 
determined for an arbitrary ratio of the temperature and thezeeman splitting. 

1. INTRODUCTION 

Considerable advances were made recently in theoreti- 
cal investigations of statistical fluctuations in disordered 
conductors. We refer here to the spread of the parameters in 
an ensemble of macroscopically equivalent samples (mesos- 
copic fluctuations) or to fluctuations, from point to point, of 
local electronic properties of a disordered conductor. 

The final aim of the theory of these fluctuations is the 
determination of their distribution functions. This requires 
knowledge of not only the variance but of all the higher fluc- 
tuation moments. The first work in this direction was that of 
Wegner. ' He investigated the local density of states of nonin- 
teracting electrons in a random Gaussian potential in a space 
of dimensionality d larger than two. It turned out that at 
energies approaching from above the threshold of the mobil- 
ity (averaged over a random potential of degree n)  the nth 
fluctuation moment of the local density of states increases 
very rapidly with n, like exp(nz). This growth of the mo- 
ments is a characteristic attribute of a logarithmically nor- 
mal distribution of a random quantity. This means that the 
logarithm of the local density of states has a Gaussian nor- 
mal distribution, while the decrease of the probability of a 
large deviation of the density of states itself from a typical 
value is much slower than exponential. 

Logarithmically normal asymptotics were later ob- 
served in the distribution of mesoscopic fluctuations of the 
conductivity and of the total density of states in an open 
sample of finite size.' These results, as well as those of Ref. 1, 
were obtained by using the formalism of the effective-field 
theory (the nonlinear u model) in the one-loop approxima- 
tion. The latter means that formally these results are valid 
only if the conductance (the reciprocal of the total resis- 
tance) of the sample is large compared with e2/fi. 

Wegner3 has recently advanced arguments favoring the 
premise that when higher loops are taken into account the 
growth of the fluctuation moment with increase of its num- 
ber n slows down at the largest n. This would mean that the 
probability of the largest deviations of the local density of 
states from its mean value decreases exponentially and not 
according to a logarithmic normal law. 

On the other hand, a logarithmically normal distribu- 
tion was obtained even earlier4s5 in an exact solution of the 
problem of the statistics of the resistances of disrodered one- 
dimensional conductors of finite size. In this case the elec- 
trons are localized and the average resistance R is much larg- 
er than fi/e2, but the resistance distribution function is very 
similar to that obtained in the single-loop approximation 
(which is formally valid for R (fi/e2) for the distribution 
function of the conductances. 

The present paper is devoted to an exact determination 
of the distribution function of the local density of states of 
noninteracting electrons in a one-dimensional disordered 
conductor of finite size L. It has turned out that in an open 
sample this distribution has indeed a logarithmically normal 
form that agrees surprisingly well with the results of single- 
loop calculations in the region of good metallic conductivity. 
As to the local density of states in a closed sample, from 
which the electrons cannot depart, there exist several meth- 
ods of determining this quantity, each with its own distribu- 
tion function. At the very largest values of the argument all 
these distribution functions decrease exponentially. 

In the next section we describe the distributions of the 
local density of states in various cases and present a qualita- 
tive interpretation of these results. 

Inhomogeneity in the local density of states leads to an 
inhomogeneous Knight shift, i.e., to an inhomogeneous nu- 
clear magnetic resonance (NMR) line broadening. If this 
broadening exceeds appreciably the homogeneous one due 
to elastic scattering, the NMR line shape is directly connect- 
ed with the distribution function of the local density of 
states. These questions were discussed earlier in Ref. 6 for a 
three-dimensional Anderson dielectric, and in Ref. 7 for the 
one-dimensional case, on the basis of model premises con- 
cerning the form of the localized-state wave function. In Sec. 
3 we discuss the results of a direct calculation of the NMR 
line shape in a one-dimensional conductor with weak disor- 
der. 

In Sec. 4 we derive, using the Berzinskii diagram tech- 
n i q ~ e , ~  the basic equations satisfied by the higher fluctuation 
moments. In Secs. 5 and 6 we derive the distribution func- 
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tions, described in Sec. 2, of the local density of the states in 
closed and open samples, respectively. 

Some of the results of the present paper were discussed 
briefly in our earlier paper.9 

2. DISTRIBUTION OF LOCAL DENSITY OF STATES 

The density of electronic states with energy E at a point 
x can be defined as 

The subscriptAv numbers here the exact eigenstates of a 
Hamiltonian H with energy E, and with wave function 
Y, (x).  For convenience, the local density of states at a cer- 
tain point x of a given sample will be given in units of N(E), 
which is the density, averaged over a random potential, of 
states of energy E. In the one-dimensional case 
N ( E )  = (PV, ) - I ,  where v, is the velocity of electrons of en- 
ergy E. 

If the sample is finite and closed (i.e., its boundaries are 
impermeable to electrons), we deal with a discrete spectrum 
of exact electron states. It is then meaningless to speak of a 
distribution function p ( ~ , x ) ,  since it can take on only two 
values; infinity if E is exactly equal to any one of the eigenen- 
ergies E, , or zero if E # E,  . 

The natural way to regularize the S-functions in ( 1 ) is 
to replace them by Lorentzians: 

This means that all the energy levels are of equal width 77 
(due, e.g., to inelastic processes), or that the physical situa- 
tion corresponds to averaging of the density of states over the 
energy with a Lorentzian weight: 

m 

This regularization is necessary, in particular, to permit 
a transition to the thermodynamic limit in an infinite sam- 
ple. The gist of this transition is that 77-0 only after the 
sample size L is increased to infinity. In a metal, when the 
wave functions of the electrons are delocalized, this limiting 
transition is meaningful, since it makes the local density of 
states a smooth function of the energy. If, on the other hand, 
we deal with an Anderson dielectric, such a regularization 
(L - m , and then 77 - 0) is ineffective. The reason is the ex- 
ponential decrease of the localized wave functions, the result 
of which is that even at L = m a substantial contribution to 
p ,  is made at 7,1# 0 only by a finite number of levels. There- 
fore as 17-0 the local density of states can be either zero or 
infinity. 

We know8*10 that in a one-dimensional conductor all 
the electronic states are localized even in the case of weak 
disorder. At the same time, the fluctuation moments and the 
distribution function of p, (r],a,x) for finite 77 can be deter- 
mined exactly. The calculations are described in detail in 
Secs. 4 and 5, while here we present and discuss only the final 
results. 

No regularization is needed to determine the local den- 

sity of states @,) averaged over the realizations of a random 
impurity potential, since (p,) = 1 for all 77. All the remain- 
ing fluctuation moments ofp, (7 )  depend substantially on 7 
and diverge as 7 - 0. From these moments, exact expressions 
for which are given in Sec. 5 [Eqs. (68) and (71) 1, we can 
reconstruct the distribution function. In an infinite sample it 
takes the form of the so-called inverse Gaussian distribu- 
tion": 

w ( ~ , )  = (4qrinp13)' erp [- 4- (P1-1)2~' l~ Pl 

where T = r,/2 is the free path time of an electron moving in 
a random potential, and r2 is the free path time relative to 
backward scattering (here and hereafter f i  = 1 ) . 

The quantity r - I  has also the meaning of the character- 
istic energy gap between two levels adjacent in energy and 
localized near a given point, i.e., at a distance from the point 
smaller than or of the order of the localization radius f. On 
the average, 5 is equal to 41, where I = v, r = v, r2/2 = 12/2 
is the electron mean free path. When a typical wave function 
V/, moves away from the localization center x, it decreases 
like 

y V ( x )  cc exp (-1x-xvllE). 

The theory of the inverse Gaussian distribution (4)  is 
described in detail in Jorgensen's book." We shall note here 
only its main properties. W(p, ) decreases exponentially as a 
function ofp, asp, -. m , and as a function ofpF1 asp, -0. If 
4777) 1, contributions top,  (x)  are made by many levels lo- 
calized near the point x. W (p,)  has then a sharp maximum 
whenp, is almost equal to unity, i.e., to the mean value (p,). 
The distribution function W(p,) has a form close to normal 
if Ip;'191. 

If, however, 47779 1 andp, (x) is determined by the po- 
sition of the level closest in energy and in coordinate, the 
maximum of W(p,) becomes asymmetric and shifts into the 
region of very low values of the local density of states. The 
most probable value p ,  = 87r/3 turns out to be much 
smaller than (p , )  = 1. At the same time, the fluctuation mo- 
ments of (p;) for n) 1 are determined by the region p,  ) 1. 

It is of interest to see how averaging the local density of 
states over a coordinate influences its distribution function. 
Consider, for example, the quantity 

6%/2 

The quantityplVL (7,L /2) is the total density ofstates of 
the size L. It was proven in Ref. 12 that the total density of 
states is self-averaging, i.e., that it does not fluctuate as 
L - m .  This is a natural consequence of the localization of 
the electronic states, which suppresses the repulsion of the 
energy levels. Fluctuations of the total density of states in an 
Anderson dielectric of finite size are considered in Ref. 13. 

As L - m and for finite A, the distribution function 
( 7 , ~ )  depends substantially on A. If A > v,/v,, the 

number of levels on the interval A in an energy interval of 
width 7, 

is large. Therefore n (A,r]), meaning also plSA ( ~ , x ) ,  has a 
Gaussian distribution. If, however, A for r ] ~ <  1 lies in the 
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interval v, /v > A > - I ln(qr) ,  the level repulsion is insig- 
nificant as before, but n(A,v) is small. This quantity has 
therefore a Poisson distribution: 

non 
W (n )  = - e-"O qA 

1 no== 
n ! 

We shall not consider here the distribution function n (A,q) 
or p, in the region - I ln(7r)  < A < I in which the Poisson 
law ceases to hold because of the repulsion of the levels that 
contribute substantially to p,,, ( 7 , ~ ) .  In addition to the 
purely local density of states (3) ,  which is equal top,,, only 
if A is small compared with the wavelength p; ' (with the 
reciprocal momentum) of the electron, we consider in the 
present paper also the density of states @,(v,x) averaged 
over a scale intermediate between the electron wavelength 
and the localization radius (i.e., the mean free path I) : 

ijr(q,  pi, a(q, X) for I>h>ps-'. (8) 

The distributions W(p, ) and W(j5,) differ because the fluc- 
tuations of@, are determined only by the smooth envelope of 
the exact electron wave function which decreases over scales 
of order I, while the oscillations of this wave function over 
scales on the order of the electron wavelength p; ' are also 
important for thep, fluctuations. 

In Sec. 5 we obtain an expression for the moments PI  at 
47r<  1 [see (69) 1, from which it follows that the distribu- 
tion function W(p,) can be written in the form 

t+4 "" 1 w (p,) = xj ta t  sin (nqT~(-) exp(- qTPltz). 
4 t-4 

From (9) we can obtain the following asymptotic expres- 
sions: 

i (arl~/2p13))"s exp (- n2q./2P1), PI< qT 
w (6,) = (nq~/261")"2? q . < ~ l < l / q ~ ,  (10) 

(4qx/pl) e-8n~PI, ;I > 1/11. 
To derive (10) we must recognize that if PI > 7r we can 
expand the sine function under the integral sign, and if 
@, < 77 we can omit the power-law factor. Comparison of 
( 10) with (4)  shows that the averaging (8)  leads, as expect- 
ed, to a noticeable narrowing of the distribution of the local 
density of states [the argument of the exponentials in ( 10) is 
larger than in (4) 1. On the other hand, only the numbers 
change in the asymptotic expressions, and the dependences 
on @, remain the same as in W(pl) [Eq. (4)  ] in all three 
regions. 

Expressions (4)  and (9),  as well as ( lo) ,  for the distri- 
bution of the local densities of state are valid not only in an 
infinite unbounded sample. They are valid also in a bounded 
system under the following two conditions: 1 ) the distancex 
from the boundary to the point at which the local density of 
states is investigated is large compared with the localization 
length, i.e., with I, and 2)  the sample is closed, i.e., the elec- 
trons are reflected from the boundary and do not leave the 
sample. 

The presence of an open boundary can lead, as shown in 
Sec. 6, to a qualitative change of the distribution of the fluc- 
tuations of the local density of states even for x%l.  In this 
case there is no need to introduce a regularization of type 
(2); the ability of the electron to leave the sample leads by 

itself to a broadening of the exact energy levels (it is assumed 
that after passing through the boundary the sample will ei- 
ther never return, or its phase coherence will be completely 
lost by the time it does return). The calculations described in 
Sec. 6 show that the fluctuations of the local densities of 
states ( 1 ), averaged over the atomic scales (8  ), have the 
normal logarithmic distribution: 

This distribution function has a maximum at 
@ = exp( - 3x/l) with a sharp edge on the side of small @. 
The width of the maximum at half height is exp( - x / l ) .  
The probabilities of anomalously large and anomalously 
small values of@ decrease much more slowly than exponen- 
tially. 

It can be noted that the distribution ( 1 1 ),just as in (4), 
has a symmetry that leads to the equality (@" ) = @ - " + ' ). 

The distribution of the purely local density of statesp in 
the presence of an open boundary differs somewhat from 
(1 I ) ,  but has exactly the same logarithmically normal 
asymptotes as in ( 11 ). It was already noted in the Introduc- 
tion that these asymptotes agree very well with the distribu- 
tion function of the density of states of a metallic system if 
the dimensionality exceeds two. We shall discuss this ques- 
tion in greater detail in the Conclusion. 

The distribution function@, for finite 7r< 1 retains the 
form ( 1 1 ) only in the region 77 <@, < 1/77. Outside this 
region, the presence of an open sample boundary is immater- 
ial and W(p, ) decreases exponentially in accordance with 
(10). 

According to ( 11 1, W(p, has a logarithmically nor- 
mal behavior and decreases at (In @, I > x/l much more slow- 
ly than exponentially. This behavior, however, takes place 
only on the interval 

Therefore the distribution function for 77 > exp( - x/l) is 
described by expressions ( 10) for all @, [the distribution 
function ( 11 ), just as ( lo) ,  is proportional in the region 
(I@( <x/l to p-1'2]. 

The qualitative behavior of the described distributions 
of the densities of state (4),  ( lo),  and ( 11 ) lends itself to a 
natural physical interpretation. We consider first the region 
of small p ,  (&,XI or (E,x) . For the local density of states to 
be anomalously small the spectrum of the states localized 
near a point x must have near this point a gap of width SE 
much larger than 7-I. We can obtain from (2) a relation 
that permits an estimate of the necessary width of the gap: 

We have taken it into account that the characteristic value of 
I +, (x)  1' is of the order of the reciprocal localization region 
6 -' = (41) - I ,  and have assumed that the levels are more or 
less uniformly distributed outside the gap. The exponential 
decrease [Eqs. (4) and ( lo ) ]  of W as a function of p; ' 
attests to a Poisson distribution of the levels, at which the 
probability of formation of a gap of width SE is proportional 
to exp[ - N ( E ) ~ S E ] ,  since N ( E ) ~ = . ~ T / T  is the characteris- 
tic inverse of the distance between levels. Substitution of 
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(12) leads directly to the exponential asymptotes (4)  and 
(10). 

Of course, this reasoning is valid if N(E)@E > 1. The 
distribution function reaches a maximum when the gap 
width becomes comparable with the characteristic distance 
[N(E)(]-' = T-I between levels. According to (12), this 
corresponds at r ] ~  4 1 to 

To increase the local density of states further it is neces- 
sary that the energy level closest to E be located at a distance 
SE much shorter than T-I .  In this case the value ofp, ( E )  is 
completely determined by this level: 

If T-I > SE > 7, i.e., if TT < p l  < (77) - I ,  the uniform distri- 
bution of the distances to the nearest level W(&) z T in ( 13) 
leads to the distribution 

which coincides with (4)  and ( 10). 
The same dependence, with 7 replaced by 

~ , z r - '  exp( - x/21), follows from ( 11 ) for the distribu- 
tion of the fluctuations ofp if the sample has an open bound- 
ary in the region I ln p 1 < x/21. This is natural since, as al- 
ready mentioned, the departure of the electrons .from the 
sample broadens the energy levels, and 7, is a typical value of 
this broadening. 

The substantial difference between the distribution 
functions of the local densities of states in open and closed 
samples at 7 = 7, manifests itself in the region of large val- 
ues of the argument at > (7 ,~ )  - I .  The point is that a level 
with a typical width, even if its energy 5 is identical, cannot 
lead to a local density of states much larger than ( ~ ~ 7 )  -I.  

Large values ofp are therefore connected with anomalously 
strongly localized levels. If the energy E, of this state differs 
from E by not more than its width 7, , we have 

where 6, is the localization radius of this state. 
In an open sample the level width decreases exponen- 

tially with decrease of the localization region; 
7, a exp ( - 2x/{, ). The natural assumption of a normal 
distribution of the reciprocal localization radii 

leads therefore to a logarithmically normal distribution of 
the widths v,,, meaning also of the fluctuations of [see 
(1411. 

According to the definitions (2)  and (3),  all the levels 
in a closed sample have one and the same width 7. An in- 
crease ofp, is therefore possible if the localization radius is 
decreased. Substituting in ( 15) x-{, - [ p , v N ( ~ ) ]  -' in ac- 
cordance with ( 14), we obtain W(p,) a exp( - p17r) ,  as 
follows indeed from (4)  and ( 10). 

We have thus described and qualitatively explained the 
distributions of the local density of states in the case when 
the electron energy levels are Lorentzian. These results be- 
came qualitatively understandable by assuming absence of 

correlation in the positions of the energy levels (Poisson dis- 
tribution) and a normal distribution of the reciprocal local- 
ization lengths. On the other hand, averaging with a Lorentz 
weight (3)  is not the only one possible. We shall show in the 
next section that the local density of states, which differs 
from (3)  in that the Lorentzian under the integral is re- 
placed by other functions f, (& - &'), can be most directly 
studied by using NMR. It turns out that the fluctuation mo- 
ments of the local density of states can be obtained for arbi- 
trary f, ( E  - E ' ) .  These results will also be obtained in the 
next section. 

3. INHOMOGENEOUS BROADENING OF NMR LINE 

Hyperfine exchange interaction between a nuclear spin 
at a point x and a conduction-electron spin is known to shift 
the resonance frequency of a nuclear spin placed in an exter- 
nal magnetic field H-the Knight shift14: 

Here J is the hyperfine-interaction constant, gp,H is the 
Zeeman splitting of the electron level by spin projections, 
~ ( E , x )  is defined in ( 1 ), and f ( E )  is connected with the 
Fermi distribution function n, ( E )  by the relation 

where E~ is the Fermi energy. 
The fluctuations of the local density of states of the elec- 

trons lead thus to fluctuations of the Knight shifts at differ- 
ent points of the sample, i.e., to an inhomogeneous broaden- 
ing of the NMR line. If the spin-lattice relaxation rate 1/T2 
is less than the dispersion Aw, the NMR line shape is deter- 
mined entirely by this inhomogeneous broadening. 

Depending on the ratio of the temperature Tto the Zee- 
man splitting gp, H, the function f (E) is given by 

where 8( t )  = 1 for t>O and 8( t )  = 0 fort <O. It is meaning- 
ful therefore to consider distributions of local densities of 
state, defined as 

Since the Knight shift differs fromp, orp, by only the factor 

the NMR line shift is completely defined by the distribution 
functions W(p2) and W(p,). 

To describe the NMR line shape observed in one-di- 
mensional conductors in Ref. 15, the authors of Ref. 7 calcu- 
lated W(p2) by starting from the assumption that the elec- 
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tronic-state wave functions are given by 

with one and the same localization radius and with ran- 
domly distributed centers x, and energies &,. The same con- 
siderations were used even earlier6 to determine W(p,) in 
the three-dimensional case. 

We present here the results of an exact calculation of the 
distributions W(p2) and W(p,) in theone-dimensional case; 
no model assumptions are used in the calculations which, in 
contrast to the results of Ref. 7, are valid for arbitrary p and 
Tor H. 

To find the distribution of the local density of states pf 
averaged over the energy with arbitrary weight f ( E )  [see 
(3) ]  we consider the correlation function 
(P(&,)P(&~) ...p( E, ) ) of the densities of states ( 1) at differ- 
ent energies. It turns out that this correlator has the follow- 
ing structure: 

n 

It follows from (22) that the quantitiesp(~, ) for different E, 

are not correlated at all. This conclusion seems surprising, 
since we are dealing with levels localized near the point x, 
and these levels should be repelled. Relation (22) for n = 2 
was obtained by direct calculation in Refs. 13 and 16. More- 
over, it turned out that there is no correlation only for the 
densities of states in one and the same point x. The quantity 
( P ( ~ ~ , x ) p ( & ~ , y ) )  differs noticeably from unity not only for 
I X  - y l 2  I, but also for Jx  - yI zp, ', wherep, ' is the elec- 
tron wavelength on the Fermi level. We have no good quali- 
tative explanation for the absence of correlations between 
p ( ~ ~  ,x) The negative correlation connected with the level 
repulsion apparently offsets the positive correlation of the 
I*, ( z )  1'. 

The coefficients a, in (22) can be written in the form 

i.e., they are the irreducible fluctuation moments of the 
quantity known as participation ratio. Using (22) we can 
express, for arbitrary f (s), the fluctuation moments ("cu- 
mulants") of the quantities pf in terms of a, : 

For the Lorentz weighting function (3)  the fluctuation mo- 
ments ), are obtained below in Sec. 5 by direct calcula- 
tion. Substituting them in (24) we can obtain the coefficients 
a, : 

an= (nI4-c) "-'r (n),  (25) 

where T(n)  is a gamma function. Substituting (25) in (24) 
we get an equation for the irreducible fluctuation moments 
ofp  for arbitrary f ( E ) .  It is easily seen, in particular, that 

I' ('I2) r2 (n) (T ) '-n ( ~ 2 "  (T, EF, X )  )c = 
I' (n+'/2) 

From (26) we can determine the distribution W(p3). The 
Laplace transform of this function is directly connected with 
(Pl; ) by the known relation 

Substitution of (25) in (28) yields 
m 

Together with (201, the distribution (30) describes the 
NMR line shape for gp, H) T. If s3< 1 then, evidently, the 
most probable value of p, is zero, i.e., for T =  0 and 
gp, H(%-/~T there is no average Knight shift, and the NMR 
line is asymmetrically broadened. 

The distribution of p, can be found similarly. From 
(27) and (28) it follows that 
ea 

'b J w(p2) exp(-pp~)dp~ = exp{-s2 in2 [ (:) 
0 

The distribution function W(p,) is determined from (3 1 ) by 
taking the inverse Laplace transform. After straightforward 
albeit cumbersome transformations this function takes the 
form 

,m 

w (p2) = f- J dz sh 2x sin (ns2x) 
2n-_ 

Ifp2>) max{s2-', 11, the integral (32) is determined by the 
region of small x and can be calculated by expanding sinh 2x 
and cosh2 x in powers of x. As a result we obtain for W(p2) 
an asymptotic relation that decreases exponentially with in- 
crease of p,: 

On the other hand, it can be seen from (32) that 
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It can be shown similarly that for p, = 0 all the derivatives 
d n  W/dp," of the distribution function also vanish. Zero is 
thus an essential singular point of the function W(p2). If 
p24 1, the main contribution to (32) is made by the region 
X) 1. In this case sinh x = cosh x = ( 1/2)exp x and (32) 
can be represented in the form 

I r  

If furthermore the condition 

is also met, the integral in (35) can be calculated by the 
saddle-point method. As a result, 

where z(p,) is the solution of the equation 
2 2 2 

2z(pa) , z(p2) ==ln{- ln[-ln(- ln . . .)I}. z(p2)= ln- 
Pa Pa P: Pa 

(38) 

W(p2) increases withp, in the region in which Eqs. (37) are 
valid. 

It is seen from (27) that for s2) 1 the distribution 
W(p2) is Gaussian (since (p," ) f 4 (p: ): ), with a center at 
p,=: 1 and a width (2/3s2) ' I 2 ;  

On the other hand, the asymptotic forms of W(p2) are de- 
scribed by Eqs. (33) and (37). 

For s, 4 1 the maximum of the function W(p2) becomes 
very narrow and shifts to the region of small values: 

mediate valuesp, ,,, 4p2 4s; ' of the local density of states 
the integral in (32) is determined by the region 
1 < x c (q) - '. It is therefore possible to replace in the inte- 
grand sin ( r s ~ )  by rs$ and sinh 2 and cosh2 x by exp (2x) / 
2. The integral can then be easily calculated: 

where 
rn 

y = exp{- Ida lnx erp(-x)} = exp(0.577) m1.181. 
0 

We note right away that Eq. (41 ) is in no way related to 
the logarithmically normal distribution ( 1 1 ) of the local 
density of states in an open system, discussed in the preced- 
ing section. Equation ( 1 1 ) is apparently valid for any sample 
dimensionality d. At the same time it follows from the model 
(21) used in Refs. 6 and 7 that in the region where the 
asymptotic relation (41 ) is valid we have 

This is the probability distribution for observing a nearest 
level at a distance on the order of In p, in a d-dimensional 
space, and at a distance of order lnp, in a ( d  + 1 )-dimen- 
sional space, in which the role of one of the dimensions is 
assumed by the energy. 

The asymptotic values (37) and (41 ) obtained by us for 
the function W(p,) fors, 4 1 andp, 4s; ' agree qualitatively 
with the results of Refs. 6 and 7, where the authors started 
out from model-based premises concerning the wave func- 
tion of a localized state [see Eq. (21 ) 1. The limitations of 
these premises are manifest by the substantial quantitative 
difference between (37) and (41 ), on the one hand, and the 
results of Ref. 7, on the other. As to the region of applicabili- 
ty of Eq. (33 ) , W(p, ) is determined in this region entirely by 
the localization-length fluctuations. So large values ofp, are 
therefore never encountered in the approach developed in 
Ref. 7. 

Equation (37) describes W(p,) correctly only for Thus, the NMR line shape in a disordered one-dimen- 
p2 <p2 whileforp, > s; ' relation (33) is valid. At inter- sional conductor at T)gp,  H is determined by the distribu- 

FIG. 1. Distribution functions W(p,) for different 
s,. a )  W(p2) dependence in the relative coordinates 
X =  (3~~/2)'/~(~, - I), Y =  (2/3~,)''~~(p~): 
I-s, = 0.3; 2-s, = 1; 3-S, = 3; 4-s2 = 10; 5- 
plot of the function Y = (2a) -'I2 exp( - X2/2), 
corresponding according to (39) to the W(p,) de- 
pendence as s, - w .  Inset- W(p, ) dependence for 
s, = 0.3 in sernilog scale. b) Plots of W(p2) for 
s, = 0.1 (6) and s, = 0.03 (7) in log-log scale. 
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tion function (32). For T)?r/16r the asymptotes of this 
function are givenby Eqs. (29), (33), and (37). In  the oppo- 
site limiting case T4?r/16r the asymptotic behavior of 
W(p,) is described by Eqs. (33), (37), and (40). In contrast 
to the case T = 0, the Knight shift differs from zero, but is 
many times smaller than the one produced at 16Tr) ?r and 
corresponds top2= 1, i.e., to a homogeneous density of the 
electronic states. Highly characteristic at low temperatures 
is the exponential dependence of the position and width of 
the NMR line on the reciprocal temperature (40). The dis- 
tribution functions W(p, )  for different s, are shown in Fig. 
1. 

To conclude this section, we note that we have calculat- 
ed in passing the moments of the participation ratio [see 
(25 ) 1. Such a moment increases factorially when the num- 
ber is increased, thus pointing to an exponential decrease of 
the probability of large values of IT, (x)  1'. This, however, is 
a much slower growth than the one observed by Wegner for 
the participation ratio moments in a metal at d > 2. 

4. DERIVATION OF BASIC EQUATIONS 

We proceed now to derive our main results described in 
the preceding sections. The local density of states (2)  can be 
expressed in terms of the electronic Green's functions (GF) : 

where 

is the exact retarded (advanced) GF. The moments 
p,  ( V,E,X 1 are 

(pin (q, e, x) )= ( 2 4 - "  
k=O 

The correlator ( G  !+ G 'Y k, can be calculated by the 
Berezinskiidiagram technique8 (see also the reviews in Refs. 
18 and 19). This calls for summation of the perturbation- 
theory series over the random impurity potential for an ob- 
ject constituting n closed loops, k of which correspond to the 
retarded G F  G+ and the remainder to the advanced G - .  The 
coordinates of each start and end of the G F  in each loop 
coincide and are equal to x. 

Following Berezinskii, we use diagrams ordered with 
respect to the coordinates and break each up into a product 
of two blocks of the right (R ) and left ( L )  parts. Thus, R is 
the sum of the diagrams located to the right of the point x 
and having at this point m, pairs of lines from the first "ad- 
vanced" loop, m, from the second, El from the first "retard- 
ed" loop, etc. (see Fig. 2).  In the general case R depends on 
each of the variables mi and Zi . The equation for R ({mi 1, 
{ T i i , ) )  can be derived by following, e.g., Refs. 8 and 19. It is 
obvious from Fig. 2, however, that in our case, when the 
energy variables of all the advanced G F  (single lines in Fig. 
2)  are equal to E - iv, while the energy variables of all the 
retarded G F  (double lines in Fig. 2) are equal to E + i ~ ,  the 

FIG. 2. Right-hand Berezinskiy block R(m,,m2, ..., m k ;  
E,,E ,,..., E n  - , ;x ,q)  for multiloop diagrams. Single and double lines- 
advanced (G: ) and retarded (Go+ ) Green's functions of the free elec- 
tron. 

right-hand side depends only on the summary variable 
m = m , + m , +  . . .= i i i ,+E,+ . . .  : 

where R, is the right-hand side introduced by Berezinskii 
and satisfying the equation 

Similar equations hold for the left-hand side (only the sign of 
d /dx is reversed) : 

L m r  ({mi'}, {Es'}), 

The correlation function of interest to us can be repre- 
sented in the form 

( G+k (x, x) G"' ( x ,  x) > 
m m 

= (-1) 7, Yl Lmr (7, x)Rm(q7 X) qm,rn, (k) qrn,rn, (n-k) , 
m-0 m'-0 

(49) 
where p,,,, (k )  are mixing coefficients. To determine them 
it must be recognized that there are four possible ways of 
attaching to the point x the electron lines shown for the first 
loop in Fig. 3. For cases a and d the number of line pairs in 

FIG. 3. Possible methods ofjoining electron lines to an outer vertex. Cases 
a and d correspond to the oscillating factor exp( + 2ip,x) .  
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thesectionsx + O ( m )  andx - O(ml)  differ by unity, where- 
as m  = m' in cases b and c. Therefore 

( 5 0 )  

The factor in the square brackets is the result of the fact that 
b and c do not differ when m = m' = 0.  

Using the relation 

where the integral is taken counterclockwise over a circle of 
radius lzl < 1, we can rewrite ( 5 0 )  in the form 

( 5 2 )  

The moments of the density of states (8 )  averaged ovel 
atomic scales can be determined in the same manner. This 
averaging leads only to vanishing of the diagrams containing 
attached electron lines of type a and d in Fig. 3  (each such 
attachment corresponds to a rapidly oscillating factor 
exp( f 2 i p g ) ;  when (py ) is calculated these factor are can- 
celled out by analogous factors in the retarded loops). What 
are left ultimately are only diagrams with m = m': 

The aggregate ofEqs. ( 4 5 ) ,  (47) - (49) ,  ( 5 2 )  and ( 5 3 )  
make possible a final determination of (py ) and @(I ) . The 
calculations become much simpler if s, = 87774 1 .  In this 
case the significant terms in the sums ( 3 9 )  and ( 53 ) over m 
are those with m  $1, and 

ip, (k) G- 2kmk-1r-1 I fm, m1 (k) - 
Substituting ( 5 4 )  in ( 5 3 )  and ( 4 9 )  in ( 4 5 )  we get 

n-l  I'(2n) <pin)= -- 
272-1 r 3 ( n )  I n ( q , x ) ,  

272-2 r 2 ( 2 n )  
(pin)= 

n (272-1) r5 ( n )  2-nzn (q, 2) 7 

Equations ( 5 5 )  are not valid for n = 0  ((p,) = @,) = 1 by 
definition), since expressions ( 54) for q~ ( k )  and 6 ( k )  are 
not valid when k  = 0 .  We shall show below that ( 5 5 )  de- 
scribes more readily irreducible moments (cumulants or 
semi-invariants (&), and (p; ), ) than ordinary moments. 

The values of I, ( 7 , ~ )  under different boundary condi- 
tions will be calculated in the next two sections. 

5. DENSITY-OF-STATES MOMENTS IN A CLOSED SYSTEM 

We consider first a semi-infinite sample located on the 
x > 0  axis. If the electron is only elastically scattered from 
the boundary, the boundary condition for the left-hand side 
L, takes the form 

According to ( 4 7 ) ,  L, ( x )  for m  % 1 is described by the 
equation 

After a Laplace transform with respect to the coordinate y 
and a change of variable 

0 

Equation ( 5 8 )  with boundary condition ( 5 7 )  acquires the 
form of the Bessel equation 

which can be solved with the aid of the Lebedev-Kontoro- 
vich transformationz0: 

where K, (z) is a modified Bessel function of the second 
kind. As a result we obtain from ( 6 0 )  

Substituting ( 6 2 )  in ( 5 9 ) ,  taking the inverse Laplace trans- 
form with respect toy, and using the identity 

where 
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The second term in the curly brackets of (64) decreases ex- 
ponentially with increase ofy and is significant ify 5 1, i.e., if 
x 51. Only at such distances from it does a closed boundary 
influence the local density of states. For x )  I (y%l)  we have 

L, (s,, y) = (4ms,) '"K, ( (4ms1) ") 

All the results of this section are therefore valid also for a 
finite sample much longer than I. In this case at least one of 
the boundaries has no effect regardless of y. If, however, we 
are interested in a point located far enough from both boun- 
daries, the sample does not differ from an infinite one and 

Substituting (66) in (56) and then (55), we obtain 
I-,, ii 

In (q) =s, - I" (n) I'-I (2n), 
n- I 

(67) 

The left-hand sides of (68) and (69) contain in lieu of 
the moments@;), @;) the cumulants (semi-invariants) 
(p; ),, @; ), ,which are the irreducible moments of the local 
density of states. The point is that in the case s, < 1 consid- 
ered by us these quantities differ little, @(;) = (p; ), and 
@(() = @;),, inasmuch as (p;), ) @;- I ) ,  according to 
(68) and (69). At the same time, as will be shown below, 
relation (68) for the cumulants is exact at arbitrary s,. 

Using the known relations between the moments and 
the cumulants: 

w 

we obtain from (68) 
n - i  

Equation (4) for the distribution function W(p,) fol- 
lows directly from (71 ). It can be obtained with the aid of 
the inverse Mellin transform 

a+*- 

(all the singularities of @" ) are located to the left of the 
integration contour). It is even easier to verify (7 1 ) by start- 
ing from the inverse Gaussian distribution (4).  

We consider now the distribution of the local density of 

states PI averaged in an atomic scale. From (69) we can 
obtain for the cumulants @; ). the generating functionx(P) 
(70) in terms of which W(P,) can be directly expressed: 

The integration contour Cin (73) is drawn such that all the 
singularities ofx(j5, ) (root and logarithmic branch points) 
are located on the left. Following the change of variable 
PI = s,t ', Eq. (73) takes the form 

To obtain Eq. (9)  for W(P,) from (74) it suffices to deform 
the integration contour in (47) so as to make it pass along 
the edges [i w ,i] and [ - i, - i w ] of the cut, and also substi- 
tute the definition (58 ) of the quantity s,. 

We have considered so far the case s, < 1. We discuss 
now the situation for arbitrary s,. An expression for R ,  (s, ) 
was obtained in Refs. 8 and 16 for arbitrary m and s,, so that 
from the set of Eqs. (45), (49), and (52) we can calculate 
@; ), also for this case. The result, however, is much simpler 
to obtain. It is necessary for this purpose to consider the 
inverse limiting case s, 4 1, in which we can write down a 
high-frequency expansion in terms of the parameter s, 
= (8777) - I ,  equivalent to the diagram expansion in the im- 

purity digram technique.'.'l 
Diagrams for @: ), in the first two orders of perturba- 

tion theory are shown in Fig. 4, where the single and double 
lines correspond as before to the advanced (G- ) and retard- 
ed (G, ) Green's functions. A wavy line and a cross describe 
impurity scattering. They correspond to factors (27) - ' and 
(47) - I ,  re~pectively.~~ Each diagram in Fig. 4 is marked by 
the number of equal but topologically nonequivalent dia- 
grams. 

FIG. 4. High-temperature expansion for the cumulants ofp,:  a )  diagram 
for (p: ). of first (lower) order ins, '; b) and c )  second-order corrections 
to (p: ).; d)  diagram ofsecond (lower) order ins; ' for (& ).; e )  and f)- 
corrections to which are proportional to s; '. A wavy line and a 
cross describe impurity scattering and correspond to factors (27) - ' and 
(47) -', respect i~e ly .~~  The coefficients preceding the diagrams take into 
account all possible topologically equivalent diagrams. 
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In lowest-order perturbation theory in s; ', the cumu- 
lant (p: ), is described by diagram a of Fig. 4, which yields 
(p: ), = s; '. This agrees with the result of the lowest order 
of the high-frequency expansion (68). It can therefore be 
proposed that the corrections in each of the succeeding or- 
ders of the high-frequency expansion cancel out. This can be 
verified by direct calculation. For example, the contribution 
of the diagrams of second order in s; ', Figs. 4b and 4c, 
actually cancel each other. Relation ( 68 ) is therefore exact 
for all s, . 

This statement is valid also for the higher cumulants. 
Thus, the sum of the diagrams of the two lower perturbation- 
theory orders for (p: ), (diagrams 4d-4f) yields 

which coincides with (68). 
Relation (68) for the cumulants b y ) ,  is thus exact, as 

already mentioned, for all s, and n. Unfortunately, the first- 
order high-frequency expansion of &'), is not equal to 
(69), and the higher-order corrections do not cancel out. 
Therefore (69) is valid only for s, g 1. 

6. DENSITY-OF-STATES MOMENTS IN THE PRESENCE OF AN 
OPEN BOUNDARY 

The condition on an open boundary of a sample is 

We have assumed that an electron departing backwards 
from a sample will no longer return (e.g., boundary between 
a disordered sample and an ideal conductor), or that prior to 
its return the phase coherence of its wave function will be 
completely lost. 

In a semi-infinite sample, an equation for L ,  of type 
(47), after transformation with respect to coordinate and 
allowance for the boundary condition (75), takes the form 

This equation can be solved as follows: For m 4s; ' one can 
neglect the first term in the curly brackets of (76). A solu- 
tion of the remaining equation was obtained in Ref. 23, 
where it was shown that its asymptotic form for m 9 1 is 

where 

On the other hand, if m S  1 the expression in the square 
brackets of (76) can be replaced by d 2Lm /dm2. This and the 
change of variable (59) result in a Bessel equation whose 
solution, with a correct asymptotic behavior as m - CC, is 
equal to 

The factor C can be determined by matching the solutions 
(79) and (77) in the region 1 & m &ST I .  As a result we have 

Substituting (80) in (79) and taking the inverse Laplace 
transform, we get 

L, (y) =2 (ms,) ' h ~ i  (2 (ms,)  ") 
OI 

2(ms )" dh r 3 ( ( l + i h ) / 2 )  +-_I- 
2ni -_ h+i r2 ( ih )  

This expression can be compared with the analogous expres- 
sion (64) for a closed sample. Whereas in (64) the presence 
of the boundary turns out to be inessential for y > 1, accord- 
ing to (81) an open boundary is effective at distances 
yS1ns;')l. 

It can be seen from (8 1 ) that for m)s, ' the right-hand 
side decreases exponentially, L,  cc exp( - 2(ms, ) ' I 2 ) .  If 
y=y-' Ins,') 1, there exists a region exp(y) g m  < s r 1  in 
which L, also decreases when m is increased, but more 
slowly: 

In a semi-infinite sample, or in a finite one having a 
right-hand boundary located at a distance much larger than 
In s, ' from the considered point, the right-hand side of R ,  
is described as before by Eq. (66). Substituting (66) and 
(81) in (56) we obtain for In (7,y) 

X J 5 r 3  ($-El r -2 ( - ih )  
-m+ro  i-h 

ih+ l  ih- I Y 
x 1 ~ ( n + ~ )  r ( n f T )  ( ' e ~ p [ - ~  (h - i r )2 ] ,  

where 1 < a  < 3/2. The value of the integral in (83) is deter- 
mined by the position of the saddle point il = iy relative to 
the poles. For y < 1 the main contribution to In is made by 
the pole il = i, and this leads to Eq. (67). For the largest 
[i.e., the smallest s, and 7, see Eq. (82) 1, or more accurately 
for y >  2n - 1, the value of the integral for In in (83) is 
determined by the pole il = i(2n - 1 ) : 

If 7 = 0 then y = co and (84) is valid for all n. Substitu- 
tion of (84) in (55) yields 

Note that for (85) to be valid it is necessary only that the 
condition y>2n - 1 ors ,gexp[  -y(2n - l ) ]  bemet. The 
relation between y and 1 can then be arbitrary. 

The law governing the growth of the cumulants (85) is 
a characteristic attribute of the logarithmically normal dis- 
tribution ( 1 1 ) . Equation ( 1 1 ) for W(p,  ) at 7 = 0 can also 
be obtained from (85) directly by using an inverse Mellin 
transform of (72). 

In the intermediate case 1 < y < 2n - 1 the value of In is 
determined by the contribution of the vicinity of the saddle 
point il = iy to the integral in (83). Calculating this contri- 
bution and substituting in (55), we get 
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2"r2 (n) s:-" expi- y (1-7') /4 ]  n-1 
(pin)= =-In = - 7 

r(2n) 2(ny)"' [ (2n-1)'-y2] 2n-1 

It can be seen from (86) that once the condition y > 2n - 1 is 
violated, the growth of the cumulants slows down with in- 
crease of the number n in ( 85) and becomes merely factorial. 

According to ( 1 1 ), at a certain value of P, that differs 
greatly from the most probable exp( - y),  the distribution 
function W(P,) is determined by the cumulants (py ), with 
numbers n on the order of 

A 

The condition for the validity of Eq. (85) for cumulants with 
2n - 1 < y means that expression ( 1 1 ) for W(P,) is valid for 
finite s, < exp( - y ) only in the region s, <PI < s; '. 

If n - m , Eq. (8) goes over into (69) apart from a coef- 
ficient that depends on s, and y. Consequently, accurate to 
the same coefficient, the distribution density W(P,) as 
6,- m and as P-.O is described by the asymptotic expres- 
sions ( 10). The determination of W(b,) in the intermediate 
region (In PI 1 5; Iln s, ( must be based on the exact Eq. (85) 
for the cumulants. Finally, if y 2 In s, ' the normal distribu- 
tion law ( 11 ) is not valid in any region and is described for 
all P, by Eqs. (9) and ( 10) derived for an infinite sample. 
Thus, the influence of an open boundary on W(P,) extends 
over a region having a size on the order of I ln s, 1 % 1. Recall 
that a closed boundary is effective only if y 5; 1. 

To conclude this section, we consider the distribution of 
PI in a finite sample with two open boudnaries at 7 = 0. Let 
the dimensionless distances from the considered point to the 
boundaries by y, and y,, and let y, < y2. By a method similar 
to the one described above, we can obtain from (81) and 
(55 .. 

It follows hence that if n < (y, + y2)/2y, the equation (85) 
for the moments is valid, so that forp, < exp(y,) theb, dis- 
tribution is given by Eq. ( 11 with x = 21y,. If, however, 
n > (y, +y2)/2y,, then 

We have therefore for p ,  > F 

Thus, the far logarithmic normal tail of the function W(P, ) 
in a finite system is obtained by multiplying of the asympto- 
tic relations of type ( 11 ) from each boundary. 

7. CONCLUSION 

We recapitulate briefly the result of the present paper. 
Using Berezinskii's diagram technique we succeeded in cal- 
culating exactly the fluctuation moments of the local density 
of states in a weak one-dimensional random potential. We 
used these moments to reconstruct the distribution function 
of this quantity. 

The results were found to depend substantially on the 
conditions at the sample boundaries. If at least one of the 
boundaries is open (i.e., an electron exiting through it leaves 
the sample forever), the distribution of the local density of 
states has a logarithmic normal form ( 11 ) which can be nat- 
urally interpreted as a consequence of the normal fluctu- 
ations of the localization length. This law agrees splendidly 
with the results in Refs. 2, where the distribution of the den- 
sity of states over an ensemble of metallic samples in d > 2 
dimensions was examined. Within the framework of the one- 
loop approximation of the nonlinear a model it was shown 
there that the cumulants N(E) increase with the number n in 
accordance with the law 

wherea, = e2N(&)vFI /d is the classical (Drude) conductiv- 
ity and u is the observed value of the conductivity renormal- 
ized by the quantum effects. In the one-dimensional case, 
owing to the localization, a decreases exponentially with in- 
crease of the sample dimension x ,  and a, is independent of x.  
Therefore (ln(a,/a) ) a x/l and the cumulant-growth laws 
( 89) and (90) agree at least accurate to a numerical factor in 
the exponential. " 

This agreement is quite surprising, since the first of 
these equations pertains to a ( d  > 2)-dimensional metal, and 
the second to a one-dimensional dielectric, to which the a- 
model formalism is certainly inapplicable. A similar corre- 
spondence was observed also for the frequency dependence 
of the average conductivity.2432s All this seems to offer evi- 
dence that even in a metal there is some probability of an 
onset of appreciably localized states, and their localization 
has a normal distribution. 

In the case of a closed sample, the local density of states 
must be regularized before it is determined, that is to say, the 
exact energy levels must be broadened in some way or an- 
other. The level widths must not tend to zero even in an 
infinite sample, for even in this case the density of states at 
each point of an Anderson dielectric (in contrast to a metal) 
is determined by a finite number of levels. It was found that 
the distribution function of densities of states depends 
strongly not only on the width but also on the regularization 
method. On the other hand, it is possible to determine the 
fluctuation moments of the density of states for arbitrary 
regularization [see (24) and (25 ) I .  A common feature of all 
regularization is an exponential decrease of the distribution 
function in the region of large values. 

A study of the NMR line shape that results from inho- 
mogeneous line broadening permits a direct observation of 
the distribution function of the local density of states. We 
have determined this line shape for both high temperatures 
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(compared with the Zeeman splitting) and low ones [see 
(30) and (32)l. 

The main qualitative conclusions are the strong asym- 
metry of this line, and the exponentially strong temperature 
dependences of the width and position of the maximum of 
this line. Consequently, at low temperatures the principal 
role in the formation of the NMR line should be played by 
homogeneous broadening. At first glance it might seem that 
this line should correspond to a Lorentz broadening of the 
energy levels, and hence to the inverse Gaussian distribution 
(4). It appears, however, that the fluctuations of the inelas- 
tic widths of these turn out to be substantial. One should 
expect in this case a logarithmically normal NMR line shape 
of type ( 11 ), with x replaced by a certain temperature-de- 
pendent length scale (for example, by the characteristic hop 
length in hopping conduction). This question requires 
further research. 

We determined also the fluctuation moments of the par- 
ticipation ratio. A rapid growth of type (9) ,  typical of a 
metal,' is apparently valid only for an open sample bound- 
ary. In a closed sample these moments, just as the moments 
of the local density of states, increase with the number only 
factorially. This confirms once more the conclusion that lo- 
garithmically normal distributions are consequences of the 
level widths due to the scatter of the localization lengths only 
in the presence of an open boundary. 

We are deeply grateful to A. G. Aronov, A. M. Vainrub, 
I. Kh. Zharenkeshchev, V. E. Kravtsov, I. V. Lemer, M. I. 
Raikh, Yu. A. Firsov, and B. I. Shklovskii for valuable dis- 
cussions. 
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