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The manifestations of half-integer quantization, which is specific for definite types of 
superconducting pairing, are described. It is assumed that this pairing is realized in organic 
superconductors, and that observation of the described phenomena can confirm the validity of 
these assumptions. The conditions under which half-integer quantization of the magnetic flux 
and of the phase are directly manifested are determined. An intermediate-state vortex structure is 
considered and it is shown that an hexagonal lattice of half-integer vortices is realized in a wide 
range of magnetic fields. 

INTRODUCTION 

Certain distinctive properties of superconductivity in 
organic  conductor^'^^ can be explained by assuming a non- 
trivial type of superconducting pairing,3 similar to that real- 
ized in heavy-fermion corn pound^.^.^ 

Favoring this assumption for the TMTSF family 
(Bechgaard salts) are a number of experimental facts: the 
strong suppression of superconductivity by imp~ri t ies ,~ pos- 
sible exceeding of the paramagnetic limit for H,, ,'*' and non- 
exponential temperature dependence of NMR d a m ~ i n g . ~  
Theoretical arguments based on the similarity of the com- 
pounds of the TMTSF and BEDT families, and also certain 
experimental data,'' allow us to speak, albeit with less assur- 
ance, of a nontrivial type of pairing also as applied to BEDT 
salts. 

The possible types of pairing in heavy-fermion com- 
pounds are listed in Ref. 5. The main features distinguishing 
these compounds from organic conducting materials are the 
quasi-one (two) -dimensional character of the electron spec- 
trum and the smallness of the spin-orbit interaction. This 
leads to approximate symmetries connected with conserva- 
tion of the spin and of the number of carriers on each chain. 
A classification of the possible type of pairing with account 
taken of the various features is given in Ref. 11, and some 
data important for the understanding of the symmetry as- 
pect of the problem are given in the Appendix. 

The following types of pairing were proposed for the 
description of superconductivity in Bechgaard salts: 

A 

A (k) =io,(n, cos kbb+ina sin kbb)exp(irp) (phase A )  ( la)  

in Ref. 12 and 
A 

A(k)=ia,(ad)f(k,)exp(irp), -f(k,)=f(-k,) (phaseB) 

( l b )  

in Ref. 13. Standard designation of the axes1.* is used. If the 
approximate symmetries mentioned are regarded as exact, 
the order parameter in these phases is continuously degener- 
ate: the energy depends only on the modulus of the four- 
dimensional vector (n,, n) or of the three-dimensional one 
d. 

Phases A and B have a common property: the order 
parameter remains unchanged under the substitution 
(n,, n) + ( - no, - n) (d- - d) and a simultaneous shift 
p-p + a of the gauge phase. As shown in Refs. 14 and 15, 
such a property of the order parameter in He3-A makes pos- 

sible the existence of vortices with half magnetic flux quanta. 
In a superconductor, analogously, this property causes the 
change of the gauge phase on tracing a closed contour to 
equal either 2 m ,  as in the case of ordinary pairing, or 
a + 2 ~ n .  In the latter case a texture of the order parameter 
(n,, n) ,  d exists. 

The purpose of the article is an analysis of the physical 
manifestations of this half-integer quantization. 

FREE ENERGY AND CHARACTERISTIC SCALES 

Effects due to the approximate continuous degeneracy 
of the order parameter manifest themselves at distances 
much larger than the superconductivity correlation length 6. 
This makes it possible to assume in the expression for the free 
energy that ni + n2 and d2 are constant, and retain only 
terms of second order in the gradients and terms that violate 
the approximate symmetry. For phase A ,  the free-energy 
density is 

For phase B we have a similar expression: 

The Greek subscripts denote here the Cartesian components 
of the coordinates, and boldface symbols are retained for 
vectors in spin space. 

Let us estimate the scale of the coefficients in (2a) and 
(2b). The quantity v, has a smallness connected with the 
strong anisotropy of the electron spectrum vo- (t,/t, )'E, 
where E is the difference between the free-energy densities in 
the superconducting and normal states, t , ,  are the hop-over 
integrals along the axes a and b respectively, i.e., v, - lo-'&. 
The tensor .i. describes spin-orbit effects and can be estimat- 
ed atI6 

We see that ~ ~ $ 6 .  In this case, depending on the sign of vo, 
the pairing in the homogeneous state of phase A is either 
singlet (n  = 0, phase A, ) or triplet (no = 0, phase A,). The 
tensor .i. lifts the degeneracy remaining in the triplet case. 
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The tensor aas has the usual scale of magnitude. In the 
BCS approximation, cap -0 and bap -0. It can be verified 
that allowance for Fermi-liquid effects leads to bas, cap 
5 aas at T 5  T,. Near T,, cap and bas are proportional to the 
fourth power of the order parameter, i.e., cap, bas - ( T - T, )*, whereas a, - I T - T, I. We assume hereafter 
that ass %bas, cap 

The gradient terms and terms that violate the approxi- 
mate symmetry in (2a) and (2b) become comparable on 
scales of the order of the anisotropy length la, - (v/a) 'I2. 

On smaller scales the directions of the vectors (no, n) and d 
can differ substantially from the most favorable one in the 
homogeneous state. It is useful to cite numerical estimates: 
la, - 10- ' 6 for phase A, and la, - lop2 f for phased, and B. 
In strongly anisotropic organic-superconductor crystals the 
scale of 6 depends on the direction of the change of the order 
parameters, and estimates based on magnetic measurements 
yield 10-5-10-%m. The magnetic-field penetration depth 
isR - 10-4-10-3 cm, and reaches lo-' cm in BEDT salts if 
the magnetic field is parallel to the chains. We have thus 
always la, 46, while the ratio of R and I,, can be arbitrary. 

DIRECT OBSERVATION OF HALF-INTEGER QUANTIZATION 

Let us see how magnetic flux is quantized under the 
conditions of classical experiments"-in a hollow cylinder 
with sufficiently thick walls ( / ) A ) .  A half-integer number 
of flux quanta corresponds to a change of the phase p by 
2 m  + rafter circling around the cavity. It can be seen from 
( l a )  and ( l b )  that the order parameter is continuous if 
(no, n) - ( - no, n) for this circling or respectively d- - d. 
The vector is then deflected from the energywise most fa- 
vored direction, producing a texture, and this leads to loss of 
energy Eo per unit cylinder length. The equilibrium value of 
the flux @,, contained in the cavity is determined from the 
condition that the Gibbs potential be a minimum: 

Here S is the area of the cavity, Q0 = fie/2c, and a,,, is the 
flux of the external magnetic field through the cavity. The 
result is shown in Fig. 1. If Eo < @;S/32r, the flux is half- 
integer at certain values of the external field. 

FIG. 1. Dependence of trapped magnetic flux on the external field at 
E, < @;S/32. The experimentally determined quantity is 
A@ = a,,( 1 - E032~/@iS) /2 .  

The form of the texture depends on the ratio of the cyl- 
inder radius R and the length I,, introduced above. If 
R )Ian , one soliton wall joining the inner and outer surfaces 
of the cylinder suffices to meet the quantization condition. 
By varying (2a) and (2b) it is easy to determine the shape 
and energy of such a wall. We parametrize the vectors char- 
acterizing the order parameter in the following fashion: 

We obtain for x the sine-Gordon equation 

~ = 2  arctg exp 2x/1,,, E0=211,,a,, 

1,' =[ (vi,-vzz)a,l"?, 

where I is the cylinder-wall thickness. This yields the condi- 
tion for observing half-integer quantization: 

Since the cylinder is made of an anisotropic material, the 
values of R and la, are not constant on circling around the 
cavity. It is necessary to substitute in (4)  the maximum val- 
ue of R and the minimum value of la, .  For la, %A the condi- 
tion (4)  is compatible with the condition for sufficient wall 
thickness and specifies micron scales for 1 and S. It must be 
noted that the soliton wall described above is a topologically 
nontrivial object, so that a state with half-integer number of 
flux quanta is metastable and can in principle be observed 
also if the condition (4)  is not met. 

It is probably simpler to observe effects of half-integer 
phase quantization, i.e., phenomena in SQUIDS. Such ef- 
fects in Josephson chains containing superconductors with 
normal and nontrivial pairing have been considered in Ref. 
18. Here we shall describe the behavior of a SQUID made up 
entirely of an organic conductor. The SQUID consists of two 
bridges joining the banks and limiting the aperture the mag- 
netic flux @ through which is specified (Fig. 2).  The change 

FIG. 2. Two-contact SQUID in an external magnetic field. The dashed 
curves show the dependences of the critical current on the external field in 
the integer and half-integer SQUID states. The solid lines are the boun- 
daries of the field and current values at which the half-integer SQUID 
state is energywise favored. 
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of the gauge phase q, on circling around the aperture over the 
bridges, just as in the example considered above, is a multiple 
of 2~ if there is no texture and is equal to 21m + T if the 
corresponding texture is present. It is known that the critical 
current of a SQUID varies periodically as a function of a. 
We consider below a case when the maximum change of 
current is SjQ'c. The free energy of the bridge as a function 
of the phase difference between the banks can be expanded 
about the value of q,, at which the current is a maximum: 

By virtue of the approximate symmetry, the force F(q,)  is 
almost independent of the presence of a texture. 

If the current is lower than critical, the SQUID can be 
in two states, one of which is metastable: integer, in which 
case 

and half-integer, in which case 

We assume the bridges to be equal. The critical currents in 
the integer and half-integer states are 

where a = arccos cos (a/@,). From (5) and (6)  we find 
that at certain values of the current and magnetic flux the 
half-integer state can be energywise favored if the texture 
energy is E, < fij,n-/e2'I2. These values are determined from 
the inequality ( y = e ~ , 2 ' / ~ / n ? i j ~  ) 

(see Fig. 2).  If the bridge is much longer than la, the texture 
is a soliton wall located inside the bridge. In the inverse case 
the texture is localized on the banks near one of the bridges. 
The energy texture is described in this case by the equation 
E, -a1 ',where I ' is the characteristic dimension ofthe bridge 
cross section. Relations (7)  make it possible to determine 
this energy from the experimental data. 

VORTEX LATTICES 

The materials considered are type-I1 superconductors 
with high values of x .  Interest attaches therefore to a mixed- 
state vortex structure. In principle one might expect the ap- 
pearance of half-integer vortices similar to those described in 
Ref. 15 for He3-A. The energy of an isolated half-integer 
vortex, however, is infinite and such objects can appear only 
in pairs (confinement) bound by a soliton wall, at distances 
much larger than Ian . The vortices attract thus each other at 
large distances. The short-distance-interaction sign, which 
determines whether it is convenient for the vortices to co- 
alesce or to form a molecule of finite size, turns out to depend 
on the parameters that enter in Eqs. (2a) and (2b). 

Let us consider an isolated pair of half-integer vortices 
in greater detail. We transform expressions (2)  for the free 
energy. The strong anisotropy of the material greatly com- 

plicates the problem, but seems to affect the qualitative re- 
sults little. We introduce therefore the following simplifying 
assumptions: baD = PaaD, l/x(P( 1, with cap = 0 (recall 
that the latter is certainly valid if 1 2 I T - T, I/Tc Z l/x), 
the magnetic field is directed along one of the principal axes 
of the symmetric tensor aaD; since the material is mono- 
clinic, these axes are different from, albeit close to, the direc- 
tions of the smallest periods of the crystal. The problem be- 
comes in this case planar and an affine transformation of the 
coordinates and of the vector-potential changes the equa- 
tions to a form that is isotropic in this ~1ane.I' We parame- 
trize the vectors (no, n )  and d in accordance with (3) .  The 
free energy takes then the form 

a (rot A )  ' 
+ P,(~x)'+- 8n + v sin2 x 

and in dimensionless variables 

x-cxlh, A+A/2ncDoh, (8 

a= j ~ ~ a y { ( v ~ - ~ ) 2 + ( v ~ ) ~ + p ( v ~ n ) ~ + ~ ~ o t a ) ~  
+ (All,,) sin2 X) aDo8 (32nsA)-I. 

On going around the axis of a half-integer vortex, the phase p 
is changed by n-, and the phasex by an-, where the charge a 
takes on the values + 1. At distances r much shorter than I,, 
and A from the vortex axis we have Vp = (2r)-I, 
VX = u(2r)-I. Substituting this in (8),  we compare the en- 
ergy of a pair of half-integer vortices separated by a distance 
ro41a,, with the energy of one integer vortex. In logarithmic 
approximation we have 

Thus, i fP> 0 the vortices are repelled at short distances and 
if p < 0 they tend to come closer to a distance -6. Whether 
they coalesce ultimately or whether a vortex molecule is pro- 
duced at distances of order { is a question that calls for a 
detailed analysis outside the framework of the employed gra- 
dient approximation. It must be noted, however, that this 
question is of little interest for an isolated pair of vortices, 
since it is not clear how this can be detected in experiment. 

We consider hereafter the casep > 0, being interested in 
the structure of vortex lattices. The dimension x, of an iso- 
lated vortex molecule is determined from the condition that 
(8)  be a minimum; in dimensional units we have 

Evidently x,<A in any case and therefore, for example if 
visualized by the powder method, an isolated vortex mole- 
cule looks like an ordinary integer vortex. 

We consider now a mixed-state structure. So long as the 
distance between the vortex molecules, which is set by the 
magnetic induction B, is much larger than x,, the vortices 
form a standard rectangular lattice. By increasing the exter- 
nal magnetic field it is possible to decrease the period of the 
structure to values of order 8 .  In this case the lattice is re- 
structured and tends to become more symmetric (Fig. 3 ) .  A 
second-order phase transition produces a hexagonal lattice 
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of half-integer vortices. Let us determine the critical value of 
the magnetic induction at which this transition takes place. 

We consider first the case A 4 I a n .  We can neglect here 
the last term of ( 8 ) ,  which is not quadratic inx.  The equa- 
tions for q, and x are then linear, and the usual method of 
calculating a vortex structure can be used.20 We express the 
free energy in terms of the coordinates of the vortex axes: 

We shall need the energy difference between a triangular 
lattice made up of integer vortices and the lattice shown in 
Fig. 3a, 

Here f is the separation between lattices of half-integer vorti- 
ces with different charges o, and b, are the vectors of the 
reciprocal of a simple triangular lattice. It is recognized that 
B)H, ,  because P 4  1, and the leading terms in 1/B are re- 
tained. This expression has at g = 27~/3B 'I2 an extremum (a  
minimum for B > B, ) corresponding to an hexagonal lattice. 
By expanding A 9  in terms of f near the extremum we deter- 
mine B,.  In dimensional units we have 

In the limit Ian (A we can use the fact that B , )  1 and B, 
) (A /I,, )2, and take the terms of (8)  proportional topand 
(A /Ian )' into account by perturbation theory. The sublattice 
separation is determined from the minimization condition 

It is necessary here to choose forx  the zeroth perturbation- 
theory approximation, 

= I  ( z - z ) ,  z=r+iy ,  

FIG. 3. Possible vortex lattices. The scales along 
the x and y axes differ greatly (a consequence of the 
anisotropy of the material) : a) Triangular lattice of 
ordinary vortices, b) Triangular lattice of half-in- 
teger vortices; it consists of two simple sublattices 
that differ in the sign of the rotation of the phasex. 
c )  Hexagonal lattice of half-integer vortices. Sepa- 
ration of the sublattice by two-thirds of a period 
produces a structure that is more symmetric than 
b) .  

(f = 2?r/3B ' I2)  and is equal to (in dimensional units) 

Vortex lattices are investigated in diffraction experiments. 
The arrangement of the reflections is shown in Fig. 4. For 
B 5 H,, the relative intensity of the reflections is the same as 
for a simple triangular lattice. With increase of field, the 
intensities of the crossed reflections of the figure decrease, 
and at B = B, they are completely extinguished. It would be 
of interest to observe such a pattern via small-angle neutron 
diffraction. Unfortunately, estimates of the magnetic-field 
modulation that determines the neutron coherent-scattering 
cross section yield values of order 0.1-10 G,  smaller by two 
orders of magnitude than those detected in experiments." It 
is possible that magneto-optic methods of investigating the 
vortex structure2' would be more suitable in this case. 

MIXED STATE NEAR H,, 

It was shown above that in fields B, < B < a,, the most 
favored is an hexagonal lattice of half-integer vortices. In 
fields B 5. Hc2 , when the vortex cores overlap, the foregoing 
analysis is not applicable. We consider below the mixed- 

FIG. 4. Diffraction pattern ofthe lattices shown in Fig. 3. With increase of 
where x i  and yi are the vortex The in- the separation between the sublattices the intensities of the crossed reflec- 
duction is determined from the condition a ( S y ) / a C  tions decrease and d vanishes for an hexagonal structure. 
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state structure Hc2 and Tc for phase B. The Ginzburg-Lan- 
dau free energy is given by22 

+ pi (dSd)'-$,  (dad') ( d d )  +ftjdiW4 + s). 
8n 

We shall neglect terms describing the spin-orbit interaction. 
This is valid outside a narrow vicinity of the critical tempera- 
ture ( ( T  - Tc I/Tc < l o p 4 ) .  In the absence of a magnetic 
field the phase B is favored at P2 > 0  and the non-unitary 
phase described in Ref. 2 is favored at P, < 0.  Near Hc2, the 
solution of the Ginzburg-Landau equations is sought as usu- 
al in the form of a linear combination of solutions of a linear- 
ized equation with zero eigenvalue. By choosing different 
coefficients in these linear combinations one can construct 
various vortex structures. It can be shown that the en- 
ergywise most favored structure corresponds to a minimum 
of the expansion 

where 

( ( d m d )  < (d'd') (ad) ) 1 dv.. . 
"' = ( ( d O d )  )' ' "2' ( ( d . d ) ) L  9 (...)= v - 
We use here the fact tha x )  1. The coefficient n, character- 
izes the difference between d ( x )  and a constant-the "pack- 
ing." The ratio n,/n2 shows the extent to which different 
components of the vector d  are in phase. By way of trials we 
choose structures that are continuously deformable but re- 
tain the periodicity of a simple triangular lattice. We seek 
d ( x )  in the form 

d ( x ,  y )  = [ (d.+id,) e-""+ (dl - id2)  eiLn1Cn1c),,, ( 1 1 ) 

d12=dz2, d ld2=0,  Cn=l, n - even ; C,=i, n  - 1  o d d ,  

$,=exp (2inqy)  exp (x-Znq)'] , q2=n/3'". 

Here, as above, we assume the magnetic field to be described 
along one of the principal axes of the tensor aa8, and the 
values ofx and y are obtained from the spatial coordinates by 
using an isotropy-inducing transformation. By investigating 
the positions of the zeros of (1  1) it is easy to see that d ( x )  
corresponds to the already considered structures shown in 
Fig. 3. The quantity determines the sublattice separation. 
For a simple triangular lattice we havez0 

For the hexagonal from Fig. 3b we have 

It can be seen that the change from a simple triangular to an 
hexagonal lattice leads to a packing gain, but since the vector 
component are no longer in phase, a loss is incurred in the 
coefficient n,. The structure is thus determined by the ratio 
P2/PI. A simple triangular lattice is realized if 4 <P,/P, < 1, 
whereas for 0 <P,/P, < 4 the hexagonal is the most favor- 
able. The Ginzburg-Landau expansion can be used if 
P2 >PI. 

CONCLUSIONS 

Some of the phases proposed for the description of su- 
perconductivity in organic materials have a symmetry that 
permits the gauge phase to change by n on going along a 
closed contour. These phenomena can be observed directly 
in traditional experiments on quantization in superconduc- 
tors. Such a half-integer quantization can determine the 
structure of a mixed state. Observation of the described ef- 
fects would identify the type of conductivity in the consid- 
ered substances. 

The author thanks G. E. Volovik and L. P. Gor'kov for 
helpful discussions of the results. 

APPENDIX 

We discuss here the symmetry whose spontaneous 
breaking yields the phase A. When a microscopic supercon- 
ductivity mechanism of this type is considered, it is assumed 
that the electrons are repelled on one chain and attracted on 
neighboring chains. The Cooper pair is therefore made up of 
electrons located on neighboring chains 

Here i numbers the chains, a and0  are the spin indices, and 
Y+ is the electron-creation operator. Neglecting hops 
between chains, the spin and the number of carriers on each 
chain are conserved, and the Hamiltonian of the system is 
invariant to the transformation 

A .  

where U'  is an arbitrary unitary matrix. In this case 2' is 
transformed as follows: 

This relation determines the space where the order param- 
eter is degenerate for t, <A, T,. Actually it is the inverse 
inequality which holds: A, T, (t, <to. It is easy to show in 
this case, by changing to a quasimomentum representation, 
that the Hamiltonian is invariant, accurate to terms of order 
t, /t,  , to such transformations specified by U ', which trans- 
form A that are independent of the index into A' that are 
independent of the index i. The last condition defines a five- 
parameter family of transformations. 

Tran~form~atigns oL tkiz f%mily leav: i%v,ari%nt the 
quantities Tr  AfA, TrAfAA+A, and TrAfAAT A*. To 
classify the possible phases it is convenient to change to an 
equivalent system of invariants: 

The result is shown in Fig. 5. The vertices of the triangle 
correspond to phases produced from a nonsuperconducting 
state via a second-order phase transitions, accurate to terms 
of order tb/ta. The sides and interior of the triangle corre- 
spond to states obtained from these phases by further lower- 
ing of the symmetry. Let us describe these fundamental 
phases: 

1. In the Efetov-Larkin phase, which is realized in the 
weak-binding limit,23 I, = I2 = 0. This phase is a mixture of 
a singlet and a triplet, therefore the transition to the super- 
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FIG. 5. Cooper pairing on neighboring chains: possible phases. The num- 
ber of Goldstone modes is given in the parentheses. The following second- 
order phase transitions are allowed; lion-superconducting state- 1, 2, 
3-12, 13-123. 

conducting state is split when account is taken of terms of 
order t,/t,. The heat capacity C-exp( - A/T) as T-0.  

2. In the non-unitary phase whose properties were in- 
vestigated in Ref. 22,1, = 0 and I ,  = 1. The pairing is always 
triplet. As T-0 the heat capacity iCa T and there is no 
superconducting gap on the entire Fermi surface. 

3 .  The case I ,  = 1, I, = 0 corresponds to the phase A 
considered in the article. The gap has a line of zeros on the 
Fermi surface, and C oc T * ( T -  0 ) .  
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