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A mesoscopic photovoltaic (PV) effect in microjunctions is predicted. It comprises flow of direct 
current induced by applying a high-frequency magnetic field to the junction, and is due to the 
absence of an inversion center in a disordered sample of finite size. Regimes are considered with 
different irradiation intensities, frequencies, and temperatures. The characteristic scale of the PV 
current for an rf field of frequency 101° Hz is of the order of lop9 A. The PV current is a random 
function of the frequency and of the external magnetic field. The correlation functions of the 
currents at different values of these parameters are investigated. 

Irradiation by an alternating field can cause direct cur- 
rent to flow in a medium without an inversion center. This 
phenomenon is called the photovoltaic (PV) effect.' Ran- 
dom distribution of impurities and defects in conductors 
may imitate local symmetry breaking. Nonetheless, at finite 
temperatures the PV currents from different parts of macro- 
scopic samples cancel one another and the degree of asym- 
metry is negligibly small. This self-averaging takes place 
over scales larger than the length Lin on which inelastic pro- 
cesses or loss of phase coherence become significant for elec- 
trons of all existing energies. Over a scale L <Lin,  the elec- 
tron is scattered by a random potential c~herent ly,~ so that a 
conductor of size smaller than the inelastic length has no 
inversion center and finite PV current can flow in it. We 
consider here microscopic junctions of just this type (called 
mesoscopic) . At temperatures of order 1 K their dimensions 
are on the order of microns. 

In Sec. 1 we propose a very simple estimate of the PV 
effect in a mesoscopic sample and calculate the rms value of 
the PG tensor for high-frequency (wf > 1 ) fields." In Sec. 2 
are investigated mesoscopic PV regimes in fields of varying 
intensity and frequency and at various temperatures. Section 
3 is devoted to the correlation properties (relative to the 
applied magnetic field and the frequency) of PV currents in 
mesoscopic samples. 

We define the microjunction as a metallic bridge of con- 
ductance G (Gfi/e2% 1) joining bulky samples. The small- 
ness (L <L,, , L, ) of the junction is bounded here by the 
mean free path, L % I ) ,  so that a diffusion regime can set in. 
In other words, the mean free path 1 and time T are the small- 
est quantities in the problem. The diffusion approximation 
restricts also the parameters of the irradiating field. We as- 
sume throughout that w~ < 1 and Eel /% < 1. 

The degree of asymmetry a(&) is a random function of the 
electron excitation energy, and the scale of its variation is 
S&-fir; I. The contributions to the PV current from the 
electrons from different correlated energy intervals (of 
width - f i ~ l  I )  have therefore random signs. Since the non- 
equilibrium carriers are distributed in a limited range fiw 
near the Fermi energy, the number of such independent in- 
tervals is n - w T ~ .  After mutual cancellation of the random- 
sign currents from different intervals, the remaining effec- 
tive contribution to the fluctuating current comes from 
( w ~ , - )  -"' electrons, and the PV current can be estimated at 

N EeL 
I a - e 2 a = e ( ; ) " ' ( K )  . 

We have applied the foregoing reasoning only to high-fre- 
quency fields with W T ~  = n % 1. We have also disregarded in 
the estimate (1.2) the dynamic action of the field on the 
electron diffusion via relaxation of its energy and phase. This 
can be done if, during the time T~ of diffusion through the 
junction, the electrons contributing to the photocurrent ab- 
sorb (emit) an % photon not more than once. The total 
number of photons absorbed per unit time is N-UE ' V/&, 
and the number of such interactions per asymmetric electron 
during the time of flight is - (EeL /fiw12. Equation ( 1.2) 
pertains therefore to fields with EeL /%< 1. 

The PV effect in weak fields can be described phenom- 
enologically as follows. We expand the current in a homoge- 
neous medium in powers of E, . Contributing to the dc com- 
ponent of the current are terms of even power in the field, 
and in the leading order we have 

1. PV EFFECT IN A HIGH-FREQUENCY FIELD I,~~L,kEl'E,=Sl,kEl*E,+iA~[EE*] (1.3) 

Photovoltaic current is made to flow through a junction 
by the electron redistribution caused by an alternating field. 
In a unit time, each of N- uE  V/% electrons in a volume V 
absorbs a photon of energy tiw. These nonequilibrium elec- 
trons can diffuse in a time - T ~  to the banks of the junction. 
Since the junction has no inversion center, different numbers 
of electrons go off to its left and right banks. The degree of 
junction asymmetry can be estimated at the ratio of the char- 
acteristic mesoscopic fluctuation e2/fi (Ref. 2)  of its conduc- 
tance to the conductance G = uV IIL itself: 

The real and imaginary parts of the PV tensor describe pho- 
tocurrents called linear and circular, respectively. Under 
time reversal, the current reverses sign and E goes over into 
E*. The symmetric tensor S therefore reverses sign for 
t -  - t ,  and the antisymmetric tensor A is transformed into 
itself. This means that the linear PV effect must be due to 
absorption of the irradiating field, while the circular one is 
possible also in the absence of dissipation. 

The PV tensor in a microjunction, averaged over the 
different realizations of a random potential, isB = 0 and we 
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shall be interested hereafter in its mean square value F. 
To calculate this quantity it is convenient to use a Keldysh 
diagram technique, with matrix-type Green's functions 

.-[" "1 
O G '  

At equilibrium, the Keldysh function is 

GK= ( I -2n  ( e )  ) (G,'-G,') . (1.4') 

The current in terms of the Keldysh function is given by 

Expanding in (1.5) GK in a perturbation theory in terms of 
the external field, we verify that graphically the PV tensor is 
described by triangular diagrams such as in Fig. 1. In the 
diffusion approximation the rms FG tensor is determined by 
the sum of different diagrams of type a-c in Fig. 2. The lad- 
ders in these diagrams correspond to two-particle Green's 
functions (cooperon and diffusion) 

pa-*, (x, x1)=G,'(x, X ' ) G , ~ ~ ( X ,  x') , (1.6) 

which satisfy in the absence of external fields the equation 

with boundary conditions P O =  0 on the banks and 
n-VP = 0 on the walls of the junction. 

If WTY = WL ' / D $  1, terms of the form P P, + ,, and 
so on are small, and the main contribution to the correlator 
flfl are made by products of diffusions of type P, 3, which 
correspond to diagrams of type a in Fig. 2. As a result, the 
squared PV current averaged over different realizations of 
the random potential is given by 

and depends only on the ac-field power. The circular part of 
the mesoscopic PV current is thus negligibly small. This 
means that in the regime considered the irradiating-field dis- 
sipation is substantial, and the calculation accords fully with 
the proposed qualitative description. The linear PV current 
is determined by the symmetric tensor fl;, = $, with the 
value 

FIG. 1.  Feynman diagrams for PV current. 

which is calculated from ( 1.8) and refines the estimate ( 1.2) 
to satisfy junctions with different effective dimensionalities. 

2. PV REGIMES IN A MICROJUNCTION 

We analyze in this section the mesoscopic PV effect, 
without the constraint that (o.rf) - ' and EeL /h be small. 
This can be done if one knows the correlation function of the 
currents at different instants of time 0, and 0,: 

The squared photocurrent averaged over different realiza- 
tions of the random potential is the part of (2.1 ) which does 
not depend on the times 0, and 0,: 

Expressions for the correlator (2.1 ) can be obtained by gen- 
eralizing the equations of Ref. 3 to include alternating fields: 

FIG. 2. Diagrams for rms value of PV current in 
the diffusion approximation, obtained by per- 
turbation theory. 
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pc = xE  sin (wt /2) sin wr] for the cooperon. 
The Keldysh functions fl averaged over the impurity 

positions correspond to the subs on the diagrams of Fig. 3. In + 2 [V,~P~: ( Y l l ,  XI; 0 '- fL 2 , x,)] the same gauge we have 

X [ ~ ~ ; p f - ~ ,  (Y:. x2: (3, - %. x,)] F3 {at-Da2-2ieEx sin(oq/2) sin ot)-(t, 5) =0 (2.5) 

and on the junction banks 

where 

~ ( k ,  d, e) - a i e d ,  C) - 
c The time - representation for the equilibrium Keldysh func- 

- 

- - 
K K tion G is obtained from ( 1.4') by a Fourier transforma- F1 =z (xi ,  t i )  g ( X a ,  t;), Fi = G$ (XI, ti).G[-~,](xa, ti'), 

tion, and it is convenient to separate this function in G a s  a 
y=@,-(3,, yl=(@,+@,)/2, y,'=(@,'+@,)lZ, factor independent of t  and x :  

ti,s=*pz-pi, gr=pi, E z = ~ ( Y ~ ' - Y ~ ' ) ,  
7 G, (t, x)=4nv nT 

\r, (x, t) = - 4nv Y, (x, t) as T-0. 
t1, 2, ,=(81'+@2'-y)/2, tr=y1', sh (nTrl) rl 

Each term in (2.3) corresponds to one of the diagrams of Now that we have described completely all the elements 

Fig. 3. The two-particle functions p:d) (t,x;t I , ~ O  of the korrelator (2.3), we can track the various asymptotic 

(cooperon and diffusion) satisfy the equation4 regimes of the mesoscopic FV effect. For simplicity, we con- 
fine ourselves for the time being to the limit T = 0, in which 

) - i e  ) + } p  ; , no account is taken of the smearing of the Fermi distribution 

(2.4) 
function and of the inelastic relaxation. It follows from (2.4) 

= 2nv6 (t - t') 6 (x - x') and (2.5) that the times during which the functions P and - 
G vary are determined either by the frequency of the ex- 

with boundary conditions '= ' On the banks and ternal field or by the characteristic value A, of the diffusion 
n(a - ieA"~~' /c)P = 0 on the walls of the junction. In a operator: 
gauge with a zero vector potential it is necessary to use in 
Eq. (2.4) pd = 2xE sin (wr]/2) sin wr for the diffusion and A=-DdZ-ixeE(t, q)/h. (2.7) 

The relation between these two quantities demarcates the 
boundary between the regions of the high-frequency and 
quasistationary fields. On the other hand, the operator (2.7) 
depends on the ratio of the contact dimensions to the length 
L, - (#iD /eE) 'I3 starting with which the field begins to in- 
fluence substantially the character of the diffusion 
(DV2 -eEx/fi). If L, ) L, we have A, -dry  I, but for the 
inverse inequality we have A,- (DE 2e2/fi2)'13. In the for- 
mer case (EeL 3 / ~ h D 4  1 ) we can regard as low a frequency 
w (Ao = dry I. In the latter case a high-frequency field has 
w 4A0 = (DE 2e2/fi2) 'I3. 

Figure 4 shows the characteristic asymptotic regions of 
this problem. The coordinates are the dimensionless fre- 
quencies w = wrf?r-' and the amplitude E = LEer,-/#id of 
the external field. A weak low-frequency field corresponds 
to the region 1, in which the time dependences in Eqs. (2.5) 
and (2.5') need be accounted for only in the boundary condi- 
tions. Expressions for the cooperon and diffusion in this re- 
gion can be obtained by perturbation theory in terms of the 
field. The rms PV current calculated in this manner is of the 
form 

( 0.335, L,,,aL, 
LEer 

FIG. 3. Current-correlator diagrams in the diffusion approximation. This result agrees with the description obtained in Ref. 3 for 
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(2.9) 
The first term of this expansion describes the junction-con- 
ductance  fluctuation^.^ The next term of the expansion in 
the fields is due to the differences between the currents 
/ I (  + V) 1 flowing in the junction at different signs of the 

1 applied voltage. The PV current is determined in the quasi- 
stationary limit by just this term, and by replacing in the 
second term of (2.9) the quantity Vf V' by the amplitude 
LE of the alternating field we obtain an estimate that agrees 

I 8 with (2.8) apart from a numerical factor. 
The high frequencies W T ~ T - ~  & 1 and t i 2 m 3 / D ~  2e2 & 1, 

FIG. 4. Typical asymptotic regions for the irradiating-field parameters. at which the changes many times during the time of 
The symbols w = w ~ / n - ~  and c = LEer f / f i 2  denote the field frequency flight through the junction (or during the time of the elec- 
and amplitude nondimensionalized by the time of flight. tron phase and energy relaxation) correspond to regions 3 

and 4 of Fig. 4. Of help in separation of these regions are the 
boundary conditions (2.5') on the Keldysh function, which 
contain the parameter LEe/liw. Weak fields correspond to 
region 4, in which Eq. ( 1.9) obtained by perturbation theory the mesoscopic fluctuations of the current-voltage charac- 
is valid. Region (3) ,  where E > w > E ~ / "  pertains to strong 

teristic. The current-fluctuations correlator u( Y)sI( v') high-frequency fields in which the diffusion is far from free. 
in a one-dimensional junction, calculated in Ref. 3, can be Strong fields not only produce the nonequilibrium carriers 
made more accurate in the ohmic regime to include terms of that to the P~ current, but lead also to energy 
higher order in the drawing fields Vand V': relaxation of the same carriers. As a result, the quadratic 

current growth (1.9) (as a function of field) is replaced in 
region 3 by the weaker dependences 

The asymptotic behavior of the PV current in region 2 can be 
obtained by matching the results on the region boundaries. 
For a transition regime to exist between the weak (2.8) and 
strong low-frequency fields, the mean square PV current 
should be in the considered region a function F ( E )  of only 
one parameter E .  The specific form of this funtion is deter- 
mined from the requirement that F ( E )  and (2.10) be equal 
on the line w3/&' = 1. For E& (w3I2, 1 ) we have therefore 

Equations (2.8)-(2.11) give the most optimistic esti- 
mate of the considered effect. A finite temperature sup- 
presses the photocurrent both via relaxation processes and 
via smearing of the equilibrium distribution function. Ener- 
gy and phase relaxation cause the electron scattering to be 
coherent only in regions for which L &Li,. Each of these 

( L , ,  <L,,, ) senses the temperature starting with which 
min {rin,  r ,  = + ~ / T T )  2 W - I :  

Further increase of the temperature r(T,in) -fi/LeE 
eliminates the difference between the strong and weak fields 
(in the classification of Fig. 4). Calculations of the PV effect 
at sufficiently high temperatures are therefore possible by 
perturbation theory, as in the derivation of Eqs. ( 1.9) and 
(2.8). The results of these calculations at different ratios of 
the problem parameters can be conveniently written in the 
form 

where 
regions make an independent contribution to the photocur- ~ ~ ~ 1 ,  g I ~ o ~ ~ ~ ,  noemax (n2r,-iu( @), 
rent, resulting in strong self-averaging. The temperature u (0) =max{l, n-'otf}, t=min{l, fiu(o) n2/Tt,), (2.14) 
smearing of the equilibrium distribution function brings into 
play supplementary correlated energy interval, and this 
leads likewise to self-averaging of the PV current. Thus, in V, is the volume of a junction with effective dimensionality 
region 3 the current through a one-dimensional conductor d. The values of the numerical factor R for different asymp- 
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TABLE I. Values of the coefficient /1 [see (2 .13 )  1. 

L, 

tin 

Lx 

Lin 
Note. When using the tabie, the values df L,, u ( w ) ,  ad, and t must bd determined from Eqs. (2, 
14), and the row corresponding to these values in the table must then be found. The values of the 
coefficient A for different d ( d  = 1,2,3) are given in the three right-hand columns of this row. For 
example, the first row of the table corresponds to Eq. ( 1.9) in Sec. 1 .  

totic cases, as functions of the parameters ( 2 . 4 ) ,  are listed in 
Table I. 

It is seen from (2 .13)  and (2 .14)  that the optimal con- 
ditions under which the mesoscopic PV effect can be investi- 
gated are determined by the relations w - TT '3 - ri; I .  At 
the values T,,  - lo-'' s typical of metals the PV current is of 
the order of Ip,  - A. 

3. CORRELATION PROPERTIES OF MESOSCOPIC PV 
CURRENTS 

Just as the conductance of a mesoscopic  ample,^ the 
PV current through it is sensitive to the applied magnetic 
field. It is convenient to describe the influence of the magnet- 
ic field by the correlation function 

At H = AH = 0 the function K(0,O) coincides with the al- 
ready calculated rms PV current. To analyze this function 
for H, AH # 0 it is necessary to take into account in ( 2 . 4 )  the 
nonzero vector potential. 

The value of the magnetic field H i s  connected with A' 
in the equation for the cooperon by the relation curl 
A' = 2H. The~efore allowance for the magnetic field leads 
to suppression of the contribution of the copperon diagrams 
of form b and d in Fig. 3, meaning also to a decrease of the 
effect in these regions on Fig. 4, where these diagrams play 
an important role. These are the high-frequency regions with 
@>no. When the field increases to H, -@, /L,L 
(@, = 277&/e is the flux quantum), the amplitude of the 
effect is systematically suppressed. In fields stronger than 
Hc the contributions of the diagrams with the cooperons are 
already completely suppressed and no further change of the 
PV current amplitude should take place all the way to fields 
w,7-  1. 

The vector potential Ad in ( 2 . 4 )  is connected with the 
field AH by the relation curl Ad = AH. AS a result, the cor- 
relator (3.1 ) attenuates over a scale RH, - @,/L,  L ,  , i.e., 
when the magnetic field is changed the PV current under- 
goes irregular random changes with correlations (relative to 
the magnetic field) within the scale of AH,. In low-frequen- 
cy fields, the amplitude of such oscillations is almost insensi- 
tive to the magnetic field, which in high-frequency fields it is 
subject to the suppression described above. 

In three-dimensional systems, the magnetic-field scales 
over which the correlator ( 3 . 1 )  changes correspond to the 

magnetic-field flux of order @, regardless of the field direc- 
tion. This is not the case in two-dimensional systems. A mag- 
netic field perpendicular to a two-dimensional layer leads to 
dephasing of the electrons, and is characterized by a scale 
@,/L '. The mechanism of the effect parallel to the layer is 
connected with the Zeeman splitting Ae = 2pgH of the mag- 
netic-field spin states. The degree a of asymmetry of the 
junction differs greatly for different spin states of 
Amf = 2pgHrf > 1 .  The characteristic scale of the parallel 
magnetic field in which oscillations of the PV current take 
place in two-dimensional structure is therefore 

H,'- ( f i / y g ) r n a ~ { n ~ ~ ~ - ~ ,  o}  -H,~(Dhm/g)max{ l ,  o ~ , n - ~ }  
-H,l.102 max{l ,  o ~ , n - ~ ) .  

A chemical-potential change larger than Ap, -fi~y ' 
(Ref. 6 )  also upsets the correlation of the PV currents. Such 
an effect can be obtained in point contacts of silicon field- 
effect-transistor inversion layer by varying the gate voltage. 

Another characteristic mesoscopic feature of the effect 
are the frequency correlation properties of the PV current. 
They can be conveniently described by the correlation func- 
tion of PV currents having different frequencies: 

As seen from ( 1.9) and (2 .8) - (2 .11) '  a frequency depend- 
ence of the effect has meaning only at frequencies wry $ 1 .  So 
long as Aw <w,  the main contribution to ( 2 . 3 ) ,  just as in Sec. 
1, comes from diagrams of type a in Fig. 2. Now, however, 
these diagrams correspond to cooperon and diffusion prod- 
ucts of the form P, 'Pa + A, which leads to 

x ( D ~ ~ + T ~ , - ' )  [ n ( ~ )  - n ( ~ - o - A o / 2 )  1 

x [ n ( & f  Q )  - ~ ( E + Q - - o + A ~ / ~ )  1. ( 3 . 3 )  

Integration in ( 3 . 3 )  with disregard of T,; ' and of the smear- 
ing of the Fermi step yields 

K ( o ,  Ao)  

for A o > ~ t - ' n ~ ,  
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where LA, = (D /Am) ' I 2  and R = L, /LA,. It is seen from 
(3.4) that the correlation of the PV currents is strongly sup- 
pressed already at a frequency difference Aw, -7-7 '?. The 
PV current in a high frequency field, outside the Aw, scale, is 
therefore a random function of the frequency. A particular 
manifestation of this fact is that when the field frequency is 
changed by Aw > Aw, a change takes place not only in the 
magnitude of the PV current but also in its direction. 

The polarization properties of the effect can be investi- 
gated with the aid of the correlator K(JQ,J,> ) of the PV cur- 
'rents produced by monchromatic fields with different polar- 
ization tensors JQ = (EiE;). In weak high-frequency fields 
this correlator can be calculated in the same way as the mean 
square PV current ( 1.8 ) , and the result of this calculation is 

where is defined by Eq. ( 1.9). It follows from (3.5),  in 
particular, that there is no correlation between currents due 
to irradiation by fields with perpendicular linear polariza- 
tion directions (K(E,E1) - IE,E:* I*. 

Experimental investigations of the indicated correla- 
tion properties of the mesoscopic PV effect should be carried 
out in low-intensity fields, to prevent noticeable heating of 

the sample. Otherwise annealing of the sample may occur 
and alter substantially the specific realization of the random 
potential in which all the described phenomena take place. 
This will upset the correlations of the PV currents. 

In conclusion, the authors are grateful to S. V. Meshkov 
and V. V. Tatarskii for advice on the numerical calculations. 

" T ~  = L 2/D is the time of the diffusive passage through the junction. The 
condition L<Li,  should be met for electrons with energies. / E  - &,I 
S maxttir,~ l,liw}. 
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