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The critical behavior of the thermodynamic quantities near the superconducting-transition point 
for a quasiperiodic layer structure is studied. An explanation is given of the unusual power 
dependence (discovered experimentally by Karkut, Triscone, Ariosa, and Fischer) of the critical 
magnetic field H,, on T, - T. The critical indices are calculated in the Ginzburg-Landau 
approximation. 

INTRODUCTION 

After the discovery of quasicrystals great interest has 
arisen in various natural and artificial quasiperiodic struc- 
tures. In Ref. 1 the properties of a quasiperiodic superlattice 
SNSNSNS ..., consisting of layers of vanadium (supercon- 
ductor) and molybdenum (normal metal), were studied. 
The thicknesses d, of the layers of normal metal were equal, 
and the superconducting layers had two different thick- 
nesses, d,, and d,?, which alternated by the Fibonacci rule 
ABAABABAABAAB ... (Ref. 2). Near the transition point a 
nonlinear dependence of H,, on T = (T, - T)/T, was dis- 
covered, and the estimate given in Ref. 1 for the coherence 
length go shows that {,,%d, (strong coupling between the 
layers). If we plot the results of Ref. 1 on logarithmic scales 
(log T,  log H,, ), we obtain a straight line with slope 0.74. 
This critical index lies between 1.0 (for a homogeneous su- 
perconductor or periodic system of strongly coupled layers) 
and 0.5 (for one layer). 

Since the size of a nucleus of the superconducting phase 
in a weak field is much greater than the lattice constant, the 
reason for the appearance of the anomalous critical index is 
the quasiperiodicity of the structure. Other thermodynamic 
quantities (the order parameter $, specific heat C, correla- 
tion length {, London length S,, etc.) should also have a 
power dependence on T with unusual power exponents. 

Some of the results of this work have been published in 
Ref. 3. 

1. ANALYSIS OFTHE INITIAL HAMlLTONlAN 

We shall consider the problem in the Ginzburg-Landau 
approximation. As is well known, this approximation is ap- 
plicable if the correlation length go of the electrons of a Coo- 
per pair is much shorter than the characteristic length scale 
of the spatial nonuniformity of the problem. In our case this 
length scale is determined by the layer thicknesses d,, d,, , 
and d,,; in the experiment of Ref. 1 a structure having d, 
= 15 A, d,, = 58 A, and d,, = 30 A was studied. According 

to the estimate of Ref. 1, go=: 120 A, i.e., go> d,, , d,,, d,. 
This implies that the Ginzburg-Landau approximation is 
quantitatively inapplicable. It is possible, however, to hope 
that, as is usually the case, it will give a correct qualitative 
picture. 

The free-energy functional has the form 

in which the function U(x) takes two values: U(x) = V,  > 0 
in a region of normal metal, and U(x) = V, < 0 in a region of 
superconducting metal, and T is proportional to T, - T. In 
the Landau gauge A, = Hx, A, = A, = 0 the problem re- 
duces to a one-dimensional problem in the usual way: 

xo=cp/2eH. 

Near the transition point the function p ( x )  is a linear 
combination of eigenfunctions p, (x)  of the Hamiltonian 

with energies E near the lower boundary E,,, of the spectrum 
of the operator ( 1.3). By adding a constant to U(x) we can 
ensure that E,~, becomes equal to zero, i.e., that the transi- 
tion in zero field occurs at T = 0 [precisely such a choice of 
U(x) is assumed in ( 1.1 ) 1 .  In the case of a superconducting 
structure the role of E is played by T. 

The spectrum of such an operator was studied in detail 
in Ref. 4. We shall give certain definitions and results from 
Ref. 4 that are necessary for what follows. 

Let p ( x )  be an arbitrary solution of the equation 
X p ( x )  = ~ p ( x ) ,  where 2Y' is the operator (1.3). The 
transfer matrix of a layer is the 2 X 2 matrix that expresses p 
and p ' = d p  /dx on the right side of the layer (the corre- 
sponding values are indicated by the subscript r )  in terms of 
the values of these quantities on the left side of the layer 
(with subscript I): 

The transfer matrix T depends on E. 

We shall consider finite segments A, AB, ABA, ABAAB, 
ABAABABA ,..., with lengths 1, 2, 3, 5, 8 ,... (Fibonacci 
numbers). Each succeeding segment is the combination of 
the two preceding segments, with their positions exchanged. 
For the transfer matrix one obtains the recursion formula 

1 2e T,+2=T,T,+,, T 0 = B ( & ) ,  T , = A ( e ) ,  (1.5) 
F[+I=[[ ;;,I ( v-i-~)lpl '  c 

where A(&) and B(E) are the transfer matrices of the ele- 
ments from which the superlattice is constructed. If we in- 

(1.1) troduce the notation B, = T,, A, = T, + , , the formula 
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( 1.5) reduces to the following transformation R for the ma- 
trix pairs ( A , ,  B, ) : 

R ( A ,  B +  k t ,  A,ti=BhAk, Bh+i=Ah. 

(1.6) 
The quantity 45 - 2 = Tr(ABA -'B - I )  is an invariant of 
this transf~rmation.~ The scaling properties of the spectrum 
and wave functions depend on this quantity (see Ref. 4).  In 
the case under consideration the transfer matrices of the nor- 
mal and superconducting layers at T = 0 can be written in 
the form 

where x, = (4m V, ) 'I2, x, = ( - 4m V, ) 'I2, and d is the 
layer thickness. 

The superlattice consists of alternating elements NS, 
and NS,, where S, and S2 are superconducting layers with 
thicknesses d,, and d,, . The transfer matrices of these ele- 
ments can be expressed as follows: 

Hence we find the value of the invariant J: 

The quantity J can vary from 1 to + m . For a periodic su- 
perlattice (d,, = ds, ) J is equal to unity. 

The transformation R of pairs of matrices can be re- 
duced to the following transformation M for the triplets 
(x,y,z) of their traces (x  = 1 TrAB, y = f TrA, z = 4 TrB): 

M :  x+2xy - z ,  y -x ,  z - y .  (1.10) 

The invariant J can be expressed in terms of x, y, and z 
as follows: 

I=x"+y2+z2-2xyz.  (1.11) 

As shown in Ref. 2, all boundaries of the allowed bands of 
the Hamiltonian (1.3), including the lower boundary of the 
spectrum, correspond to two fixed points Q and Q ' of the 
transformation M 2: 

Q': ~ = ' / ~ ( l + t - ' ) ,  y = ' / 2 ( l + t ) ,  ~ = ' / ~ ( l + t - ' ) ;  ( 1.12) 

Here 

t = ' / 2 [ ~ - 2 +  ( ( P - 4 )  P )  '"1 , p='Ia[ 3+ (16J+9)"]  . ( 1.13) 

We shall make this statement more precise. Let the initial 
matrices A, and B, correspond to a band edge. Then under 
repeated application of the mapping M to the point 
(x,,y,,z,) the sequence of points (x, ,y, ,z, ) converges to the 
sequence Q,Q ',Q,Q ',Q,. . . . 

Near the lower boundary E = E,~, = 0 the spectrum has 
the form 

where@ = c2 [c = (5IJ2 + 1 )/2isthegoldensection], and 
Fis a certain periodic function with period 1. For the param- 

eter n in the expression ( 1.14) one takes the number of states 
per unit length with energy less than E: 

Here NL (E)  is the number of states with energy less than E in 
a finite system consisting of L lattice elements. The powerfl 
in the expression ( 1.14) is obtained from the linear part of 
the mapping M at the points q, q': 

p=lgm h, (1.16) 

where A = { [ (2p + 1 ) ' I 2  + (2p - 3)"2]/2)2 is the largest 
eigenvalue of the mapping M in the neighborhood of the 
point Q. 

2.THE H,(T) DEPENDENCE 

We shall use the results described above to calculate the 
critical index y of the field H,, . Corrections to scaling that 
are periodic in the logarithm of the length scale (like the 
function Fin the expression ( 1.14) for the spectrum) will be 
neglected. Constant (i.e., T-independent) factors in the for- 
mulas will be omitted. 

Let the characteristic size of the wave function p ( x )  of 
a superconducting nucleus in a weak magnetic field be equal 
to L > I (length is measured as the number of NS layers). 
Then the fraction of states making a contribution to p is 
equal to n - L  - I ,  which corresponds to N, -- 1 in the for- 
mula ( 1.15 ) .  The corresponding energy is equal to 

E ( L )  -nb-L-B. (2.1) 
If we neglect the term a lp  14, the free energy of a nucleus is 
equal to the sum of the "kinetic" term and the diamagnetic 
term: 

8- ( E  ( L )  +H2L2-T)  1 cp l 2  dr .  (2.2) 

Minimizing the expression L -" + H 2 L  with respect to L 
gives the optimum size L ,  of a nucleus: 

L H -  H-2/ (ZfR) ,  ( L w )  -HZLZ-H261(2+8). (2.3) 

The transition temperature in a magnetic field is determined 
from the condition 

E (LH) +H2LR2-T=O. (2.4) 

Hence we can express T: 

Z-HZRf12+B). (2.5) 

We obtain 

H-T', y='lz+P-'. (2.6) 

The index y varies from 1 to 1/2 when Jvaries from 1 to 
+ w . The case J = 1 corresponds to a periodic structure. In 

this situation the system behaves near T, as a homogeneous, 
albeit anisotropic, superconductor. The order parameter 
varies over a single period of the structure, and on length 
scales greater than one layer thickness but smaller than L,. 
The function p ( x )  is constant. The case J = + cc corre- 
sponds to two-dimensional behavior. The superconductivity 
is nucleated in one layer and penetrates weakly into the 
neighboring layers ( J i s  large when the coupling between the 
layers is small in comparison with the difference of the val- 
ues of T, in different layers). 

For intermediate values of J the dependence of the or- 
der parameter on the coordinates includes oscillations on all 
length scales (see Fig. 1 ). It is this which gives rise to behav- 
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FIG. 1.  The function q,(x)-the ground-state eigenfunction of 
the Hamiltonian (1 .3 )  ( J =  10). 
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ior intermediate between two-dimensional and three-dimen- L ~ , H - Z I ( Z + B ) = H ~ I ( Z ~ ) - I  (2.12) 
sional. Motion along the z axis is described in the adiabatic 

The scaling in the case under consideration differs from approx~mat~on by the ~ ~ ~ i l ~ ~ ~ i ~ ~  
the usual scaling, since it admits only a discrete group of 
scale transformations a,=--- + c (Oz+x,,). (2.13) 

4m azz 
L+-L(Dk ( k  - integer). (2.7) 

The neighborhood of the absolute minimum of the function 
Under such transformations, accompanied by simultaneous &(eZ + x,) is a potential well with depth oforder &(L, ) and 
renormalization of the energy width of order L, = L,/8. Important changes of the lower 

(2.8) part of the spectrum in such a potential occur when the ki- 

the spectrum ( 1.14) remains unchanged. The power depen- netic energy of the motion along thez axis becomes ComPar- 

dence of H ( T )  should have corrections periodic in the loga- able to the depth of the well: L, -&(LH ) , i.e., 8 f H 
- 

rithm of the size L, of the nucleus: - H ")', or 

As 7 4 0  the angle 8, tends to zero, i.e., the system becomes 
where = - 'IRand Gis a periodic with peri- sensitive to small deviations of the field from the plane of the 
od equal to unity. layers. 

We have considered the case when the field H i s  parallel 
to the layers. We shall now determine at what angle 8, 
between the direction of the magnetic field and the plane of 
the layers the dependence T(H)  changes substantially. For 
the case of a periodic superlattice such a problem has already 
been considered in Ref. 6. The explanations accompanying 
the calculations will be given in terms of the motion of one 
particle in a potential U ( x )  and a magnetic field H, since the 
equations in this case are the same. 

Let the field deviate in the x direction through angle 8. 
Then, as before, the variable y can be eliminated. Neglecting 
the term alp 1 4 ,  we arrive at the problem of the spectrum of 
the following Hamiltonian: 

3. DEPENDENCE OFTHE ORDER PARAMETER ON T . 
CRITICAL BEHAVIOR OF THE SPECIFIC HEAT AND LONDON 
LENGTH 

In this section we shall consider the neighborhood of 
the transition point in zero magnetic field. The behavior of 
the specific heat and London length is determined in this 
case by the volume average ( Ip 1 2,  of the square of the order 
parameter. This quantity cannot be calculated using the lin- 
earized Ginzburg-Landau equation, since ( l p  1 2 )  is deter- 
mined by the competition of the negative second-order term 
and the positive fourth-order term alp l 4  in the functional 

nf=a - - - + - ( X - - O Z - X ~ ) ~ ,  (2.10) 
4m azZ mez It is clear that near the transition point, i.e., for r< 1, 

the dependence of the order parameter p ( x )  on the coordi- 
where 2Y is the previous Hamiltonian ( 1 . 3 ) .  

For 8< 1 the motion along the z axis occurs much more 
slowly than that along the x axis. We can apply the adiabatic 
approximation, i.e., in considering the motion along the x 
axis we can regard the variable z as a parameter. 

The Hamiltonian 
e Z F  

8 %  + - ( - x i ) ,  x,=x0+0z, (2.11) 
mez 

describing the motion along the x axis for z = const has 
smallest eigenvalue ~ ( x ,  ) ZE(L, ) - H Upon variation 
ofx, the function E ( X  I ) changes by an amount of the order of 
itself, since there is no other characteristic energy scale. The 
characteristic distance over which this change occurs is 
equal to the size of the wavefunction of the nucleus: 

nates should resemble the coordinate dependence of the nu- 
cleus p,(x) that appears at T = 0. The function p,,(x),  as 
already noted, is the eigenfunction corresponding to zero 
eigenvalue of the operator ( 1 . 3 ) .  This function has strong 
oscillations on all scales (see Fig. 1 ), and this leads to nontri- 
vial effects for the order parameter, analogous to those 
which arise near a second-order phase-transition point as a 
result of strong thermal  fluctuation^.^ For rf 0 the fourth- 
order term in the Ginzburg-Landau equation cuts off the 
oscillations of p ( x )  on all sufficiently long scales, and makes 
the superconductor uniform on these scales. Thus, the fol- 
lowing picture of the superconducting state arises. There ex- 
ists a characteristic length scale L., analogous to the correla- 
tion length in the theory of phase transitions7 and such that 
over distances shorter than L, the order parameter oscillates 
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as the function po(x)  while over distances greater than L, 
oscillations are absent and the superconductor is uniform. 

We shall estimate the quantity L,. When p ( x )  deviates 
from po(x) over distances of order L a positive correction to 
the energy, of order E(L) J [ p ( x )  I2dx, arises. This must be 
compared with the term - r J Iq,(x) I2dx in the Ginzburg- 
Landau equation. If E ( L )  > r ,  which is true for L (7- 

the difference of r from zero can be neglected and we return 
t o  the case r = 0, when p ( x )  = po(x) .  On the other hand, 
for L )  r - ' /" the gradient term E(L) J /q,(x) I2dx is unim- 
portant in comparison with - r J Ip(x) I2dx Thus, we find 

Another justification of the validity of this relation is 
the following. The order parameter can be expanded in ei- 
genfunctions of the operator ( 1.3) : 

n 

[n is the state label, defined as in ( 1.15)]. It is clear that if r 
is small, only functions p, (x)  such that ~ ( n )  < r will be 
important in the expansion (3.2). Any function p,, (x)  satis- 
fying this condition practically coincides with po(x)  on any 
segment of length shorter than L,. Consequently, the order 
parameter p (x)  should also possess this property. Over larg- 
er distances the behavior of p ( x )  is influenced by nonlinear 
effects. This leads to the result that in each piece of size L, 
the equilibrium value of / p  l 2  is established independently. 
Consequently, on scales greater than L, the quantity Ip I 2  is 
essentially unchanging. The length L, - r - is analogous 
to the correlation length in the fluctuation theory of phase 
transitions.' 

We note that although the phenomena described re- 
mind one in many respects of the picture of the thermal fluc- 
tuations that arise near a second-order phase-transition 
point, there is an important difference, which is that here 
p ( x )  at each point does not fluctuate and the ensemble aver- 
aging is replaced by volume averaging. 

To determine ( / p  1,) weshould express (Ip 14) in terms 
of (Ip 12), i.e., find the dependence on r of the quantity A in 
the expression ( / p 14) = A ( jp / 2)2, after which it will be pas- 
sible to find ( / p  12) easily by minimizing the expression 

- ~ ( l c p l ~ > + A ( ~ ) ( / v ( P ~ > ~ .  (3.3) 

This minimization gives ( 19 1 2 ,  = r/A (7) .  Our problem, in 
essence, is to determine the dependence of A on r .  

We turn to the calculations. In accordance with what 
was said above, the average value 

b 

1 
( / q ~ ~ ) ~ , b = - j  b-a a lq12dx 

depends neither on a nor on b if b - a )  L, (this is also true 
for ( Ip 14).,b ). Therefore, in order of magnitude the follow- 
ing equalities are true: 

and it is clear that the values of the integrals in (3.4) do not 
change in order of magnitude if we replace p ( x )  by p,(x) in 
them. 

To find the relation between 
L L 

we make use of the scaling properties of the function po(x) : 

<qo')L=L1-b(rpo2),2. (3.5) 

In other words, we introduce a new index S, which is defined 
in terms of the ground-state eigenfunction po(x)  of the 
Hamiltonian ( 1.3) : 

Its physical meaning is clear. On a segment of length L a 
particle with wave function po(x)  can be situated at approx- 
imately L 'sites. When Jchanges from 1 to + w the index S 
changes from 1 to log,2 = 0.72 ... . The latter value follows 
from the hierarchical structure of the wave function p ( x )  
for J ) 1  (see Sec. 6 in Ref. 4, and also Ref. 3). The calcula- 
tion of the dependence of S on J is described in the next 
section. 

The value of ( Ip 1 ') is determined from the following 
considerations. The specific free energy F is equal to 

where A (r) =: (L, )'=: T ( ~  ')ID. Minimizing the expression 
- r(p 2) + 7(6 - 1 ) /@ (q, 2)', with respect to ( p  '), we obtain 

The specific heat is calculated from the usual formula 

Thus, 

C V - T ~ ,  a= (1-6) /P>O. 

There is no discontinuity of the specific heat. 
The dependence of a on y is depicted in Fig. 2 (the 

index S is calculated by the method described below). The 
index a is equal to zero in the limit of a uniform system 
(J= 1, y =  1) and in the limit of one layer (J= + W ,  

y = 0.5). 
As already stated, over distances greater than L, (along 

the x axis) the critical phenomena are unimportant. Conse- 
quently, over such distances we can define effective macro- 
scopic characteristics of the superconductor-the London 
length S,, the correlation lengths f ,  and f, in the directions 
parallel and perpendicular to the layers, and also the Ginz- 
burg-Landau parameters K, and K ,  in the longitudinal and 

FIG. 2. Relation between the critical indices y and a, as specified by the 
function a(y). 
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transverse directions: K, = SL/l,, K, = a,/<,. By making 
use of the formula (3.8), we find 

s ~ - 2 %  (Ip2) r rTi+( i -~) /~- t*+a (3.11) 

The longitudinal correlation length f, does not depend 
on the complicated structure of the order parameter, and 5, 
has already been calculated (it coincides with L, ) : 

The parameters K, and K2 tend to infinity as 7-+0, and, 
therefore, near the transition point the superlattice is a type- 
I1 superconductor in respect of its macroscopic properties, 
irrespective of the materials of which the layers are made. 

4. METHOD OF CALCULATION OF THE INDEX 6 

For study of the properties of the eigenfunction q,,(x) 
of the Hamiltonian ( 1.3) the transformation M of the three 
quantities x,y,z is not sufficient. We need to analyze the 
transformation ( 1.6) of the matrix pair (A,B) . As shown in 
Ref. 4, after double application of this transformation the 
matrices B and A corresponding to the point Q change as 
follows: 

Here S is a certain 2 X 2 matrix. The equations (4.1 ) are 
valid inasmuch as the point Q corresponds to a sequence of 
traces with period 2 [see the discussion preceding the for- 
mula ( 1.14) ]. Under repeated application of the transfor- 
mation ( 1.6) the following sequence of matrices arises: 

B, A, S-'BS, S-'AS, S-2BS" SS-~AS', . . . (4.2) 

From Eqs. (4.1 ) we can find the matrices A, B, and S to 
within a change of basis. In the basis in which S is diagonal, 
they have the form 

w h e r e s = J [ ( p +  1) '12+ ( p -  3)1'2],andtandpdepend 
on J a s  in (1.13). 

The index S can be found by direct calculation, starting 
from the definition (3.6). The ground-state eigenfunction q, 
is obtained by multiplying a certain initial vector (the vector 
(p,,  q, ;) at the left end of the structure) by the matrices A 
and B in the order specified by the Fibonacci sequence. In 
the general case it is a linear combination of two functions, 
one of which increases rapidly. In order to eliminate this 
rapidly increasing function it is necessary to choose as the 
initial vector (q, , ,  q, ;) an eigenvector of the matrix S with 
eigenvalue s-'  < 1. Only with such a choice of the vector 
(p,, q, ;) do we obtain a function that is not increasing but 
bounded on the entire straight line, and is, in fact the func- 
tion p,(x) corresponding to a superconducting nucleus in 
zero field. An example of a function obtained in this way is 
shown in Fig. 1. 

There also exists another, "almost adiabatic" way of 
calculating the index 8, in which a numerical calculation is 
required only for the determination of the largest eigenvalue 
of a certain tenth-order matrix. 

We shall consider a sequence of Fn layers (F,  is the 
Fibonacci number with index n) and determine the two sym- 
metric second-order and fourth-order forms constructed 
from the initial vector x = (p,,  p ;): 

For the forms @'2' and @'4' we obtain the same recursion 
relation 

@ , + z ( ~ ) = @ n + t ( x ) + @ n ( T n + ~ x ) .  (4.5) 

Taking into account that T2, = S ,BS "nd TI, + , 
= S - ,AS ,, we obtain 

We now introduce the forms 

flk(~)=@2h(S-%), Zk(~)=@2k+l(S-'x). (4.7) 

The recursion relations for the forms II and 8 do not contain 
any dependence on k: 

IIb+, (x) = II,, ( AS-'x) +Z, (S-'x) , (4.8) 

These equations specify a linear transformation of the coeffi- 
cients in the forms rI and 8 .  The symmetric second-order 
and fourth-order forms have three and five independent co- 
efficients, respectively. The problem reduces to the study of 
linear mappings in a six-dimensional space (for the second- 
order forms) or in a ten-dimensional space (for the fourth- 
order forms ). 

Let 77 and p be the largest eigenvalues of these map- 
pings, all the other eigenvalues being smaller than these in 
absolute magnitude (this is confirmed by calculations). In 
the case of a general position, 

(II:2',8:2' ) and ( r I ~ ' , B ~ ' )  are the eigenvectors of the map- 
ping (4.8) that correspond to the eigenvalues 77 andp. 

Since the initial forms IIh2),2~2',II~4', and Zg' are posi- 
tive-definite, and the non-negativity of II, and 8, implies 
the non-negativity of II, + , and 2, + , , it follows that II, 
and 2, are at least non-negative. We shall prove that rIy' 
and I Iz )  are positive-definite (for the forms 2:' and 2:) 
the argument is analogous). 

We shall assume the contrary: II, ( x )  = 0 for a certain 
x. Then Il, (AS-'x) = 0 and 2, (S -'x) = 0; consequent- 
ly, II, (ASP2x) = 0 [this follows from Eqs. (4.8) and the 
non-negativity of II, and 8, 1. Continuing these argu- 
ments, we arrive at the conclusion that the form II, vanishes 
on the vectors (AS -')"x and (AS -')"x for any integer 
n > 0. The matrices AS -' and AS -' are nondegenerate and 
have real eigenvalues. If the vector x is not an eigenvector for 
the matrix AS - ', all the vectors (AS - ' ) "x are noncollinear 
(the situation is analogous for the matrix AS - 2 ) .  A form of 
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order n can vanish on not more than n noncollinear vectors. 
Consequently, the vector x is an eigenvector for both matri- 
ces AS - ' and AS -,. Hence it follows that the vector x is also 
an eigenvector for the matrices A and S. However, it can be 
seen from the formulas (4.3) that the matrices A and S do 
not have common eigenvectors. We have arrived at a contra- 
diction. 

The positive-definiteness of the forms IIF' and II:' im- 
plies that, on the set 1x1 = 1, II:)(x) and n:'(x) have a 
finite positive maximum and a finite positive minimum. 
Consequently, 

a)::, (x) =r$' (SRx) -qbrI:2) (Skx) -$I x12, 
(4.10) 

a):' (x) =H:~' (8%) -phrI:4) (Skx) -pk / x I I .  

Finallv, we find 6: 

For the case of the second-order forms the eigenvalues 
of the transformation (4.8) can be found analytically. They 
are equal to 1, s2, s - ~ ,  1, A, and A - I ,  where s  and A were 
determined earlier [see the formulas (4.3) and ( 1.16) 1. The 
largest eigenvalue 17 = A. For the case of the fourth-order 
forms the largest eigenvalue p of the corresponding tenth- 
order matrix is found numerically. 

The results obtained by this method coincide with the 
results of the direct calculation using the formula (3.6). 

5. DISCUSSION AND CONCLUSIONS 

Near the transition point all quantities in the system 
under consideration have a power-law dependence on the 
temperature. We have shown this in the framework of the 
Ginzburg-Landau approximation, but, apparently, the pow- 
er dependences are universal. The situation with the critical 
indices is more complicated. There exist two independent 
indices y and a, in terms of which one can express all the 
other indices ( p, S, the index for the critical tilt angle 8, of 
the magnetic field, etc. ). These relations between the critical 
indices were obtained from general physical considerations, 
without the use of properties of the Fibonacci sequence. The 
indices y and a are not universal, but there exists between 
them a universal (at least in the framework of the Ginzburg- 

Landau approximation) dependence a ( y) (Fig. 2 ) , asso- 
ciated with the order of alternation of the layers in the super- 
lattice. It is evidently of interest to check this dependence 
experimentally. Unfortunately, the index a is small (a,,, 
~ 0 . 0 9 ) .  

In the system under consideration the scaling has peri- 
odic corrections [see (2.9) ] associated with the spatial non- 
uniformity of the superlattice on all scales. It is curious that 
the period of the corrections in the logarithm of the correla- 
tion length L has turned out to be twice that which follows 
from purely geometrical considerations (the structure itself 
admits the transformations L -+L@k'2, where k is an arbi- 
trary integer). 

In conclusion we shall make one comment concerning 
the experiment of Ref. 1. One can attempt to use the formu- 
las (2.6), (1.16), and (1.13) to analyze the index value 
y = 0.74 obtained in Ref. 1. We then find J = 235.2. If we 
assume that J is related to the parameters of the lattice by 
( 1.9), it turns out that lo d ,  , d,,  , d,, , since J is very large. 
In fact, go > d,, , d,, (see the beginning of Sec. 1 ). This dis- 
crepancy conforms with our conclusion that the applicabili- 
ty of the Ginzburg-Landau equation is poor in the given 
case. For a quantitative analysis of the critical behavior the 
microscopic theory of superconductivity must be used. 

We are grateful to P. A. Kalugin, V. L. Pokrovskii, G. 
Riener, and G. M. ~ l i a s h b e r ~  for numerous useful discus- 
sions. 
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