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The existence of a cyclotron parametric instability is predicted for metals when a standing finite- 
amplitude cyclotron wave is excited. This instability results in strong inhomogeneous heating of 
electrons so that a static electric field E,(x) is created in a metal. A study is made of the dynamics 
and kinetics of conduction electrons in the range of cyclotron resonances in a cyclotron resonance 
field and in an induced field E,(x). The distribution of electrons and their effective temperature 
are found and an emf created by them is calculated. It is shown that a static emf is in the form of a 
resonance when considered as a function of a constant magnetic field H,. The line profile of a 
static resonance emf is determined and the conditions for experimental observation of this effect 
are identified. 

INTRODUCTION 

A high density of conduction electrons in a metal usual- 
ly makes it impossible to establish a significant nonequilibri- 
um in the electron system so that the deviation of the average 
energy of electrons from the Fermi value would exceed con- 
siderably the phonon temperature T. This is due to the fact 
that an electric field in a metal is always weak. In the static 
case the electric field intensity is limited by the Joule heating 
of carriers, whereas an alternating electric field is weak be- 
cause of the skin effect. We can therefore assume' that the 
main source of nonlinear effects in metals is the change in the 
electron paths under the influence of a magnetic field of a 
wave. The majority effects of this kind-current states and 
spontaneous oscillations,'-3 self-trapping under helicon res- 
onance  condition^,^ and appearance of a current sheet trav- 
eling into a metal5-are observed at low frequencies which 
satisfy the inequalities w <ao ,  vF/l(Ro = eHo/mc is the cy- 
clotron frequency, Ho is the intensity of a static magnetic 
field, I is the mean free path, and v, is the Fermi velocity). 
The magnetic field HI of a wave can then be regarded as 
quasistatic compared with the characteristic time scale of 
the motion of an electron and the frequency w simply deter- 
mines the spatial distribution of the field H I .  The energy 
field of a wave has no significant influence on the electron 
paths because it is weak compared with the magnetic field HI 
(Refs. 1-5) and can be allowed for by perturbation theory. 

A nonlinear cyclotron resonance is observed7*' at high 
frequencies when the frequency of a wave w is comparable 
with the cyclotron frequency R,. At high frequencies the 
dynamics of electrons depends strongly not only on the am- 
plitude and phase of an alternating magnetic field, but also 
on an electric field along an electron path. This is due to the 
characteristic features that appear in an electron system un- 
der cyclotron parametric resonance (CPR)  condition^^*'^ 
when 

Near cyclotron resonances a metal becomes transpar- 
ent to electromagnetic radiation because the weakly damped 
oscillations of an electron-hole plasma in a metal are excit- 
ed.'07" Cyclotron waves are excited in a magnetic field Hn 
parallel to the surface of a sample and they travel at right- 

angles to the vector H,(klH,), where k is the wave vector. 
Depending on the orientation of the vectors representing the 
electric field of the wave E and the field H,, we can distin- 
guish ordinary (EIIH,) and extraordinary (ElH,) cyclo- 
tron modes. In metals we can expect propagation of both 
short-wavelength (kR ) 1 ) and long-wavelength (kR 4 1 ) 
cyclotron waves (R is the Larmor radius). Long-wavelength 
cyclotron waves are observed in a number of metals10s" and 
in bismuthk2-l5 near electron and hole cyclotron resonances 
when standing waves are excited and kz?r/L, where L is the 
thickness of a sample. 

In recent experimental investigations of nonlinear ef- 
fects in metals near a cyclotron resonance excitation of cy- 
clotron waves of finite amplitude was accomplished.6~7~'4.'S 
When standing long-wavelength cyclotron waves are excited 
in a metal, the conditions for a CPR can be establ i~hed '~~*'~ 
and then a strong overheating of the electron gas can be ex- 
pected. When a CPR occurs in the electron system, modula- 
tion of the frequency of collective cyclotron motion of elec- 
trons gives rise to a parametric instability similar to a 
parametric instability of mechanical  vibration^.'^^" This in- 
stability can be suppressed by nonlinear processes. In the 
case of metals and semiconductors these nonlinear processes 
are the energy dependence of the electron relaxation fre- 
quencies and their nonlinear dynamics because of the non- 
quadratic dispersion law. The electron distribution function 
in the case of a CPR becomes nonequilibrium and isotropic, 
and it is determined by the average energy measured from 
the Fermi level EF, which exceeds greatly the phonon tem- 
perature T. In the field of a standing cyclotron wave under 
CPR conditions the electron distribution function is non- 
equilibrium and it depends on the coordinates. This gives 
rise to gradients of the average energy density of carriers 
and, as a consequence, creates a static electric field and a 
static emf, which exhibits a resonance as a function of a con- 
stant magnetic field H, (Refs. 16 and 19). It should be point- 
ed out that in contrast to If effects,' in the case of a CPR even 
the electric field of a cyclotron wave in a metal has a consid- 
erable influence on the nonlinear dynamics of electrons. 

We shall predict and investigate a cyclotron parametric 
instability excited in metals by a standing cyclotron wave of 
finite amplitude. This instability is responsible for a strong 
inhomogeneous resonant heating of conduction electrons, 
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which rectifies an alternating hf signal, i.e., creates a static cyclotron wave field. In other words, we shall assume that 
electric field (zeroth harmonic) and a resonant static emf in 
a metal. lEo(z) j GHi(Q01ck). 

1. FORMULATION OFTHE PROBLEM. DYNAMICS OF 
ELECTRONS 

We shall consider a metal plate of thickness L subjected 
to a static and homogeneous magnetic field H,llz oriented 
parallel to the surface of the plate. The x axis is directed 
along the inward normal to the surface. An external electro- 
magnetic wave of frequency w excites a standing cyclotron 
wave inside the metal plate. The components of the cyclo- 
tron wave field are described by the following expressions 
(valid in the case of an extraordinary wave)'03": 

H,=H,e-"I6 cos (kx+a)cos at ,  ctg a=kb, 

&=Hi (Bolck) e-"I6 sin kx sin at ,  
(2)  

Ex=-H,(BQ0/ck) e-x'6 sin kx cos at,  

Here, H I  the amplitude of the magnetic field of a cyclotron 
wave: 

where S is the wave attenuation depth. The cyclotron wave 
field is described by Eq. (2)  in the long-wavelength limit 
when 

where vi is the relaxation frequency of the electron momen- 
tum. The spectrum and attenuation of long-wavelength cy- 
clotron waves are well k n ~ w n . ' ~ ~ ' ~ ~ " " ~  Th e waves in ques- 
tion exist if 

We shall assume that long-wavelength cyclotron waves 
propagate in a metal with a quadratic dispersion law 

(for example, in the case of holes in bismuth we have 
m = 0.064m, and m, = 0.703m,, where m, is the mass of a 
free electron). 

As pointed out in the Introduction, the nonlinearity due 
to the influence of a finite-amplitude cyclotron wave field on 
the electron gas, creates a static field E,(x) Ilx. Later we shall 
find this field self-consistently from the Poisson equation. 
Therefore, the dynamics of conduction electrons is governed 
by a constant and magnetic field H,, the cyclotron wave field 
of Eq. (2) ,  and the static electric field E,(x). The equation 
of motion of electrons in these fields considered in the ap- 
proximation of Eq. (3) is 

X+Q,~(X-X,) =-QIQ,e-xlb cos a t  [ (2Plk)sin kx 
+ (x-xo) cos (kx+a)] + (elm) E,(x). (7) 

Here, fl ,  = eHl/mc; x, = Y,/mfl, is the coordinate of the 
center of the electron orbit; 9, is the integral of motion; 

Obviously the induced field E,(x) is a smooth function 
of the variable x and it does not exceed the amplitude of the 

When the conditions described by Eqs. (3) and (9) are 
satisfied, the right-hand side of Eq. (7)  represents a small 
perturbation due to the cyclotron wave field and due to the 
static induced field E,(x). However, this small perturbation 
may have a considerable influence on the electron paths be- 
cause near the resonances of Eq. ( 1 ) the solution has secular 
terms and the usual perturbation theory is invalid. There- 
fore, we can solve Eq. (7)  by going over to a rotating refer- 
ence system18 

where the variables R, and 8 are slow functiom of time. We 
shall give the equations of motion for these variables in the 
scale of the "slow" time near the first and second cyclotron 
resonances (s = 1,2). In the case of weak spatial dispersion 
[Eq. (4)  ] we find after averaging-subject to Eq. ( 10)- 
over the "fast" time that the principal parametric resonance 
in the s = 1 case is described by 

if s = 2, then 

&=x2(Ea) sin 0, 

6=A~t~z(Eo)E-'  cos 0. 

The following notation is used above: 

t=kR,, E,=kx,, A.=Qo-sw/2, 

b=~~+(e /2mQ~)E , ' ( . r ) ,  
(13) x l ( z , )  =(Q,/Q e-E.1" [2p cos ~,+cos(E,+a)- (2Plk6) sin Eel, 

"/~? (g , )  =Qlpe-E~lkb sin EO. 

The prime denotes the derivative with respect to the argu- 
ment; A, is the detuning from a resonance and the quantities 
K ,  (6,) and x,((,) determine the rate of energy pumping of 
the electron system under the CPR conditions in the cases 
when s = 1 and s = 2, respectively. 

The equations of motion ( 1 1 ) and ( 12) can be integrat- 
ed exactly because integrals of motion exist for them. In the 
case of the system ( 11 ) when s = 1, we obtain 

Q,=E ' [A+X~(E~)  cos 2 01. (14) 

For the system ( 12) when s = 2, we find that 

It must be stressed that the integrals of motion Q, and Q, 
represent generalized Hamiltonians of slow canonically con- 
jugate variables { and 8. The equations of motion ( 11) and 
(12) can be written down in the canonical (Hamiltonian) 
form: 

The quantities defined by Eqs. ( 14) and ( 15) determine 
the phase paths of electrons in the (R, ,8) plane. At a reso- 
nance characterized by s = 1 [Eq. ( 1 I ) ] the point R, = 0 is 
absolutely unstable and the phase paths diverge from this 
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point. The resonance condition for a cyclotron parametric 
instability is of the form 

Usually the parametric instability is characterized by 
the threshold condition set by dissipative processes in the 
~ystem.~.~.", '~ The refore, this condition should be found 
from the kinetic equation which contains a real collision in- 
tegral for bulk s~at terers .~ It  should be pointed out that in 
the region of the resonance described by Eq. ( 17) the elec- 
tron energy rises exponentially with time and the growth 
rate is A = [x: - 'I2, which is exactly why weak fric- 
tion cannot limit the instability" so that a threshold should 
exist. The condition ( 17) may not be met at various points in 
a sample, since the pump parameter x ,  is a function of the 
coordinate of the center x, of the electron orbit. This has the 
effect that a sample may have regions where the inequality 
( 17) is obeyed and electrons have a high energy because of 
the instability, as well as regions where the condition ( 17) is 
disobeyed and there is no instability. Consequently, an inho- 
mogeneously heated electron gas is established and the tem- 
perature of this gas exceeds the phonon temperature Tand is 
a function of the coordinates. 

Ifs = 2 [Eqs. (12) and (IS)] ,  the width ofthe instabil- 
ity region de~reases"~'~ compared with the principal reso- 
nance (s = 1) by a factor (Ho/H,) ) 1, so that the inhomo- 
geneous heating effect is manifested less strongly. Moreover, 
if s = 1, there is a shift of the resonance position because of 
the induced field Eo(x) of Eq. ( 13) and if s = 2 there is no 
such shift. 

2. KINETIC EQUATION. SOLUTION METHOD 

The purpose of the analysis of the mechanical CPR 
problem in the preceding section was to provide a qualitative 
description of the cyclotron parametric instability. How- 
ever, a consistent allowance for the relaxation of the electron 
energy and momentum cannot be made in mechanics. A full 
description of a CPR requires a kinetic approach from which 
we can deduce the CPR threshold and the distribution func- 
tion of conduction electrons. The kinetic equation for a met- 
al with a quadratic dispersion law (6) is of the form 

Here, 

Q(t, x)=Q0+Q, exp (-x/6)cos(kx+a)cos o t  

is the cyclotron frequency modulated by the magnetic field 
of a cyclotron wave [Eq. (2)  1. The collision integral ?IF} 
describes relaxation of the electron energy and momen- 
tum20.2' : 

Here, E is the electron energy. The first term describes the 
process of electron energy relaxation involving a small 

amount of energy transferred in each electron-phonon scat- 
tering event. The phonon distribution function is assumed to 
be isotropic and the phonon temperature is ve (E) is the 
electron energy relaxation frequency. The second term in 
Eq. ( 19) describes elastic scattering and vi (E) is the electron 
momentum relaxation frequency. 

This part of the collision integral describes electron mo- 
mentum relaxation as a result of electron-impurity and elec- 
tron-phonon scattering. Estimates indicate that in this case 
the electron-electron scattering is ineffective for a Fermi 
electron gas20 and the relaxation to equilibrium is due to the 
electron-phonon interaction. 

The relaxation process is usually q ~ a s i e l a s t i c ~ ~ ~ ~ '  and 
the following inequality is obeyed: 

ve QYi - (20) 
The kinetic equation ( 18 ) can be solved by adopting the 

rotating reference system of Eq. ( 10) and the slow variables 
{ and 8 of Eq. (13). Since we are interested in a static in- 
duced field E,(x) ,  it is sufficient to find just the static part of 
the distribution function Fo(c,8,xo). We can easily see that 
the field-dependent part of the kinetic equation is governed 
by the corresponding Hamiltonians expressed in terms of 
these variables [Eqs. ( 14) and ( 15) 1. The hf part of the 
distribution function makes no contribution to the equation 
for the static part of Fo(c,B). This is due to separation [Eq. 
(3) ] of the fast (of frequency 0,) and slow (with an incre- 
ment R, ) motion. We shall use a spherical coordinate sys- 
tem E ,  a ,  and 8 defined by the following relationships: 

2 E "= 
p Z = ( = )  COSQ, 

2E '' (21 
x + ( -) sin B c o s ( 4  t+0) , 

mQo2 

where and 8 are the polar and azimuthal angles in the p 
space [the expressions forp, andp, are given in Eq. (8)  1. In 
terms of these variables the kinetic equation for the static 
part of the distribution function F,(&,B,@) becomes 

dFo 1 
2x, (x,) E sin2 @ sin 20 - + - x, (so) sin 2@ 

d~ 2 

~ F o  dFo A 

X sin 20- a@ +[~+x, (xo)cos  201- d0 = I{F,}, s=l .  

(22) 

The corresponding equation for s = 2 is 

aFo 1 
xa sin 0 sin @ (e0e)'" - + - x, sin 0 cos B 

de 2 

The distribution function F0(&,8,@) can be used to deter- 
mine the electron density n(x),  the average energy of elec- 
trons F(x), and the static current j (x) :  

rz (2) = j drp Fo, c (x) = ~ T ~ E  (p) Fo, 
(24) 

(x) =e j V F ~ .  

We shall assume that pumping is sufficiently weak so that 
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Q , K v i K Q o .  (25) parameter, because kR g 1, and the function ,u(x) can be 

In this case the function FO(~,O,Q>) is isotropic in the princi- 
pal approximation in terms of the parameter (a , /vi  ) g 1. It 
can be found by the familiar method of expansion of the 
solution of the kinetic equation in terms of spherical har- 
monics (see, for example, Ref. 19). The isotropic part of the 

found from the transport equation and from the condition of 
normalization of the number of particles. 

The expression given in Eq. (26) applies to the specific 
case of a slight heating of the electron system when the fol- 
lowing conditions are obeyed: 

- - 

distribution function is of the Fermi type: T / E ~ < Q , ~ / Y , V ~ K ~ .  (27) 

-1 The left-hand side inequality in Eq. (27) is the thresh- 
&-P (2) 

pO=[exp[m]+l] (26) old of the amplitude of a cyclotron wave needed to induce 
the parametric instability, whereas the right-hand inequality 
shows that overheating of the electron system is small com- 

where p ( x )  is the chemical potential of electrons and T,, pared with the Fermi energy E,. 
(x) is the effective temperature of electrons under CPR con- The effective electron temperature T,, (x)  should be 
ditions. The coordinate x occurs in Eqs. (22 and ( 23 ) as a found from 

where OD is the Debye temperature. 
We have ignored here the term (eE h/2maO) in the de- 

tuning of a resonance in the case when s = 1 [Eq. ( 13) ] on 
the assumption that this term shifts slightly the position of a 
resonance singularity of the static induced field of Eo(x j  and 
the resonance static emf. (Estimates of the shift of the reso- 
nance position and the criterion of validity of the above ap- 
proximation will be given below.) 

The chemical potential o fp(x)  can be found from the 
transport equation. This can be done by multiplying the ki- 
netic equation (18) in turn by ep,/rn and ep,/m and inte- 
grating this equation with respect to the momenta. The re- 
sult is a system of equations relating the currents j, and j, to 
the electron density n (x )  and their average energy Z(x) [Eq. 
(24) I .  If we use the time averages of these equations and 
assume that the total current in a sample is zero (when the 
contacts are open): 

we obtain the transport equation (representing the law of 
conservation of the total electron momentum) in the form 

--- a€ eEo (x) n (x) =O. 
ax 2 

Moreover, in order to determine p (x ) ,  we have to use the 
normalization of the electron density: 

Here, no is the total density of electrons in a metal. 
The chemical potential is 

The quantity po is found from Eqs. (30) and (3 1 ): 

I 

Here, 
X 

cp (z) = - J dx' Eo (x') 
0 

is the potential of the induced electrostatic field. 

3. STATIC ELECTRIC FIELD. APPEARANCE OF AN EMF 

The induced electric field Eo(x) or the potential p (x )  
can be found from the Poisson equation: 

subject to the boundary conditions Eo(0) = Eo(L) = 0; 
= ( ~ ~ , / 6 . i r e ~ n ~ ) " ~  is the Debye screening radius; E is the 

static permittivity. Since the Debye radius il is the smallest 
parameter with the dimensions of length in our problem (for 
example, in the case of bismuth we have ilz4.5 x cm 
and for sodium we obtain A z 1 x 10 cm), Eq. (34) is 
solved in the quasineutral approximation: il -0. In this ap- 
proximation the potential q, is 

The static emf is the difference between the potentials at the 
points where a measuring instrument is connected. Let us 
assume that the coordinates of these points are x = 0 and 
x = L,  <L, which leads to 

L, 

8 = J dx Eo (z) =rp (0) -cp ( L J .  (36) 
0 

Therefore, the emf is governed by the effective electron tem- 
perature at the points x = 0 and x = L ,  : ' I  

We shall give the result for the principal CPR (s = 1 ) . 
We shall consider two limiting cases. 
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1 ) First, we shall assume that the heating of the electron 
system is so small that the electron relaxation frequencies v, 
and v, can be regarded as independent of T,,. Then, T,, is 
given by Eq. (28) and the value of 8, is 

The quantity c, = [a(2P + cos a)2/40]2/6 is a numerical 
coefficient. The function Y, (L,,S) is governed by the geom- 
etry of connection of measuring instruments: 

Yl=l-esp (-LLl/G) [2p cos (nLi/L) 

If contact is made with both faces of a plate, i.e., if L ,  = L, 
then Y, = 1 - e - 4L /'. Ifthe measuring contacts are located 
on thex = 0 face of the plate and in the middle of the plate L , 
= L /2, then 

We can see that the static emf of Eq. (38) is in the form of a 
resonance when considered as a function of the constant 
magnetic field Ho and it rises rapidly on increase in the pump 
amplitude g, a H: . 

2) At high pumping rates the effective temperature 
T,, (XI increases and, therefore, it should be found from Eq. 
(28) where we have to allow for the dependences of v, and v, 
on T,, . In general,20.2' the values of v, and vi for a Fermi gas 
can be approximated by 

wherea > 0 and b > 0, and both depend on the overheating of 
the electron  stern^^.^'; Y,,, vd, v,, , and v,, are all con- 
stants. The result given by Eq. (38) corresponds to the case 
when v, = v,, and vi = vil , and it is independent of T,, . We 
are considering here the case when the second terms in Eq. 
(40) are much larger than the first. The effective tempera- 
ture T,, (x)  is described by 

so that the resonance emf is given by 

The quantity c,= ( ~ ~ / 6 ) [ ( 2 ~ + c o s a ) ~ / 4 0 ] ~ / ' " + ~ + "  is 
a numerical coefficient. The function Y, in Eq. (42) is gov- 
erned, like Y, in Eq. (38), by the geometry of the measuring 
contacts: 

If L, = L, then 

whereas for L ,  = L /2, we have 

Yz=l-expi-2L/6(a+ bf l ) ]  /(3k6)4/(a+b+1)-1. 

We can see that the emf of Eq. (42) is, as in the case de- 
scribed by Eq. (38), in the form of a resonance when consid- 
ered as a function of Ho and it increases on increase in the 
pump amplitude: $ , a H :/'" + + I ) .  However, this increase 
is much slower than that described by Eq. (38), because a 
and b are subject to the inequalities 4 < (a + b + 1 ) >9 (Ref. 
2 1 ) . The width of a resonance profile increases because the 
resonance factor [ 1 + 4 ( A  ,/vi ) 2 ]  - I occurs in Eq. (42) as a 
term with a smaller power exponent than in Eq. (38). This is 
due to the fact that an increase in T,, (x)  of the Fermi gas 
causes a strong rise of the relaxation frequencies v, and vi of 
Eq. (40), so that the effective pump parameter R: /v,vi de- 
creases. These changes in the line profile an intensity on in- 
crease in the pump amplitude HI can be used to determine 
the parameters a and b of Eq. (40). 

It should be pointed out that in the case of a resonance 
(S = 1)  the appearance of an induced electric field E,(x) 
shifts the position of the resonance of Eq. ( 13), which is due 
to the dynamics of electrons in the field of a cyclotron wave 
and in the static field Eo(x) .  This shift should be manifested 
also in the surface impedance near a cyclotron resonance 
(2Ro z w )  and in the line representing the static resonance 
emf $?, (H,). The shift of the center of the resonance line is 
ofthe order of0.1Ro(kR)2(~~/v,vi)2<R0in the case ofa 
slight overheating of the electron gas when it follows from 
Eq. (40) that v, z v,, and vi =vi, are independent of T,, . 
This shift decreases at high values of T,, . 

In the case of the resonance described by s = 1 [Eq. 
( 1 ) ] the emf 8, is still given by Eq. ( 3 7 ) .  We can see that 
when contacts are connected to both x = 0 and x = L faces, 
the effective temperature T,, (x)  vanishes at these points 
[Eq. (28) ] and, consequently, the emf also vanishes. It fol- 
lows that the field should be found from Eq. (34) and we 
then have $?,a (A /R14%',, which is considerably less than 
in thecase whens = 1 [Eqs. (38) and (42) 1 .  However, ifthe 
measuring contacts are located at the points x = 0 and L ,  
= L /2, the temperature difference and the emf do not van- 

ish. This case corresponds to a strong overheating of elec- 
trons, since if we assume that v, and vi are constant, then 

so that T,, should be found from Eq. (28) allowing for the 
dependences of the relaxation frequencies v, and vi on T,, 
[Eq. (4011: 

The static resonance emf is then described by 

Here, c, = ( r2 /6)  (B /3 )2/1a + + I )  . The dependence on the 
pump parameter and the resonance singularity are the 
same as in Eq. (42). The amplitude of the effect is now 
(kR) -4 / ' a+  b +  I )  > 1 times greater. 
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The effect under discussion represents generation of the 
zeroth harmonic as a result of inhomogeneous resonant 
heating of electrons in the field of a standing finite-ampli- 
tude cyclotron wave. This heating shapes the profile of the 
electron temperature T,, (x)  in a metal. It follows that the 
emf that appears in a sample is analogous to the thermoelec- 
tric emf when the electron temperature T,, (x)  is governed 
by nonlinear dynamics in the case of a CPR and scattering 
processes. 

The static resonance emf should be detectable at low 
temperatures in a sample of bismuth (L - 1 mm) with the 
mean free path of electrons 1-0.1-1 mm in a magnetic field 
Ho- 1 kOe at frequencies w - 10"-10'' s ' .  The pump am- 
plitude should be H I  > 0.1 Oe. If contacts are then attached 
at the points x = 0 and x = L /2, the static resonance emf 
should be 8 -0.1 mV. In the case of a metal (such as potas- 
sium or copper) estimates indicate that under the same con- 
ditions we should have 29 - mV. 

"This expression is valid whenever the temperature profile T,,(x) is giv- 
en for a metal and T,, ge ,  is obeyed. 
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