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Approximate recurrence relations for the overlap of retrieved and true patterns are derived for the 
case of parallel (synchronous) dynamics. The critical value of the neural-network saturation 
parameter a = M /N ( M  is the number of patterns and N the number of neurons), obtained from 
these relations, is a, = 0.1398 in the limit as N- w . The result is compared with thermodynamic 
calculations and with a computer experiment for N = 6000 neurons. 

1. It is known now that the complex structure of spin- and are random vectors with components {( IP' = +_ 117' 
glass states can be used to store and retrieve information. A This rule of teaching a neural network, together with the 
spin model proposed in Refs. 1 and 2 operates as an associ- relaxation dynamics (2),  actually solves the above problem 
ative memory system, i.e., is an analog of the brain's neural of remembering an retrieving uncorrelated patterns 
networks. {r 'p)>,"_ 

In this model, each neuron S,, i = 1, 2, ..., N, is in two 
states: S = * 1 (excitation/inhibition states), the subscript N-1 z 5 1 p )  5:p1)- 0 (N-u), 
i runs over a network of N neutrons. A neuron labeled i is IG~CLV 

acted upon by an electric field U, whose potential is deter- when their number Mis not very large: a = M/NS 0.14 and 
mined by a configuration of neurons coupled with i s ~ n a ~ t i c  the temperature noise in the network does not exceed a defi- 
bonds V,, : 

ni nite l e ~ e l . ~ . ~  

. . 
j-I 

( j t i )  

The synaptic bonds {V,) can be excitations ( V,  > 0)  or in- 
hibitions ( V,, < 0).  Therefore (at each given instant) the po- 
tentials { Ui)y= , are functions of the neuron configurations 
S =  {Si)y= , and of the complete set of synaptic bonds 
V = {V, ) :  = , . It is known that a neuron Si goes over into an 
excitation (inhibition) state if the potential U, is higher 
(lower) than a certain threshold Ti i.e., the local-equilibri- 
um conditions are of the form ( Ui f T' )Si > 0. 

The Little-Hopfield model2 corresponds to the as- 
sumption that Ti = 0 (no-threshold excitation), V,, = Ti 
(symmetric synapses), and the evolution of the neutral 
network is determined by a relaxation dynamics for zero 
temperature: 

S,(t+l)= { sign Ui  ( S ( t )  ) , Ui+O 
si ( t )  U,=O ' 

Equation (2)  corresponds then to a minimization of a Lya- 
punov function that takes in this case [see ( 1 ) 1 the form 

l<i<j<P 

The problem of remembering patterns [they are coded by N- 
bit "words" {f 'P))r= and correspond to fixed points of the 
{S,*)E , dynamics (2) 1 reduces to solving the problem of 
organizing the synaptic bonds V'M' in such a way that the 
function (3)  (the energy corresponding to a given configu- 
ration of neurons S) has not less than 2M global minima. 

According to the Hebb-Little-Cooper hypothesis1-3, 
the patterns entering the neutral network in the course of 
teaching modify the potentials of the synaptic bonds in ac- 
cordance with the rule 

M 

Under these conditions the neural network (3)  func- 
tions as an associative memory. The process of recalling the 
pattern f 'q' reduces to the evolution of the initial configura- 
tion S ( t  = 0)  [see (2)  1 that relaxes to the nearest (global) 
minimum of the Hamiltonian (3)  corresponding to this pat- 
tern. With increase of a, the interference between patterns 
fed to the neutron network causes the "energy landscape" 
corresponding (3),  (4) to become strongly cut-up: for a = 1 
it corresponds to the Sherrington-Kirpatrick model.6 In 
particular, the global minima which are separated by the 
barriers (plateaus) of height O(N) and correspond to pat- 
terns {< 'P'): are preserved only at small values of a and 
have a strongly cut-up basin.' The attractor for S ( t )  will 
therefore be not the vector 6 'q' corresponding to the global 
minimum closest to S ( t  = O), but a certain vicinity A(f 'q') 

of this vector, determined by the structure of the basin. Con- 
sequently the overlap of the pattern and the retrieval S ( t )  

does not necessarily converge as t - w to 1 (or to - 1 ) .'' 
The "sticking" of the vector S ( t )  depends also on the details 
of the neural-network dynamics. 

The dynamics (2)  is usually further defined by two 
methods6.': (a )  by consecutive (asynchronous) dynamics, 
in which the index i in (2)  scans from 1 to Nand the flipping 
of the next spin is carried out with allowance for all the pre- 
ceding flips; (b )  by parallel (synchronous) dynamics, when 
all the spins flip (do not flip) simultaneously according to 
(2).  If S ( t  = 0 )  is in the attraction region of the attractor 
A (6 'q' ), the first dynamics (Monte Carlo for zero tempera- 
ture t = 0 )  corresponds to a monotonic relaxation 
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The local minima are stationary points for the asynchronous 
dynamics. The retrieval of S( t )  can therefore "stick" far 
enough from g ' q ' .  

Synchronous dynamics can violate (6) for individual 
instants of time, and ensures relaxation to A (6 'q') only over 
long time intervals. This makes the "sticking" of the vector 
S( t )  at local minima far from A(6 'q') less probable. 

It is not clear which dynamics is realized in neural net- 
works. Much attention was paid in Refs. 2, 4, 6, and 8 to 
successive dynamics. In recent papers6.' an attempt was 
made to analyze parallel dynamics for the Little-Hopfield 
model. The results there, however, are based on rather rough 
approximations and contradict greatly the numkrical experi- 
ment carried out in the present paper and in Ref. 4. 

Our present purpose is: a) derivation of recurrence rela- 
tions for the evolution of the overlap (5) in the Little-Hop- 
field model, when the retrieval ofS( t)  obeys parallel dynam- 
ics; b) compare the results with a numerical experiment for 
parallel dynamics in this model. 

2. We begin the derivation of recurrence equations for 
the overlaps {m$' ( t ))  with the following remark. A mean- 
ingful theory of neutral networks can be developed only in 
thelimit N+ a, M +  W ,  M / N  = a (Refs. 4,5,9). Therefore 
the parallel dynamics (2)  can be redefined to have 
S, ( t  + 1) = 0 for Ui (S( t ) )  = 0, since this does not affect 
the quantities 

m:q' ( t )  = lim m:' ( t )  , 
N-rm 

on which we shall in fact focus our attention. We obtain then 
with the aid of (4)2' 

N 

Here {Ujq' (S(t) )): is a sequence of (random) potentials 
of the form 

M N 

The upper signs correspond here to the case when S( t = 0) is 
in the attraction region of the attractor A({'@), i.e., 
m$'(t) > 0, and the lower signs correspond to the case when 
the initial retrieval is in the attraction region of the "nega- 
tive," i.e., A( - 6 '@), when m2'(t) <0. 

Let us examine in greater detail the first term of (8).  
For each p = 1,2, ..., M the pattern 6 is a realization of a 
sequence of independent uniformly distributed random 
quantities 

N ( a )  = { I ,  Pr{Ei=*f>='/z ,  

i.e., 6 'P' = 6(0,,). Therefore, by virtue of the central limit 
theorem (see, e.g., Ref. lo),  the sums 

converge as N-* co to a sequence of independent (q is fixed 
andpfq)  Gaussian random quantities 6 with Mc 'P' = 0 

and DP" = 1. For the same reasons (with allowance for the 
independence of < iP) and 6 3') the sums 

( ~ f  9 )  

converge as M+ co to sequences of Gaussian random quan- 
tities S, with MS, = 0 and DS, = 1. Therefore in the limit 
N- CO,  M- co , and M / N  = a we have for the first term of 
(8) 

M N 

where {S,),, is a sequence of equally distributed indepen- 
dent Gaussian random quantities with MS' = 0 and 
DSi* =d = 1. 

Similar arguments are valid also for the second term of 
(8).  It must only be noted that the sequence of 
rlj+ = S, +<jq' takes on values {O, + 21, with 
M v , ~  ( t )  = 0, and 

To calculate the variance we have used here the ergodicity of 
the sequence (11: (t)),,l. Next, using the independence of 
{ 'P' and 7 * ( t )  and the central limit theorem, we obtain 

~ - 

1 
lim z I:p' z E:p)gr* ( t )  =athp,* ( 1 ) .  

N-r  m o=1 j-i 

Here, &' ( t)), , is a sequence of independent equally dis- 
tributed Gaussian random quantities: Mp: ( t )  = 0 and 
Dpi+ ( t )  = o$ = 2(1 - Jmjp'(t)J).  

Thus, in the limit indicated above, the sequence 
{ U Iq' (S(t) )) i> reduces to a sum of the Gaussian random 
sequences (9)  and ( lo) ,  the correlation coefficient between 
which can be calculated in the manner used for Drl,f : 

Assume that the sequences { q ) i l  and 
{U1q'(S(t)))i>l can be regarded as independent. Then, by 
virtue of the Birkhoff-Khintchine ergodic theorem'' and of 
(9)  and ( lo) ,  the recurrence relations (7) take in the limit 
N-+ CO,  M / N = a  the form 

x sign [ m'q' ( t )  (US V )  I .  (12) 

Herep,, ( u p )  is the probability density of the distribution of 
the random potential U1q': 
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For the recurrence relation that determines the overlap of 
the recollection and of the pattern in parallel dynamics we 
obtain therefore ultimately in the limit N- W ,  M/N = a 

ma(q) ( t - t l )  =Fa ( t )  ] , q= l ,2 ,  . . . . (14) 

Here 

The fact that the function 3, [m] in the right-hand side of 
(14) is odd reflects the aforementioned global-minima de- 
generacy corresponding to the patterns {S 'q'}q,, and their 
"negatives" { - 6 'q'}q,l . We shall therefore consider below 
only the convergence of the recollections S ( t )  to the pat- 
terns, i.e., m?' ( t )  20. 

3. It follows from ( 14) that the quality of the memory 
depends essentially on the saturation parameter a of the neu- 
ral network. At a < a, = 0.1398 the recurrence relation 
( 14) has three fixed points, two stable (fi, = 0, m,* > 0) 
and one (&, ) unstable: fi, < m, < mz (see Figs. 1 and 2). 
The points 5, and m,* are attractors of the image ( 14), with 
m,* < 1 corresponding precisely to the attractor A(6  'q') 

which degenerates into the vector 6 'q' only as a -0, when 
m,* - The point m, is the separatrix of the pattern ( 14). 
The presence of separatrices means that for the recollection 
S ( t )  to converge in the vicinity A({ 'q') of the pattern f 'q' it 
is necessary that the initial overlap mtq'(t = 0)  exceed the 
threshold k, > 0. Note that the attraction region of the at- 
tractor A ( 6  'q ' )  is quite narrow, and the threshold does not 
vanish even as a-O:m,,, = 0.08, see Fig. 2. (The limit 
a -0 corresponds as before to an infinite number of patterns, 
only N/N-Oas N- w ) .  

If the initial retrieval of S ( t  = 0)  is such that 
m'q'(t = 0)  > m, and m@'(f = 0)  5 ma forp#q, we have 

ma', p=q 
lirn my' ( t )  = { 
I+ m 0, pf q' 

For a > a, the recurrent relations ( 14) have no nontri- 
vial fixed points: m,* vanishes jumpwise, see Fig. 2. This 
means that the memory is overfilled with patterns and is a 
state of "chaos," i.e., it is incapable of reconstructing the 
pattern with a nonzero finite overlap, even if the initial re- 
trieval of S ( t  = 0) is close to the original. 

FIG. 1. Graphic representation of the recurrence relation ( 14) for differ- 
ent values of the parameter a: curve I---a = 0; 2-a, < a, 
- - 0.1398; 3-a, = 0.1398; &a, > a,. The points E, = 0 and m,* are 
attractors, the point m,, is a separatrix. The dash-dot line and mr 'cor re -  
spond to the recurrence relation ( 16) for a < ajK'. 

All these results differ substantially from those of Kin- 
~ e 1 , ~  who obtained for the recurrence relation in parallel dy- 
namics the expression 

It follows from ( 16) that for a < a:K' = 2 / ~ ~ 0 . 6 3 6 6  there 
are only two fixed points; unstable ma = 0 and stable m'K' 
for which m i 2 a L K , - ~  continuously (see Fig. 2). For 

a>a:K', just as for (14), there is only one fixed point 
6, = 0. 

At the same time, thermodynamic calculations inde- 
pendent of the dynamics4*" for T = 0 yield a?' ~ 0 . 1 3 8  and 
a jump of m y '  at this point: m?,!, -, = 0.967, m$, +, (cf. 

m,* in Fig. 2). The computer experiment described in Fig. 4 
(but for sequential dynamics) confirms these conclusions. 
Starting with N = 3000 it is clearly seen that a jumpwise 
decrease of ma from m, = ,,,, ~ 0 . 9 7 2  to m, = ,,,, ~ 0 . 3 5  
takes place between a = 0.14 and a = 0.16. Finite-dimen- 
sional scaling for N = 500, 1000, 2000, and 3000 yields 
a:*' ~ 0 . 1 4 5  (Ref. 4).  

Kinze16 also gives results of computer experiments. 
They do not agree with the dynamics ( 16). For example, 
they indicate the presence of a threshold and yield for its 
value at a ~ 0 . 0 7 5  the estimate ma ~ 0 . 4 ,  which differs from 
our result m, =, = 0.808. It must be noted, however, that 
Kinze16 considered also sequential dynamics4' and, more im- 
portantly, for a small system with N ~ 4 0 0 .  We have there- 
fore performed computer experiments with parallel dynam- 
ics, aimed primarily at verifying the recurrence relation 
( 14) .5' 

4. Before we present the results of the computer experi- 
ment, let us compare the equation that follows for fixed 
points from the recurrence relation ( 14) : 

with the equation for the order parameter of the overlap of 
Mattis states (m'P' = map,, ) 

[here ( ) stands for a thermodynamic mean value with the 
Hamiltonian (3)  for zero temperature (see Refs. 4, 9, and 
1111; 

R'"= If (2/na) '" exp (-m2/2aR). 

FIG. 2. Behavior of the fixed points of the reproduction ( 14) as functions 
of m:< = 0.96978, a, = 0.1398. The same for the reproduction (16): 
a:K' = 0.6366. 
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The solutions ma of Eq. ( 17) and my '  of Eq. ( 18 ) are 
very close: a, = 0.1398, a:*' = 0.138, a m2c = 0.9698, 
mzl)  = 0.967. Therefore, using the smallness a( < a, ) and 

the proximity of the nontrivial solution ma to unity, we ob- 
tain from ( 18 ) 

On the other hand in this region of variation of the parameter 
a we have 

From ( 19) and (20) we therefore obtain ( 17), and this ex- 
plains the similarity of the solutions m,* and my',  including 
the branch of separatrices ma. 

An experiment with the CDC-6500 computer (JINR, 
Dubna) was carried out for parallel dynamics and 
N = 6000. Such a large N was chosen to refine the depend- 
ence of the critical parameters on the system dimensions. It 
was noted in Ref. 4 that the singularities of the behavior of 
the overlap ma, which are typical, for example, for a transi- 
tion of memory from Mattis states, when the error in the 
pattern reproduction is small, into the spin-glass phase 
(chaotic behavior of the memory when the memory is over- 
filled), can be observed only starting with N = 2000. 

On the whole, our experiment confirmed the conclu- 
sions of Ref. 4 (see Sec. 3), and clarified the status of Eqs. 
( 14) and (17) as well as certain singularities of the dynam- 
ics: 

a )  It was confirmed that 0.14(aC < 0.16. For a = 0.14 
the recollection of S ( t  = 0) with m(t  = 0) = 1 converged 
already after 16 steps to an attractor which consisted in our 
case of two vectors with mL1) = 0.9790 and m a )  = 0.9797. 
Starting with t = 16 the vector S( t) becomes a periodic func- 
tion: ma ( t  = 16) = 0.9797, ma ( t  = 17) = 0.9790, 
ma ( t  = 18) = 0.9797 etc. On going from the first vector of 
the attractor to the second, 8 spins flipped. A total of 26 
iterations were performed, see Fig. 3. 

b) For a = 0.16 the overlap ma, in contrast to Eqs. 
( 17) and ( 18), is not zero. In our experiment ma = 0.3457. 
This value was reached after 198 iterations: 
ma ( t  = 198-206) = 0.3457. To elucidate the structure of 
the attractor we calculated the specific energy 
E( t )  = H(S(t)  )/N. It was found that the attractor again 
consists of two vectors: E ( t  = 198) = - 0.5843, 
E ( t  = 199) = - 0.58425, E ( t  = 200) = - 0.5843, etc. 
and the transition is accompanied by 14 spin flips. 

FIG. 3. Evolution of overlap ma ( t )  [for a = 0.14 (curve 1 )  and a = 0.16 
(curve 2)  ] under the initial condition ma ( t  = 0 )  = 1. 

FIG. 4. Evolution of noise-perturbed vectors for a = 0.14 (curve 1 ) and 
0.16 (curve 2),  when the initial overlap ma ( t  = 0 )  is lower than the ma 
threshold. 

C )  An interesting singularity of the dynamics was ob- 
served after perturbing the vectors of the attractor for 
a = 0.14 with the aid of noise (40%). This led to a decrease 
of the everlap of the noise-perturbed vector S, ( t  = 0) with 
the pattern to ma ( t  = 0) = 0.1977. The evolution of m( t )  
for this case is shown in Fig. 4. It confirms the presence of a 
separatrix (threshold) with ma = ,,, 2 0.4, but differs from 
the evolution predicted by Eq. ( 14). The main differences 
are the nonmonotonic ma ( t )  dependences and the fact that 

limm, ( t )  > 0. The vector S, ( t )  first tends to the original 
f- m 

pattern (retrieval takes place), and only later (after t = 2,3) 
it begins to forget it, but not completely, with a nonzero 
limiting overlap E ( t  = 45) = - 0.5935. 

d )  A similar behavior was observed for the evolution, at 
a = 0.16, of the vector S, ( t )  obtained from S ( t  = 206) by 
using a 10% noise perturbation, which decreased the over- 
lap of the pattern to ma ( t  = 0) = 0.272, see Fig. 4. The 
number of iterations was 44, and ma ( t  = 44) = 0.3297, 
E ( t  = 44) = - 0.5865 [cf. item b) 1. 

e) To check on the Gaussian character and on the inde- 
pendence of the random quantities that appear in the deriva- 
tion of (14) (see Sec. 2), pertinent histograms were con- 
structed for each constant t. If a = 0.14, the histograms for 
{U,'q)(S(t = 0-25))) and {f ,'q)U,'q'(S(t = 0-25))) are in- 
deed close to Gaussian with parameters close to those pre- 
dicted in Sec. 2, see Fig. 5. For a = 0.16 they are close to 
Gaussian only during the first few steps, and then deviate 
from Gaussian substantially, see Fig. 6. 

5. The approximate recurrence relation ( 14) describes 
well the evolution of the Little-Hopfield model only for 
a(a , ,  and furthermore only in the vicinity of attractors. 
The deviation of the image ( 14) from the numerical experi- 
ment (especially for a > a,, see the histogram of Fig. 6) is 
the consequence of neglecting in ( 14) correlation effects, 
above all between {f,'q') and {U,'q') (see Sec. 2 and the 
discussion in Refs. 6 and 8) .  Equation ( 17) for fixed points 
duplicates with high accuracy the solutions of the system 
( 18) obtained from thermodynamic considerations for 
T = 0. The value a, = 0.1398 obtained from ( 17) is closer 
to the result of the computer experiment (a, = 0.145) than 
a?' = 0.138 which follows from Eqs. ( 18). It is important 
that both the recurrence relation (14) and the numerical 
experiment of the present paper predict the presence of a 
threshold ma > 0 starting with which the retrieval S ( t )  is 
"captured" by the attractor of the corresponding pattern 
(see Figs. 1 and 2). The value ma =, = 0.808 obtained from 
(14) and ( 17) is apparently too high. The computer experi- 
ment shows (see Fig. 4) that for a = 0.14 the threshold is 
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FIG. 5. a-Histogram of {U>q'(S(t  = 25))) for 
a = 0.14 ( M  = 0.0041, u = 0.4546); &histogram of 
{ g I q ' ~ , ( q ' ( ~ ( t = 2 5 ) ) )  for a = 0 . 1 4  (M=0.0382, 
u = 0.4530). 

.............. .................. . . . .  ... .... . . . .  ....... ..... .'. . .....:. ..... ........ ....... - 
0 FIG. 6. a-Histogram of {UIq'(S(t = 206))) for a = 0.16 

( M =  - 0.0155, u = 1.2970); &histogram of 

16V 1 b 
{{~q'Ujq'(S(t = 206))) for a = 0.16 ( M  = 0.1754, 

, . a =  1.2852). 

m, 2 0.4. All these results differ from those of the dynamics 2'Moreaccurate1y, Eq. (7) should contain in place of m$'(t) the sum (5) 
without the ith term; this introduces an error O ( ~ / N ) :  ( 16) proposed there is no jump of the parameter 

''This means ;hat A ( <  "1) -< (9' as a-0,  only in the sense that m$ - 1: 
m,*, there is no threshold (ma = 01, etc. Recall that the the vectors {g(sl) for which rn'q' (6 (") = I ,  will be assumed to be equiv- 
computer experiment of Ref. 6 for N = 400 in sequential alent to c (q ) .  
dynamics yields ma = ,,,, ~ 0 . 4 .  

Finally, for a = 0.16> a, both Eqs. (17) and (18) 
yield m,* = 0, which differs from the numerical experiment. 
A zero value of ma, would mean that when the memory is 
overfilled with patterns at a > a, the stable state is that of 
spin glass and not any Mattis state. A discussion of the phys- 
ical meaning of this residual overlap can be found in Refs. 4- 
7. The presence of a residual overlap for a < a, for the evolu- 
tion of the vector S( t )  with initial condition below the 
threshold ha was first observed here. It coresponds to 
"sticking" of the vector S( t )  to a local minimum on a cut-up 
plateau of the "energy landscape" far from the attractors 
corresponding to the patterns stored in the memory. The 
latter constitute a system of global minima { A ( {  'q '  )) sepa- 
rated by plateaus (see Secs. l and 2) .  

"Note that since the Hamiltonian (3),  (4) is even its global minima are at 
least twofold degenerate. Therefore S ( t )  can converge in the vicinity of 
the "negative" of the pattern, i.e., of the vector - 9 'q', if the initial 
overlap m2' ( t  = 0) c 0 .  

4'It is suggested in a recent paperQhat the difference between the dynam- 
ics is not significant for the properties of the Little-Hopfield model. 

5'It may be specially interesting to perform a computer experiment to 
compare parallel dynamics with the relaxation dynamics considered in a 
recent paper.' ' 
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