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The current-density distribution function p(J) in disordered conductors is investigated in the 
framework of a renormalization-group analysis of the extended nonlinear a model. It is shown 
that in the weak-localization region the distribution of typical fluctuations is Gaussian, while the 
probability of large fluctuations of J decreases in accordance with a logarithmically normal ( LN) 
law. The LN part is much more substantial in the distribution function p(J) than in the 
conductance distribution function, and increases with increase of the quantum corrections. In the 
region where the average conductivity is determined essentially by quantum corrections, the 
distribution function p( J) turns out to be fully LN. It is also shown that whereas typical 
fluctuation currents are not correlated in direction with the external electric field E, large 
fluctuation currents are mainly coaxial with E. 

1. The conductance of small disordered conductors 
fluctuates noticeably at low temperatures1-5 when the real- 
ization of the random potential is changed. These fluctu- 
ations are manifested in experiment1 as reproducible aperi- 
odic oscillations of the sample conductance with change of 
the external magnetic field, of the Fermi energy, etc. The 
amplitude of the conductance fluctuations turns to be 
a universal quantity -e2/fi for mesoscopic samples (with 
dimensions L such that I< L 5 L,, where I is the mean free 
path of the electrons for scattering by impurities, 
L ,  = (LM/T)'12, and D is the diffusion coefficient). The 
relative magnitude of the fluctuations of G for samples with 
good conductivity is, however,  lo^.^.^ 

A quantity whose relative flucutations are not small 
turns out to be current denstiy J ( r )  at a given point, for 
which5-' ( J 2 ( r ) )  ) ( J ( r ) )2  as T-0 (angle brackets denote 
averaging over realizations of the random potential). Fluc- 
tuations ofjust this quantity should be manifestedX in fluctu- 
ations of the measurable potential difference SV,,, between 
close contacts a and b: 

b 

in experiment with multicontact mesoscopic samples (see, 
e.g., Ref. 9).  In experiments of this kind the sample dimen- 
sions play no role: the potential-difference flucutations turn 
out to be large provided that the distance between contacts is 
less than L,. 

In Refs. 6-8 was considered only the variance of the 
J ( r )  fluctuations. The fact that the variance is large com- 
pared with the m,ean value arouses interest to the behavior of 
higher fluctuation moments of the current density. In the 
present paper are calculated the higher moments ( P  ( r ) )  
and the distribution function p(J) of the current density is 
reconstructed on their basis. It turns out that the distribu- 
tion of the J ( r )  fluctuations differs substantially from the 
fluctuations of the conductance G. 

The distribution function f(G) of the mesoscopic fluc- 
tuations of the condu~tance '~ is characterized, even in the 
region of good metallic conductivity (g%l ,  where 
g = 2r2fi(G )/e2 is the dimensionless conductance), by a lo- 
garithmically normal (LN) asymptote. This asymptote is a 
manfestation of the non-universality of the fluctuations, i.e., 
of the dependence of their magnitude on the disorder (say, 

on the mean free path I), and not only on the renormalized 
(physically) conductance (G ), as would be the case if the 
flucutations were described in the framework of one-param- 
eter scaling. '' The LN asymptote of the distribution f(G) is, 
however long-range, difficult to observe. 

It is natural to expect the non-universality to become 
more pronounced in the distribution p(J) of strongly fluc- 
tuating local currents. It will indeed be shown that even in 
the region of weak localization (where the quantum correc- 
tions to the classical Drude conductivity are small), a no- 
ticeable LN asymptote appears for the distribution p ( J ) .  
With increase of the quantum corrections, i.e., with increase 
of the disorder or with decrease of the temperature, the re- 
gion of the LN asymptote expands, so that the probability of 
fluctuations that exceed the variance has not a Gaussian but 
a logarithmically normal decrease. Finally, in the region 
where the quantum contribution decreases the conductivity 
noticeably, the current-density fluctuations become fully 
non-universal LN fluctuations. It must be emphasized that 
only the region of metallic conduction is considered, in 
which the deminsionless conductance g)  1, although it is 
small compared with the bare (Drude) value go- (p,l/ 

' ) 1. 
The non-Gaussian character of p(J) is due to the rapid 

increase of all the higher (m>3) irrkducible moments (cu- 
mulants) ( P  ( r ) ) ,  with increase of L (or of L ,  if T +O). 
(Only cumulants with numbers m 9  1 increase rapidly for 
the fluctuations of G.) These cumulants cannot be described 
(if m>3) in the framework of the usual nonlinear a mod- 
e1,'2.'hnd hence in the framework of one-parameter scal- 
ing." To calculate them we must see the results of a renor- 
malization-group (RG)  analysis of the e ~ ~ a n d e d ' ~ . ' ~  
nonlinear a model. 

2. We begin with the determination of the principal con- 
tribution to the cumulants ( J ( r l  ) ... J(r,  ) ). in the first non- 
vanishing order of perturbation theory. These cumulants are 
connected with the local conductivities amp (r,rl)  by the re- 
lation 
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where E( r r )  is the effective value of the electric field which, 
as shown in Ref. 8, must be taken equal to the homogeneous 
external field when the cumulants are calculated. 

In Fig. 1, drawn by the technique of Ref. 15, with sepa- 
rated diffusion (cooperon) propagators D(r )  denoted by 
wavy lines, are shown several types of diagrams for the cu- 
mulants ( 1 ) . The solid lines denote the electron Green's 
functions 3 (r, ,r, ),the light circles correspond to the cur- 
rent coordinates r,, and the dark ones to the field coordi- 
nates r;, over which the integration is carried out in ( 1 ). The 
Green's functions 3 (r, - r, ) decrease exponentially if 
Jr, - r, 1 2 1.16 The coordinates of all the sources located on 
one electron loop are therefore equal accurate to 1. The diffu- 
sion propagators decrease slowly with r (as a power law if 
d = 3 or logarithmically if d = 1). Consequently diagrams 
in which currents J ( r ,  ) (light circles) are contained in sev- 
eral electron loops (for example, diagrams of type d in Fig. 
1 ) make a nonlocal contribution to ( 1 ) . 

The local contribution, of greatest interest to us, to the 
current-density cumulants is made by diagrams in which all 
the light circles are on a single loop (a-c,e) . The most signif- 
icant of these diagrams are those having the highest degree of 
infrared divergence-the diagrams with the largest number 
of loops with dark circles. For even moments (with numbers 
2n) these are the diagrams of type a, which contain n "exter- 
nal" loops with two dark circles and n - 1 "internal" diffu- 
sions or cooperons (diagrams of this type, containing a 
smaller number of internal diffusions, are topologically im- 
possible-they do not break up into 2n current loops of type 
a'). The diagrams for the odd (with numbers 2n + 1 ) mo- 
ments are those of type e, which contain n external loops and 
n internal diffusions. In these diagrams are carried out the 
largest number of independent integrations, each of which 
yields a factor L " d .  

We obtain the principal contribution to the even mo- 
ments in the lowest possible order of perturbation theory 
(diagams a )  : 

FIG. 1. Diagrams for mth-order cumulants ( m  = 4 for diagrams a-d and 
m = 5 for diagram e): the main contribution is made by diagrams oftype a 
(of type e for odd cumulants). For clarity, one of the diagrams of this type 
is drawn (a') by the usual impurity graphic technique," where a closed 
loop corresponds to each of the conductivities ~ , ~ ( r , r ' )  and a triad of 
dashed lines to the diffusions. 

The S functions here are the result of averaging over the fast 
electronic degrees of freedom. This expression is therefore 
valid only if Iri - rj I > I. For current-density cumulants in 
one point (or at distances Iri - r, I <I)  the same diagrams 
yield 

i-i 

where J,= ( J ( r ) )  = aE is the mean value of the current 
density (a# GL 2-d is the conductivity, s ~ , , . , ~ ~ ~  is an absolute- 
ly symmetric tensor of order 2n (proportional to the sum of 
all possible products of the Kronecker symbols). The pa- 
rameters y and 6 in (2) and ( 3 ) ,  with respect to which the 
actual selection of the diagrams is made, take for d = 2 the 
form 

For T # O  it is necessary here to replace L by L,. The selec- 
tion remains the same also ford = 3 when 6-  ( f i /~ , l )~ ,  and 
y -6L /1$1. Note that 6 is the usual perturbative parameter 
of weak-localization theory, whereas the parameter y ap- 
pears only when current-density fluctuations are consid- 
ered. It is relative to this parameter that the variance of the 
fluctuations ( J 2  ( r  ) ), is large6 compared with the mean val- 
ue J,, (this can be seen from (3)  for n = 1). 

We obtain in the same manner the main contribution 
(proportional to the highest power of y) to the odd-order 
cumulants (diagram e)  : 

Zn+I 

Let us clarify the difference between the selection of 
diagrams for the current-density fluctuations and for the 
fluctuations of the conductance G. The cumulants of G are 
connected with the cumulants of the local conductivity by 
the obvious equation 

Additional integration [compared with Eq. ( 1 ) ] eliminates 
the S function in (2),  and the contribution of diagrams a (or 
d )  turns out to be proportional to the small factor ( I  /L)'" . 
Of fundamental importance here (for not too large n )  dia- 
gams d (Ref. lo),  which describe power-law correlations in 
the cumulants (J,, (r,  ) ... J,, (r, ) ), . On the other hand, 
the contribution of the same diagrams to the cumulants 
(P ( r ) ) ,  of the local current density fluctuations is small 
compared with (3)  in terms of the same parameter y-'. 

3. The perturbation-theory corrections of higher order 
in g-' cannot increase the degree of the parameter y in (2 )  
and (3) .  However, just as in the case of the conductance 
fluctuations, it is necessary to sum the corrections in all or- 

144 Sov. Phys. JETP 68 (1), January 1989 I. V. Lerner 144 



ders over f. Confining ourselves here to the case d = 2, we 
represent the cumulants in the form 

where 

Z=  J a ~ e r p { - ~ [ 0 1 } .  

Expression (5)  is obtained from the corresponding expres- 
sion derived in Refs. 10 and 14 for the conductance fluctu- 
ations, by replacing the partial derivatives with variational 
ones. Here F[A ] is the generating functional of the expanded 
nonlinear a modelI4 

The symbol V, denotes the covariant derivative: 
A, Q=d, Q - i[A, ,Q], Q is a matrix field of definite sym- 
metry,"'9'4 Q = 1 (QCSp(2nN)/Sp(nN) 8 Sp(nN),Sp is a 
symplectic group, and in the final results the number of rep- 
licas is N = 0) , the vector indices for V, in (6)  have been left 
out for simplicity, g= n%G /16e2, the nonrenormalized value 
ofthe charge isz, (0)-12n-2go, andgo-p,l/fi% 1. 

The schematic rule of setting the diagrams in corre- 
spondence with the vertices of the functional (6)  is the fol- 
lowing. A closed electron loop corresponds to the tr symbol, 
a circle to the field A ( r )  and a wavy line to interaction of the 
diffusion modes.I3 Clearly, the diagrams obtained within the 
framework of the usual a modelI2 [to which the first term of 
(6)  corresponds ] contain only loops that have no more than 
two free ends (circles). These are the diagrams of Fig. d, the 
contributions of which to the cumulants (P ( r )  ), we shall 
neglect. Diagrams a, which make the main contribution to 
thecumulants (2),  are obtained by perturbation theory from 
(5)  by taking into account in the functional (6)  the vertex 
containing tr(VQ)2n. 

Summation of all the principal logarithmic corrections 
in (2) reduces to renormalization of the functional (6) and 
to calculation of the contribution of diagram a with renor- 
malized values of the charges z,. The functional (6)  has 
been renormalized in Ref. 14. The procedure of calculating 
the cumulants ( 1 ) using (5)  and ( 6 )  is similar to the proce- 
dure of calculating (G" ), , described in Ref. 14. As a result 
we obtain for cumulants of even order 

2" 

Here exp[C: u] e x p [ u ( n 2  - n) ] ,C :  is the largest of the 
eigenvalues arising on renormalization of z, (Ref. 14), and 
u = ln(a,/o) is a non-universal parameter that depends 

both on the nonrenormalized (a,) and the renormalized (a) 
values of the conductivity. It is known"-'3 that a/ 
a, = 1 - { ford = 2. A similar expression is obtained for the 
odd-order cumulants. To transform to the one-point correla- 
tor it is necessary to analyze the corresponding transition 
from (2)  to ( 3 ). It can be seen that it reduces to regulariza- 
tion of the S function at zero in accordance with the rule 
S(0) -p, (lil) - ' -gl -2. For a one-point correlator of any 
order we obtain thus 

Note that to go over to the perturbative expressions (2)  and 
( 3 )  it would be necessary to retain in (7)  and (8)  all the 
eigenvalues C :, appearing upon renormalization of z, . The 
resultant expression would contain a sum of the form 

and the transition to the perturbative expressions in the limit 
un24 1 would be obtained by expanding these factors in 
terms of u and expanding u in terms of f .  Expressions (7) 
and (8)  are valid for moments with numbers n k u- I ,  for 
which the contribution of all eigenvalues but the largest is 
negligible. Obviously, for moments with such numbers the 
perturbative expressions (2)  and (3)  cannot be used even in 
the region of low localization (f 4 1 ) . Note that the variance, 
as can be seen from (8) ,  is not renormalized, so that the 
perturbative expression (2)  remains valid for it. 

A special examination is needed for the behavior of the 
cumulants (7) .  As shown in (6) ,  the fluctuating currents 
contained in the variance are not correlated in direction with 
the external field E. It is seen from (8)  that, as before, there 
are no such correlations for higher even cumulants. It will be 
made clear below, however, at the largest m the higher fluc- 
tuations moments are determined by the contribution of dia- 
grams 6,  which is of the form 

The fluctuation currents are here fully correlated in direc- 
tion with the external field E. This will be shown below to 
determine in essence the pattern of the distribution of large 
fluctuating currents in disordered conductors. 

4. The procedure of reconstructing the distribution 
function over the cumulants is well known, and is described 
in Ref. 10 for the case of conductances. The distribution is 
close to Gaussian if K ,  <Am'*, and differs greatly from 
Gaussian if 

where K ,  is an mth order cumulant and A = K ,  is the vari- 
ance. In this case, when the inequality ( 10) is satisfied only 
starting with a certain number m,, the distribution asymp- 
tote that turns out to be non-Gaussian is the one farther the 
larger m,. The distribution here is symmetric if K , ,  + , - 0 

145 Sov. Phys. JETP 68 (I), January 1989 I. V. Lerner 145 



and is almost symmetric if the inequality (10) holds only for 
even moments. 

It turns out that the distribution function p(J) has sub- 
stantially different forms in the weak-localization region 
64 1, where u z < ,  and in the region in which u = ln(u,,/ 
a) 2 1. Obviously, ifgo > g )  1 this region does not lie outside 
the limits of applicability of the RG analysis carried out in 
the one-loop approximation. From Eq. (8),  which is valid at 
u 2 1 for all cumulants, we obtain in this region 

The angle factors have not been taken into account here. 
Thus, even cumulants of all orders are large compared with 
the variance in the considered region u 2 1. Odd cumulants 
are immaterial for numbers n < no"2, where 

i.e., the distribution is almost symmetric. Since the ratio 
( 11 ) is large, all the moments are determined by their irre- 
ducible parts, i.e., by the cumulants. The variation, propor- 
tional to exp(un2), of the moments denotes here that, just as 
a number of distribution functions of one-dimensional sys- 
t e m ~ , " - ~ ~  the distribution function q,(J) becomes logarith- 
mically normal. Calculations similar to those in Ref. 10 yield 

We emphasize once more that the distribution ( 13) is exact 
in the region u 2 1. The function p(J) differs significantly in 
form from the conductance distribution function f(G),I0 
which is, in the same region u 2 1, mainly Gaussian with an 
LN asymptote that characterizes only fluctuations SG that 
exceed the variance substantially. Note that the typical cur- 
rents J- A in the distribution ( 13) exceed considerably the 
average current J, and, moreover, owing to the slow de- 
crease of p (J) compared with Gaussian (and exponential), 
the probability of currents noticeably larger than typical 
turns out to be small. 

In the region of weak localization, for moments with 
numbers n <fV' / ' ,  the cumulants are small: Km/Am12 
-{m'2 41.  The region of moments with numbers 
f - ' I 2  < n < f -' is intermediate, and for n k g  -' the mo- 
ments are characterized by the relation (8), which leads to 
an LN asymptote of type ( 13) in this region. For small g, this 
asymptote is long-range, but with increase of the quantum 
correction the non-Gaussian region of q, increases, so that at 
u = ln ( 1 - f )  - ' - 1 the entire distribution function be- 
comes the nonGaussian LN function ( 13 ). 

We have analyzed up to now a purely two-dimensional 
case. The perturbative analysis (Sec. 2) shows that the em- 
ployed diagram selection is valid also for d = 3. One can 
hope that, just as in Refs. 10 and 17, at least a qualitatively 
2 + E expansion is permissible ( a  quantitative E expansion 
meets with quite serious difficultiesI4). The parameter 
u = In (uo/u) =In ( 1 - g, /g) - ' increases then abruptly I' 
as the Anderson transition is approached (g, = E - '  is the 
critical value of the conductance), and at small E this in- 
crease is within the limits of applicability of the performed 

RG analysis. Consequently, all the moments are character- 
ized near the transition by the exp(un2) dependence (8),  so 
that the distribution function p ( J )  becomes LN, just as at 
d = 2 in the region u- 1. 

We note that if n -no [Eq. ( 12) ] the contributions of 
diagrams a (7) and b (9)  turn out to be of the same order, 
while at n > no the contribution (9)  predominates. This 
changes the asymptote of q,(J) both in the region u 2 1 and 
in the weak-localization region, viz., the asymptotic remains 
LN, but the factor preceding the logarithm in the exponen- 
tial is decreased by a factor of four. (It  is interesting that it is 
just the diagrams b which determine the LN asymptote of 
the conductance distribution function.I0) In Eq. (9) ,  how- 
ever, the current densities J are fully correlated in direction 
with the field E, so that this asymptote is valid only for cur- 
rents that are coaxial with the field. High moments (with 
numbers n > no) for currents that are not correlated with the 
field can be shown to be determined by diagrams of type b. 
Their contribution leads to an LN asymptote with the loga- 
rithm preceded by a factor half as large as in ( 13). The prob- 
ability of large currents fluctuations in a direction perpen- 
dicular to E is therefore small compared with like 
fluctuations but coaxial with E. Thus, in contrast to typical 
fluctuating currents that are not correlated in direction with 
E, large fluctuating currents are in the main coaxial with the 
field, i.e., they form closed current loops stretched along the 
field. This seems quite natural: large fluctuations are deter- 
mined by random-potential realization that have relatively 
low probability and form a region with altered conductivity 
u. The presence of these regions is manifested by the large 
fluctuating currents that are coaxial with the field. 

We have considered up to now local current-density 
fluctuations. It is they which determine8 the contribution 
made to measurable voltage fluctuations between close con- 
tacts in multicontact systems. Of course, it is possible to have 
other experimental geometries in which spatial correlations 
in the current density are important. The diagrams that 
make the main contribution to such correlations are ob- 
tained from diagrams a' by drawing iiitraloop diffusions that 
enclose all the free ends. It is most convenient to calculate 
contributions of this kind in the Langevin scheme.' The cu- 
mulants calculated here must then be regarded in such a 
scheme as cumulants of extraneous currents. Note that as a 
result we arrive at an LN asymptote and at spatially separat- 
ed current densities in the distribution function. 
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