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The transmission of an electron through a chain of disordered equidistant scatterers has 
heretofore been considered under the assumption that the amplitude for scattering by the center is 
real. It was established in particular that the average transmission coefficient ( T  ) of an electron of 
energy corresponding to the band center decreases very slowly with increase of the chain length L, 
like L -'I2. At other energies it decreases exponentially, i.e., the electron is localized. It is shown 
that allowance for the randomness of the phase of the forward-scattering amplitude leads to an 
exponential decrease of ( T  ) also at the band center. The characteristic spatial scale of the 
localization is determined in this case not by the phase mean free path alone (just as away from the 
band center), but depends also on the phase relaxation length I , .  The latter can in general differ 
strongly from I. The electron is localized at the length 1 if I ,  4 I  and at the length I, if I ,  ) 1. 

INTRODUCTION 

The transmission of electrons through a chain of disor- 
dered equidistant scattering centers has been discussed in 
the literature many times (see, e.g., Refs. 1 and 2, as well as 
Refs. 3 and 4, which contain detailed bibliographies). It was 
established that the equal spacing of the scatterers leads to 
anomalies in the average density of states, in the average 
transmission coefficient ( T )  through the chain, and in a 
number of other quantities. These anomalies are most 
strongly pronounced when the electron energy corresponds 
to the center of the band. The density of states at this point 
diverges, and the transmission coefficient decreases anoma- 
lously slowly (like L - ' I 2 )  with increase of the chain length. 
At other electron energies the coefficient decreases exponen- 
tially. The calculations were performed as a rule under the 
assumption that the amplitude of the scattering by the 
centers is real. Exceptions are Refs. 1 and 5, in which the 
density of states and the closely related wave-function phase 
distribution were investigated. It was found there that 
allowance for the random phases of the forward scattering 
amplitudes eliminates the divergence of the state density at 
the band center. 

The present paper deals in detail with the influence of 
the forward-scattering phase randomness on the kinetic 
characteristics of the chain, such as the average transmission 
coefficient, the average resistance, and others. It is shown 
that the relation ( T )  -L  - 'I2 for the band center is due en- 
tirely to the assumption that the scattering amplitude is real. 
Allowance for randomness of the scattering phase leads to 
an exponential decrease of ( T )  with increase of the chain 
length. 

An equation essential for further analysis is derived in 
Sec. 1. A relation is obtained between the solution of this 
equation and the distribution function of the chain transmis- 
sion coefficient. Two exactly solvable examples are consid- 
ered in the next section. The first is the case of a real scatter- 
ing amplitude for an electron energy corresponding to the 
band center. The transmission-coefficient distribution func- 
tion is found and the known result ( T )  - L -'IZ is derived 
anew. The second example deals with the opposite limiting 
case, when the distribution of the phase of the maximum 
transmission coefficient (or of the reflection coefficient) for 

scattering by the centers is uniform in the interval from 0 to 
277. The distribution functions of T  and an expression for 
( T )  are obtained for an arbitrary electron energy. There are 
no anomalies whatever at the band center, and ( T  ) decreases 
exponentially at all energies. 

The calculations in the succeeding sections are carried 
out for the band center under weak-scattering conditions. 
The distribution function of the wave-function phase is in- 
vestigated in Sec. 3, where the phase-relaxation length I  is 
introduced. The distribution coefficient of the transmission 
coefficient and its mean values for the two limiting cases 
1, < I  and 1, ) I  (I  is the mean free path). It is shown that in 
both cases ( T )  decreases exponentially as the chain length 
increases. The characteristic scale of the decrease is I for 
I, g l and  l p  >I. 

In Secs. 5-7 are discussed the cases of small-radius scat- 
tering centers, of the tight-binding model, and of the substi- 
tutional disorder model. 

1. DERIVATION OF BASIC EQUATION 

The method used in this section is similar to that pro- 
posed in Ref. 6 for disordered centers. 

Consider a chain consisting of disordered scatterers 
spaced d apart. Let the potentials of the neighboring centers 
be nonoverlapping. The wave function in the spaces between 
them can then be written in the form 

yn,an+eik(r-nd)+a n - e - i k ( z - n d ) -  
n n ?  ( 1 ) 

The amplitudes a, and a, +, are connected by the linear 
transformation: 

~ ~ , = a ~ + , e ~ ~ a ~ + + i 3 ~ + ~ e - ~ % z , , - ,  (2)  

IanI2-lPnlz=l. 

The relations between the random quantities a, and P,, in 
terms of the amplitude transmission and reflection coeffi- 
cients t ,  and r, for scattering by the nth center are given by 

We denote by W(a+, a- ,  n) the probability density for the 
amplitudes a +  and a -  to take on specified values in the inter- 
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val between the centers n and n + 1. The function Wsatisfies 
the equation 

where the ii' are connected with a' by a transformation 
inverse to (2),  and the angle brackets denote averaging over 
the parameters of this transformation. 

We introduce now in place of a * the new variables 

where p+ and p- are respectively the phases of the ampli- 
tudes a +  and a-, I is the wave intensity, and J is the flux. 
With the aid of a transformation inverse to (2)  we obtain the 
law of transformation of these quantities when scattered by 
the center: 

Since AX is independent ofx, Eq. (4)  does not change form 
when integrated with respect to X. The new function W de- 
pends only on three variables. Conservation of the flux 
means that J enters in the equation for W only as a param- 
eter. If we put now 

W(I, rp, J, 12) =6(J--Jo) W(Z, q1 Ja, n )  , 

we obtain for the function W(I, p ,  Jo, n)  

W(I, rp, I,, n+I)=(W(T, q, I,, n)). ( 7 )  
Our aim is to obtain the distribution function w(y, n), 

where y is the wave intensity at the end of a chain of length 
L = nd, if its value at the beginning of the chain is equal to 
the flux Jo = 1. The intensity y defined in this manner is 
connected with the chain's intensity transmission coefficient 
T  by the relation 

In fact, under these conditions the intensity of a wave inci- 
dent on the chain from the right is lan- l 2  = ( y  + 1)/2, and 
the intensity of the transmitted wave is equal to unity. 

The quantity w( y, n)  satisfies the equation (see Appen- 
dix 1 ) 

m 2% 

(9)  
where W(I, n )  is the solution, integrated with respect to p ,  
of Eq. (7)  with J, = 0 and the boundary condition 
W(I, p ,  0 )  = ( 1/2r)S(I  - 1 ). To solve this equation with 
respect to w( y,n ) we introduce the distribution function 
W(s,n) = W(es ,n )e" of the quantity s = In I,  and denote by 
W(p,n) its Fourier transform. We obtain then from (9)  - 
where P-, (y )  is a Legendre function: 

29, 

Equation ( 10) is solved with the aid of the MBller-Fock 
transformation7 

i 
w ( y , n ) = J ~ - , , - , , ( y ) t t h ( n t ) ~ ( - t - - , n ) d t .  (11) 

0 2 
To obtain w( y, n)  we must thus know the function W(p, n).  
It is impossible in general to obtain for it a closed equation. 
This can be done, however, for the function W(p, p, n ), 
which is the Fourier transform of W(s, p, J ,  n)  with J = 0 
and is connected with W(p, n)  in obvious fashion. Indeed 
for a zero flux the equations in (6) are transformed into 

and we obtain from (7)  

Substituting now (12a) in (13) and taking the Fourier 
transform of the result with respect to s, we get 

This equation [together with ( 11 ) ] is the basis of the analy- 
sis that follows. 

2. EXACT SOLUTIONS 

As already noted, the problem of electron transmission 
through a chain of equidistant disordered scatterers was dis- 
cussed in the literature under the assumption that the quan- 
tities a and p, which describe the scattering by the centers, 
are real. The scattering was furthermore assumed to be 
weak. It was shown, in particular, that for 2kd = r (i.e., at 
the band center), the average transmission coefficient ( T )  
decreases with increase of chain length like L -'I2. If, how- 
ever, 2kd # a, the coefficient decreases exponentially. 

In Appendix 2 we obtain an exact (without the weak- 
scattering condition) expression for w( y, n )  at 2kd = r a n d  
with real a and 8: 

+ rn 
1 J dq exp {iq ln[ y 4 7 7  n)= n(Tz-l)l,* -- 

Here v is connected with a and 0 by the relations 
a* + = cash v and 2ap  = sinh v. In the limit of weak 
scattering ( I 4 1 and a close to unity) Eq. ( 15) coincides 
with the expression obtained for w in Ref. 2. To find ( T  ) we 
must, according to (8) ,  calculate the mean value of 2/ 
( y + l ) :  +_ 

As n - cu the value of this integral is governed by the region 
of small q and it can be easily calculated: 

The relation ( T )  a L - ' I 2  holds therefore for scattering of 
arbitrary strength. 

We show now, with a simple example, that the 
( T )  a L - ' I2  law is by far not universal for the band center, 
but is due entirely to the fact that amplitudes for scattering 
by the centers are real. It must be emphasized that the model 
proposed below is hypothetical and can hardly correspond 
to a real physical situation. Its advantage, however, is that it 
admits of an exact solutian for arbitrary k. 
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Let one of the phases pa or pp of a andB be distributed 
independently (o fp  = 1 ~ 1 1 ~  + 18 12, and of the other phase) 
and uniformly in the interval from 0 to 2r .  The mean value 
( la* - Bepip I 2  iP - 2 )  is then independent of q, and is equal 
to (Pip - , (p) ), . The solution of Eq. ( 14) with initial condi- 
tion W(p, p, 0) = 1/2r is 

1 
W ( P ,  cp, n) = - exp{n 1n(Pip-, ( p )  ),I. 

2n 
Substituting this expression in ( 1 1 ), we get 

From this, taking (8 )  into account, we get 
e+ 

th (nt)  
(79-jdtt-- exp{nln(P-it-s(p) ),,I. 

ch(nt) 

At large n this integral is determined by the region of small t, 
where 

so that 

Thus, for arbitrary k, the average transmission coefficient 
decreases exponentially with increase of the chain length. 
There are no anomalies whatever at the band center. The 
dependence on the wave vector is only via the parameters of 
the amplitude (i.e., p) of the scattering by the centers. 

3. PHASE DISTRIBUTION FUNCTIONS AND PHASE 
SCATTERING LENGTH 

It was shown in the preceding section that allowance for 
the randomness of the scattering-amplitude phases leads, at 
all energies, to an exponential decrease of ( T )  with decrease 
of the chain length, rather than to the power-law ( 16) of the 
case of real amplitudes and 2kd = r. In this and following 
sections we consider one more model, which permits a more 
detailed analysis of the role of the randomness of the phases 
pa and p8. It will be shown that at an electron energy close 
to the band center an important role is played by a new 
length-the phase relaxation length I,. The exponential de- 
pendence of ( T )  gives way to an exponential one at I, = w .  

The results will be used in Secs. 5-7, where more realistic 
situations are discussed. 

We designate 8 = veIX, a = ( 1 + v2) '12eiq" and put 
2kd = r , (p ,  ) = (x) = (0) = 0, ( X P ~  ) 
= (XU) = ( ~ a v )  =0; (x2) 41 ,  ( p t )  < 1, (v2) = d / l<  1 
(the weak-scattering conditions); I has the meaning of the 
mean free path. We expand (14) in powers of the small 
quantities v, X, and pa up to quadratic terms, and average. 
We obtain then the equation1) 

dW 
-=- {p2  cosZ cp+ip sinZ c p )  W 
dx 

d dW 
f - { ( E  + sin2cp) - -(zip--1)sin rp cos TW} ,  (17) 39 drp 

where x = 2nd /I, E = ( p  ) 1 /d. In addition, we put 
W(n + 1 ) - W(n) zaW/an ,  for owing to the weakness of 
the scattering the characteristic scale of variation of W is 
large compared with d. 

We put initially p = 0 in ( 17): 

The solution of this equation is in itself of interest since 
W(O,p,x) - W(p,x) is the phase distribution function. To 
solve it, we introduce in place of p the new variable 

and replace W(p,x) by the function p(u,x) 
= ( E  + sin2 p ( u )  ' I 2  W ( ~ ( U ) , X ) .  It follows then from 
( 17a) that 

The condition that W(p,x) be periodic on the segment ( 0 , ~ )  
leads to periodicity ofp with a period ~ Q ( E ) ,  where 

x l 2  

Representing p by a Fourier series, we get for W 

1 
W(rp,L) = 

4Q ( E )  (e+sinZ c p )  

For L ) I, = Q 21 / 2 d  the function W(p,L) tends to a sta- 
tionary value [ ~ Q ( E )  ( E  + sin2p) '12] - '  that is independent 
of the boundary condition. Consequently 1, is the relaxation 
length of the phase distribution function. If E )  1, then I, <I, 
for in this case Q Z T / ~ E " ~  < 1. For E <  1, on the contrary, 
I%I inasmuch as now Q ~ l n ( 4 / & ' / ~ )  s1. Finally, if E -  1 the 
quantity Q is likewise of the order of unity, so that I, -1. 

We emphasize that as L - cu the phase distribution does 
not tend to a uniform W = 1/27~. The reason is that p is the 
phase difference of counterpropagating waves that are scat- 
tered by the same centers, so that their phases are correlated. 
The distribution of each of the phases p+ and p- taken 
separately becomes, of course, uniform when L is increased. 

4. ELECTRON PASSAGE AT/, -glANDI, P I  

We return now to Eq. ( 17). It is impossible to solve it 
for arbitrary values of E .  We consider therefore the two limit- 
ing cases && 1 and &< 1. Let initially E )  1. Then, as seen from 
the equation, the derivative 6' W/ap is small. Therefore Wis 
independent of p in first-order approximation. Integrating 
( 17) with respect to q we obtain 

Substituting the solution of this equation in ( 11 ) we get 
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which agrees with the expression obtained in Ref. 6 for 
w(y,L) in the case of weak scattering and disordered scat- 
terers. The average transmission coefficient decreases ex- 
ponentially: 

<T>- (Z/L)* exp (-L/41). (20) 

The periodicity of the scattering centers is consequently im- 
material if the inequality d / I &  ( p  2 ) is satisfied. 

We turn to the opposite limiting case E( 1. Making the 
change ( 18) and substituting 

W(p, rp (u) , x) =[ &+sin2 cp (u) ]('n-')/2p (p, u, x) , (21) 

we obtain the equation 

the solution of which we seek in the form 
+ m 

For the functions pm (p,u) we have 

The coefficients A ,  (p) are determined by the distribution 
p(p,u,O) at the beginning of the chain. It is easy to verify in 
the usual way that the periodic solutions of Eq. (24) which 
correspond to different k are orthogonal (without complex 
conjugation of one of the functions). Therefore 

Q Q 

Integrating W(p,p,x) with respect to p, we get for 
W( - t - i/2, x )  

+ m 

x(j [ E  + s id  p(u) ](1-2i0i4pm(t, U) da)  ( nj pm2(f, .)an) :' 
-Q -Q 

The expression for Wm ( t )  is given here for the boundary 
condition W(p,p,O) = 1/2a. We solve Eq. (24) with E <  1 
successively in three overlapping regions O(p< 1; ~ ' / ~ ( p  
and a - p ) ~ ' / ~ ,  1 ) a - p)0.') For p< 1 it follows from 
(18) and (14) that 

rpz~" sh (u+Q) , -Q<u<-1, 

The solution of this equation is 

p - ( ~ )  =P- ' , ~ (~~(U+Q) )  +f-~_'ki,(-th(u+~) ), (26b) 

where P 'LP is a Legendre function. In the region a - p ( 1 
we obtain similarly 

We consider now the regions p %E and (a - p)2 % E. 

Neglecting compared with sin2p in ( 18) and (24), we have 

cos cp=-th u, sin rp=l/ch u, lul <Q, 

d2p0/du2-8 (pZ+ip)sh2 upo=-k2po. (28a) 

This is a Mathieu equation. It can be verified from the sequel 
that the inequality I k f, (p) I )&lp2 + ipI sinh2u is valid for 

1 u 1 ( Q and for all p of interest. Therefore 

It is easily seen that Eq. (28a) coincides with (26a) if 
- Q(u( - 1 and with (27a) if 1 (u(Q. As a result, the 

asymptotes of the functionsp- andp+ take the form (28b) 
for - Q 4 u and u ( Q, respectively. Using also the periodic- 
ity conditions 

P-(-  Q) =p+(Q), dp-ldul ,--,=dp+lduI ,-,, 
we obtain 

and an equation for the spectral parameter k 

e2ikQ = sh( (k-p) n/2) r(1-ik) r ( i - ipf ik)  
sh((k4-p)n/2) n l + i k )  r(1-ip-ik) ' (29) 

where T(z)  is the gamma function. This equation cannot be 
solved for arbitrary values ofp. We shall see, however, that 
to find themeanvalues (such as ( T ) ,  (In T ), (y), (In y) and 
others) it is necessary to know k 2(p) only in the vicinity of 
certain points. 

We begin with the calculation of ( T ) . Using ( 1 1 ) and 
(8)  we get 

m 

It will be shown that for large x this integral is determined by 
the region of small t. We must therefore solve (29) in the 
vicinity ofp = - i/2. For Q>) 1 we get 

nZ n2 n" 
k: (t) = - + , (- +14b (3) )t8, 

4Q2 4Q 8 

where 5(3)  z 1.202. We have used here only the smallest 
eigenvalue of Eq. (24), since we are interested in an expres- 
sion for ( T  ) asx -. co . Calculating now W,(t) with the aid of 
Eq. (25), using the functions p+, p-, and taken at 
p = - i/2 (i.e., at t = 0) ,  we get 

Substituting (31) in (30) we obtain 

Thus, for E ( 1 (just as for E) 1 ) the average transmission 
coefficient decreases exponentially with increase of the 
chain length. Now, however, the argument of the exponen- 
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tial contains not the mean free path but the much larger 
phase relaxation length I, .3' 

The average transmission coefficient is determined by 
the relatively small values y 2 1. The function w ( y,L) with 
such y can be easily found by substituting (3 1 ) in ( 1 1 ) : 

It can be used to calculate mean values of the type (T"), 
where v> 1. It is not suitable, however for finding (In y), the 
average chain resistance ( ( y - 1 )/2), and other quantities 
whose values are determined by the region of large y. 

To find w( y,L) for L - co and y) 1 we use the asympto- 
tic representation7 

Substituting this expression in ( 11 ) and calculating the inte- 
gral by the saddle-point method we obtain 

(D (t) = (it-'/,) ln y-kZ (t) x, 

where to is the saddle point determined from the equation 

Only one term of the series is retained in (33 ), the one corre- 
sponding to the largest - k '(to) at t = t,. 

We shall show now that with the aid of (33) we can find 
the distribution function 

f (s, x )  =W (e*, x )  e" (35 
of the quantity s = In y near its most probable value so. Obvi- 
ously, the value of to corresponding to so is determined by the 
equation d(@ + s)/ds = 0, where to must be taken to be a 
function of s. Recognizing that (&D/dt), = , = 0, we obtain 
d(@ + s)/ds = it, + 1/2, i.e., to = i/2. We can now find so 
from the equation (a@/&), = ,, = 0. To this end we solve 
(29) in the vicinity of t  = i / 2 ,  (i.e., p = - i): 

Substituting this expression in @ ( t )  we obtain 
(=/at), = ,,, = i In y - ix/Q, and consequently so = x/Q. 
Using (33)-(36) we obtain the function f (s,x) : 

Similarly, considering the function g(s, x )  
= e'sw (e: x) ,  we can calculate ( y). It is simpler, however, 

to use Eq. ( 101, noting that P - ,p ( y) = y if p = i. Conse- 
quently, (y) = W(i, x) .  From (29), at p = i, we obtain 
k = i( 1 + 2ecZQ =;i( 1 + ED). As a result, apart from a 
numerical factor preceding the exponential, we obtain as 
L -  w 

<y>-exp[ (2L/1) ( I + E / ~ )  I .  
Thus (y) and with it the average chain resistance increases 

exponentially with increase of the chain length [just as for 
r ea l aandp  (Ref. 211. 

The main result of the present section is the derivation 
of Eq. (32) for the average transmission coefficient. Evi- 
dently, allowance for the random phases pa and X, even 
though they are small, leads to a qualitative difference in the 
cases qa , pp = 0, a [see Eq. ( 16) 1. This important result 
lends itself to the following illustrative interpretation. It was 
emphasized in Ref. 6 that the group of transformations (2) 
which describe the scattering of electrons by centers is iso- 
morphous to a subgroup of a special Lorentz group whose 
transformations preserve the coordinate 2. The isomor- 
phism is achieved with the aid of the equations 
X =  2 Re(a+aP),  Y =  2 Im(a+a-) ,  T =  la+I2 + (a-1'. 
Consequently, the electron motion along the chain corre- 
sponds to random walk of a point over the surface of the 
hyperboloid 2 - X 2  - Y2 = J2 = const. It can be shown 
that for real a and p and for 2kd = a the coordinate Y  only 
reverses sign at each step (i.e., after each scattering by a 
center). This means that the diffusion of the point is along 
two lines on the hyperboloid, such that their projections on 
the XYplane are two straight lines parallel to the Xaxis. The 
diffusion is therefore essentially one-dimensional in this 
case. Allowance, however for the randomness of the phases 
pa and X, be they even small, makes the diffusion two-di- 
mensional. It is this which leads to the qualitative change of 
the dependence of ( T )  on the chain length. In real physical 
situations the scattering amplitude is complex, so that (T)  
should decrease exponentially with the chain length, in ac- 
cord with equations of the type (20) or (32). 

5. TRANSMISSION THROUGH A CHAIN OF CENTERS WlTH 
SMALL-RADIUS POTENTIALS 

In this case /3 = ir] and a = 1 + ir], where r ]  = k,/k. 
We put, as above, 2kd = a and assume the scattering to be 
weak, so that k,d( 1. Expanding the right-hand side of ( 14) 
in powers of r] ,  we obtain a differential equation whose coef- 
ficients have a period 2a. Its left-hand side contains the func- 
tion W(p,p,x) and the right-hand side W(p,p + a,x).  The 
ensuing difficulty can be eliminated by considering in place 
of (14) an equation that relates W(p,p,n + 2) with 
W(p,p,n). The averaging in this case should be over the pa- 
rameters of the two centers, putting ( ~ ~ 7 7 ~ )  = 0. Making 
next the substitution p-.p + a/2, we obtain Eq. ( 17) with 
E = 1. It does not contain a small parameter, and cannot be 
solved analytically. As before, however, we can solve exactly 
an equation for the phase distribution function. The corre- 
sponding phase relaxation length is I, = ZQ '( 1 )/2a2, with 
Q(1) = 2-" '~(1/2)  z 1.31, where K(1/2) is a complete 
elliptic integral of the first kind. Consequently 1, ~ 0 . 1 1 .  
Clearly, the average transmission coefficient decreases ex- 
ponentially. The argument of the exponential contains a 
length that differs only numerically from the mean free path. 

6.TIGHT-BINDING MODEL WlTH DIAGONAL DISORDER 

In this model, the Schrodinger equation takes the form 

where qn and En are the wave-function amplitude and the 
electron energy in the site numbered n, while Vis the overlap 
integral between neighboring sites. If the sites are identical 
(En = E,),  the electron can propagate freely along the 
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chain. The corresponding eigenfunctions are the plane 
waves 

yn=a+eihnd+a-e-iknd 

(38) 
with a dispersion law 

E (k) =Eo+2V cos kd. 

Assume now that on some section of the chain the ener- 
gies En differ from one another and are random: En = Eo for 
n(Oandn)N+ l ,En  = E,+E, for l<n<N,andthemean 
value (E, ) = 0. Consider the passage of an electron with a 
quasimomentum k through this segment. From (37) and 
(39)  it follows that 

2V cos kdYn=enYn+ V(Y,-l+Yn+I), (40) 
where E, = 0 for n (0 and n > N + 1. Using this equation, we 
can find consistently Y, for any n if, for example Y - , and Yo 
are known. More convenient for our purposes, however, are 
the variables a,+ and a; introduced with the aid of the rela- 
tions 

y,=a,++an-, Ynrl=eikdan++ e-ikdan-. (41 

The difference la; I *  - la,+ 1' has the meaning of the proba- 
bility flux J. From (40) and (41) we obtain 

where 7, = E,  /2 V sin kd. These equations agree with rela- 
tions (2) if we put a, = 1 + iv, and 0, = i7, . These are 
precisely the forms of a, and 0, for scattering by small- 
radius potentials (see Sec. 5 ). 

Consequently, the problem considered is equivalent to 
the problems of passage of an electron through a chain of 
scattering centers with small-radius potential. At 2kd = IT 

and E, 4 V the electron is localized over a length on the order 
of d.4'/(ef, ), which plays in this case the role of the mean 
free path I. 

7. MODEL OF SUBSTITUTION DISORDER 

We write the Schrodinger equation in the form 

n 

where V, (z - nd) takes on values V, (z - nd) with prob- 
ability q and Vb ( z  - nd) with probability 1 - q. We sub- 
tract from this potential the periodic (average) potential 

This does not influence the manner in which such quantities 
as ( T ) ,  the average resistance, and others depend on the 
chain length. The result is a chain of scattering centers with 
potentials ( 1 - q) V and - qV, respectively (here 
V = V, - Vb ), with probabilities q and 1 - q. 

The decrease of ( T )  (at 2kd = T) with increase of the 
chain length depends on the properties of the potential V. If 
its scattering amplitude is real, we have ( T )  -L  -'I2. 

Allowance for the randomness of the phases pa and pp 
leads, as above, to an exponential decrease of ( T ) .  Let, for 
example, V be a small-radius potential. We have then 

a, = 1 + iq, and&, = i ~ ,  , where 7, = ( 1 - q)  k,/k with 
probability q and 7, = - qko/k with probability 1 - q. Ob- 
viously, (7, ) = 0 and (7, +17, ) = 0. This is precisely the 
situation discussed in Sec. 5. 

CONCLUSION 

We have shown that allowance for even an arbitrarily 
small random phase pa of the amplitude transmission coeffi- 
cient in scattering by centers is of principal importance if the 
scatterer arrangement is periodic and the electron energy 
corresponds to (or is close to) the band center. The chain 
transmission coefficient decreases in this case exponentially 
when the chain length increases, in contrast to the cases 
pa ,pp = 0, IT, when it decreases like L -'I2. The argument 
of the exponential is determined not only by the mean free 
path (as, for example, for disordered scatterers or far from 
the band center2), but depends also on a more subtle proper- 
ty-the phase relaxation length I,. It contains the quantity 
1/41 if I,< 1 and 1/41, if 1, ) 1. 

The author thanks D. G.  Polyakov for numerous help- 
ful discussions and for valuable remarks. 

APPENDIX 1 

Consider the transformation 

which relates the wave function at the beginning of the chain 
to its values in an interval between centers n and n + 1. We 
choose its three independent parameters to be the phases pA 
and p, of the quantities A and B and the quantity 
IA 1' + IB 12, which coincides with quantity y introduced in 
the main text. We introduce the distribution function 
w(y, p,, p,, 71, and denote by g(y, p A ,  pB ,  I, p, Jo) the 
probabilities of the values I and p for given y, p, , p, , and J,. 
We have then 

W(1, cp, Jo, n) 
211 2s rn 

The function g is defined as 
221 m 

The intensity I ' and the phase p ' at the beginning ofthe chain 
are connected with the values at the end of the chain by 
relations similar to ( 6 ) .  For Jo = 0, in particular, we have 

We substitute now (A2) in ( A l ) ,  integrate the result with 
respect to p,  and then put Jo = 0 and W(I ', p ', 0,O) = ( 1/ 
2r )S(11  - 1).  Taking (A3) intoaccount, weobtainEq. (9).  

APPENDIX 2 

For real a ,  0 ,  and 2kd = T we can rewrite ( 12b) in the 
form 

chvcoscp-shv 
cos q = - 

chv-shvcoscp' 
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Let O(p(?z. We introduce the variables u and ii defined by 

cos q=-th u, sin q=l/ch u, 
(A2' ) 

00s I$---th u", sin q=i/ch u". 

It follows then from (Al ' )  that u = - u - v, and from ( 14) 
we have 

Equation (A3') is solved using a Fourier transformation (it 
must be recognized here that G(p,u,n) is even in u because 
G(p,u,O) = ( 2 ~ ) - '  cosh lP -'u is even). For Wwe have 

i 1 dB sin0 "+% 
~ ( - t - ~ , e . n ) = - j d * j - ( - )  4nZ-_ , sine sinq 

The expression for Win the region ~ ( q ( 2  is obtained simi- 
larly and coincides with (A4). Integrating (A4) with re- 
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spect to q and substituting the result in (1 l ) ,  we obtain 
(15). 

"Equation (17) is obtained under the condition 
W(p, q,, n) = W(p, q, + r, n). These are precisely the solutions we 
need. In the general case the period of the function Wis 27r. 

"Note that (24) can be transformed into a Lam6 equation of general 
form, for which no solutions are known. 

3 ,  Note that Eq. (32) with E-0 (Iq - oo ) does not go over into expression 
( 16) which is valid at E = 0. The reason is that (32) is only the leading 
term of the series. For a correct transition to the limit it is necessary to 
sum the entire series before putting E = 0. 
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