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The determination of the magnetic-excitation spectrum of metallic s-f ferromagnets is considered 
with single-ion anisotropy taken exactly into account. The diagram technique for Hubbard 
operators is used to obtain a dispersion equation at arbitrary magnetic-field orientations. The 
spectrum of elementary excitations of easy-plane, easy-axis, and cubic metallic ferromagnets is 
calculated, in the long-wave region and in collinear geometry, for three possible orientations of 
the easy-magnetization axis. The gap in the spectrum of the lower branch of the transverse 
oscillations is determined with account taken ofquantum corrections. It is shown that in a 
sufficiently strong external magnetic field or for sufficiently strong single-ion anisotropy, the 
dependence of the lower-branch excitation spectra of all the considered ferromagnet metals on the 
quasimomentum becomes anomalous in that the frequency decreases when the quasimomentum 
increases. An important factor is that the energy scale of such an anisotropy or of the magnetic 
field is smaller by a factor (p/4A )' (wherep/A % 1 ) than the separation A of the spin subbands, 
so that observation of the predicted anomaly is quite realistic. The onset of the anomaly and the 
form of the spectrum are analyzed in detail, in the whole region of the Brillouin zone, by 
numerically solving the dispersion equation for the isotropic limit. The conditions for the limits of 
the applicability of the Heisenberg model to the description of the spectrum of the magnetic 
excitations of a metallic ferromagnet are obtained. When these conditions are not met, effective 
exchange interaction between the magnetoactive ions becomes dependent both on the external 
magnetic field and on the anisotropy. 

1. INTRODUCTION 

In several known classes of metallic magnets the char- 
acteristic single-ion anisotropy (SA) is comparable in mag- 
nitude with the energy of exchange interaction between the 
magnetically active ions. Examples are the intermetallides 
ReA1, (Re is a rare-earth ion),',' and a number of actinide 
compounds.' 

Description of such metallic magnets requires, besides a 
consistent allowance for the conduction electron, also consi- 
deration of the strong single-ion correlations; this hinders 
substantially the development of the theory, especially for 
SA of cubic symmetry. The spectrum of the magnetic excita- 
tions of strongly anisotropic metallic ferromagnets is there- 
fore frequently studied under the assumption that the inter- 
actions can be considered stage by stage. Thus, during the 
first stage, without allowance for the external magnetic field 
Hand the SA, an indirect exchange interaction takes place 
via the conduction electrons. This interaction between the 
rare-earth ions is described by a Heisenberg Hamiltonian (to 
which terms describing higher-multipole interactions are 
sometimes added), after which a theoretical calculation is 
performed with account taken of the SA and of the external 
magnetic field. 

In fact, the effective interaction produced between RE 
ions in second-order perturbation theory5.' reduces strictly 
speaking to a Heisenberg interaction only in the absence of a 
magnetic field Hand of SA. It is therefore not clear before- 
hand to what value of H or to what magnitude of the SA can 
the magnetic-excitation spectrum of metallic anisotropic 
magnets be calculated within the framework of the effective- 
exchange model, followed by allowance for single-ion ani- 
sotropy. There should obviously exist a parameter range in 

which the effective exchange interaction becomes dependent 
on the anisotropy and on the field H. In this region the role of 
conduction becomes substantial 

It was demonstrated earlier by Dzyalochinskii that con- 
duction electrons can play a nontrivial role in the magnetic 
properties of RE metals. He has shown that the topological 
singularities of the Fermi surface exert a substantial influ- 
ence on the character of the magnetic ordering and deter- 
mine the period of an antiferromagnetic-metal structure. 
When a sufficiently strong external magnetic field is applied 
and a transition to the ferromagnetic state takes place, the 
spin-wave spectrum is modified both by the direct influence 
of the external magnetic field on the RE ion through Zeeman 
interaction, and by a change of the effective interaction it- 
self. 

One can similarly expect the modification of the mag- 
netic-excitation spectrum to become modified at high SA 
values via two channels. First, the presence of SA makes the 
structure of the single-ion levels nonequidistant. Second, un- 
der strong SA the effective exchange can become dependent 
on the anisotropy constant. When the anisotropy is in- 
creased one can therefore expect, besides an increase of the 
activation energy, also a change of the spin-wave rigidity if 
the anisotropy has become large enough. 

The spin-wave spectrum of metallic ferromagnets can 
be analyzed without resorting to concept of an effective ex- 
change interaction. In the framework of the s-f(d) model, 
such a theory is well k n ~ w n . ~ . ' . ~  The s-f model for the sim- 
plest case of uniaxial anisotropy and collinear geometry was 
considered in Ref. 9. 

The present paper contains a derivation of a dispersion 
equation for the elementary-excitation spectrum ofs-f ferro- 
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magnets, with exact allowance for single-ion anisotropy of 
arbitrary symmetry. The long-wave excitation spectra of 
easy-plane, easy-axis, and cubic metallic ferromagnets are 
calculated analytically. It is shown that in a strong (but not 
quantizing) magnetic field, or at relatively high anisotropy, 
an anomaly not describable in terms of the effective ex- 
change interaction is produced in the spectrum of the lower 
branch of the transverse oscillations. The Heisenberg model 
is then invalid in principle, since the indirect interaction be- 
tween the RE ions becomes dependent on the external mag- 
netic field and on the anisotropy constants. It is important 
that when the anomaly arises the energy scale of the external 
magnetic field or of the SA is (p/4A)' times smaller than the 
separation A between the spin subbands (p is the chemical 
potential of the system, withp/A & 1 ). The predicted anom- 
alies of the spectral properties can therefore be experimen- 
tally investigated in many metallic ferromagnets with low 
Curie temperatures. 

2. HAMlLTONlAN OF AN ANISOTROPICS-f MAGNET 
IN THE ATOMIC REPRESENTATION 

Consider a rare-earth metallic magnet in which the 
magnetoactive f ions interact with the conduction electrons. 
This interaction produces an indirect exchange coupling 
between the localized magnetic moments of the rare-earth 
ions; we shall describe part of this interaction within the 
framework of the standard s-f(d) model.' Only magnetoac- 
tive-ion states corresponding to the lower multiplet will be 
considered. The influence of the crystal field in which the 
$ions are located will be taken into account in standard 
fashion, using the Wigner-Eckart theorem and the Stevens 
operator technique." The Hamiltonian of the considered 
anisotropic s-f magnet in an external magnetic field H, can 
then be written in the form 

The zero subscript of the magnetic-field vector means that in 
the initial coordinate frame connected with the crystallo- 
graphic axes the components of these fields are given by 

HOx=H sin 0 ,  cos r p ~ ,  Hoy=H sin 0 ,  sin cp,, HoZ=H cos O H ,  

where 8, and pH are respectively the polar and azimuthal 
angles that determine the orientation of H,, J f  is the angu- 
lar-momentum operator of the magnetoactive ion at site f, 
and sf is the spin operator of the collectivized electron in the 
Wannier representation. The third term in ( 1 ) describes the 
influence of the crystal field, and 0 :( f ) are the Stevens 
operators.I0 The set of nonzero coefficients B,, is deter- 
mined by the crystal-field symmetry. For practical purposes 
it is convenient to develop a general formalism without spe- 
cifying beforehand the concrete form of the single-ion ani- 
sotropy, and analyze individual cases during the final stages 
of the calculation. The last term of the Hamiltonian de- 
scribes s-f exchange coupling of itinerant and localized elec- 
trons" Afg is the integral of the exchange interaction 
between an itinerant electron located in the f cell ( Wannier 

representation) and the localized moment of an 4f-shell RE 
ion located at site g. 

Since the total z component of the total-angular-mo- 
mentum operator does not commute with the Hamiltonian, 
the transitions between the single-ion states constructed 
with account taken of the SA, and the changes of the spin 
projections of the itinerant electrons are not connected with 
the angular-momentum-projection conservation law, as is 
the case in a n i s ~ t r o ~ i c ~ , ~ . ~  and easy-axis9 ferromagnets. As 
a result, the number of terms increases substantially in each 
order of perturbation theory. Therefore the use of a diagram 
technique and of a fixed spin projection for the electron func- 
tions, as in Refs. 8, 9, 11 and 12, would hinder significantly 
an analysis of the diagram series. 

The diagram series for the considered model can be 
greatly simplified by using matrix (in the spin indices) elec- 
tron Green's functions (in analogy with the method used in 
superconductivity theory13) as well as the method devel- 
oped in Refs. 14 and 15 to take into account an SA of arbi- 
trary symmetry in the theory of Heisenberg magnets. 

We change to new coordinates in which the localized- 
subsystem magnetic moment is oriented along the z axis. 
This is effected by the unitary transformation 

8 + Z 1 = U 8 U + ,  ( 3  

where 

u='U exp (iOTfv) exp ( iqT;),  Tf=Jf+sr .  
f 

The azimuthal angle q, and the polar angle 8 describe the 
direction of the vector ( J f )  in the initial coordinate frame. 
Under this transformation the Hamiltonian ( 1 ) retains its 
preceding form except that H, must be replaced by the vec- 
tor H: 

p = H  [cos 0 sin 0 ,  cos ( c p H - c p )  -cos O H  sin 01 , 

H L H  sin 0 ,  sin (9,-cp) , 

P = H  [sin 0 sin 0 ,  cos (9~-cp) +cos O H  cos 01, (4) 

and the operators 0 :( f )  by 

The Hamiltonian of the itinerant electrons, with 
allowance for the external magnetic field and for the addi- 
tional magnetization by the s-f(d) exchange interaction, is 
in general not diagonal in the spin indices. The physical rea- 
son is that in an arbitrary geometry the effective field acting 
on the itinerant electrons is not directed along the new z axis. 
Obviously, the change to the proper quantization axis of the 
collectivized electrons results in diagonalization in the spin 
indices. This change can be effected by using the known u-v 
transformation: 

The collectivized-electron Hamiltonian takes then the diag- 
onal form 

if the transformation parameters (6)  are given by 
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For an exact allowance for the SA effect, we change to 
the atomic representation, in which account can be taken of 
all the one-ion correlations. We introduce for this purpose 
the one-ion states IY, ( f ) ), which are solutions of the 
Schrodinger equation 

where the effective field is given by 

Introducing in the usual manner the Hubbard operators 
X;" = I Yn ( f ) (Ym ( f ) 1, we realize the following repre- 
sentation of the operators of the angular momentum Jf 
(Refs. 16 and 17) : 

= YL (A) x:, 1,' =x 3 (A) XA 

where the index A "runs through" values from the set of the 
root vectors a (n ,m)  and indices n of the one-ion 
IfA is a root vector ofa(p, q), then X3=XTq(p#q), but ifA 
corresponds to the nth ion state, then X3=hf ,  EX;". The 
parameters of the representations are matrix elements of the 
angular-momentum operator in the basis of the one-ion 
states I Y, ) : 

Introduction of the two-component second-quantization 
operators 

and the use of the representation ( 10) allow us to write the 
Hamiltonian ( 1 ) in a form convenient for further analysis: 

h 

where E ~ ,  = ~k - uA, and the two-row matrix Tfg ( A )  is 
defined as 

with the matrices T , , ,  dependent on the u-u transformation 
parameters: 

In the construction of the single-ion states and in the 
diagonalization of the itinerant-electron energy operator we 
took into account the effects of the self-consistent field. We 
have therefore retained in the term describing the interac- 
tion between the itinerant and localized electrons only the 
correlation part of the s-f interaction, a fact indicated by the 
overbar on the last term of the Hamiltonian ( 1 1 ) . The influ- 
ence of the s-f exchange correlation effects can be accounted 
for by perturbation theory, owing to the presence of the 
small parameter A J / p  4 1. In the diagram interpretation of 
the perturbation-theory series, inclusion of the self-consis- 
tent field in the zeroth Hamiltonian corresponds to summa- 
tion of the so-called one-point diagrams.' Since the mean 
field was taken into account by us from the very outset, the 
one-point diagrams of the series will be ignored in the analy- 
sis of the diagram series. The remaining diagrams are esti- 
mated in order of magnitude, and we sum in the series main- 
ly the terms that have no smallness of order A J / p  (the 
summation of the electron loops will be discussed below). 

In collinear geometry, where khere is no need for the u-v 
transformation (6) ,  the matrix Tf- ( A )  takes the simpler 
form 

3. GREEN'S FUNCTION. DISPERSION EQUATION 

To investigate the spectral characteristics of an aniso- 
tropics-f magnet, we use the method of temperature Green's 
 function^,^ in analogy with the procedure used in the iso- 
tropic case.8 We introduce the Green's function of the Hub- 
bard operators'6*": 

In graphic form, the equation for the function Da8 ( k )  is 

where, following Refs. 19 and 20, we have introduced the 
force operator in addition to the customarily employed con- 
cept of mass operator. A thick line with an arrow corre- 
sponds to the function D :8 ( k )  defined by the equation 

The thin line with the arrow corresponds here to the "bare" 
function D, (w, ) = (iw, + aE) - '  (see Refs. 16 and 17 for 
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details), and lines without arrows correspond to matrix 
Green's functions for the conduction electrons: 

:he dark circle in (17) corresponds to the "bare" vertex 
r, (a), which is also the matrix ( 12): 

and the vertices F, ( n )  will be denoted here by light circles. 
The matrix formulation not only decreases the number of 
diagrams, but also simplifies the notation for them. Thus, in 
the standard approach, it would be necessary to draw in Eq. 
( 17) four diagrams with electron loops instead of the one 
used by us. It must be borne in mind here that in the matrix 
formalism closed loops must correspond to the operation of 
taking the trace, over the spin indices, of the product of the 
elements making up the loop (see below). 

Let us write down Eq. ( 16) in analytic form: 

If we regard Da8 as components of a matrix D (Refs. 16 and 
17) and define similarly the matrices D 'O' and M, we readily 
obtain from ( 10) the connection between the total Green's 
function and the mass operator: 

In the calculation of the Green's function Da8 (k) we 
confine ourselves to the low-temperature region T 4  Tc ( Tc 
is the Curie temperature). We can therefore disregard in the 
diagram series for the mass operator M the diagrams con- 
taining ovals, since their contribution, -exp( - Tc/T), is 
exponentially small.' The diagrams for M, of lower order in 
the interaction, take then the form 

The absence of an angular-momentum-projection con- 
servation law at the vertices causes the analytic expressions 
for these diagrams to contain summations over the spin in- 
dices. Except for this circumstance, the structure of the ana- 
lytic expressions is similar to that for the case of an easy axis 
ferromagnet (FM) .9 For order-of-magnitude estimates of 
the above diagrams we can therefore use the results of Refs. 9 
and 11. Thus, the first two diagrams yield a contribution - (A /p)ln(p/A ) 4 1 and can therefore be neglected if it is 
recognized that the diagram corresponding to a simple elec- 
tron loop in Eq. (17) has no small (A /p). The three dia- 
grams that follow correspond to renormalization of a bare 
vertex and, as shown in Ref. 9, they can also be disregarded if 
A /p 4 1. One remark is in order there. Diagrams that are 
rigorously zero for an easy-axis FM on account of conserva- 
tion of the angular-momentum projection at the vertex can 
become nonzero in our case. At low values of the anisotropy 
constants D they acquire an additional smallness - (D / 
Aa12. For an anisotropy energy comparable with the molec- 

ular-field energy, there remains in the diagrams only the 
small parameter (A /p ) . Analogously, small quantities of or- 
der ( A  /p) are contained also in other diagrams for M. In the 
region where T( T, and A /p 4 1 we can therefore put M = 0 
for the spin-wave excitation spectrum. The resultant ap- 
proximation corresponds to the random-phase approxima- 
tion generalized to include the case of SA of arbitrary sym- 
metry, while the elementary-excitation spectrum of an 
anisotropic s-f ferromagnet is described, as seen from (21 ), 
by the poles of the Green's function DaB'O'(k). 

The solution of Eq. ( 17) for the function D , ~ ' ~ '  is given 
in the Appendix. We write down here the dispersion equa- 
tion (A8) for the collinear case frequently realized in prac- 
tice, where the external magnetic field and the magnetic mo- 
ment of the localized subsystem have the same direction. 
Using Eqs. ( 14) and (A5) we find from (A8) that the spin- 
wave spectrum satisfies the equation 

where 

+- -an) IT++ (k, an) ,   an) nt+ (k, an) ( 
-L++ (u,) nit (k, an )*  1-L+-(on) IIt+(k, an) I 

-L'+ (a,) IIlt (k, an) ,  -Lx-(on)n++(k, on) I L~+(u.) n+,p, an) ,  nt+(k7 on) I 

The functions L(w,  ) in these expressions are defined by the 
relations 

L.- (an) = ElIl (a) yl* (a) ~a ( 4  b (a),  

L-- (an)  = 11* (a) ( - a ) ~ a  (an) b (a) 9 

5 

We shall analyze the solutions of (22) for uniaxial and 
cubic ferromagnet metals. 

4. UNIAXIAL FERRMOMAGNETIC METALS 

In the analysis of the magnetic-excitation spectrum of 
this class of ferromagnets we confine ourselve to the collin- 
ear case, when the external magnetic field and the magneti- 
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zation have the same direction. We orient the field H either 
along or across any anisotropy axis. We begin with the sec- 
ond case. 

a) H perpendicular to the anisotropy axis 

We orient z along H and M and direct x along the ani- 
sotropy axis. We write the single-ion-anisotropy Hamilto- 
nian in the form 

This collinear case takes place if D > 0 (easy-plane anisotro- 
py for any external magnetic field, or else if D < 0 (easy-axis 
anisotropy) but in a sufficiently strong external magnetic 
field (see below). 

From the solution of the one-ion problem (9)  and from 
the definition of the parameters (10) it follows that 
y, ( a )y l l  (a) = 0 in this geometry. Therefore Lz+ (w) = 0 
and the dispersion equation (22) breaks up into two separate 
equations for the spectra of the longitudinal and transverse 
oscillations of the magnetization. 

We calculate first the longitudinal-oscillation spectrum 
of a uniaxial s-f ferromagnet in a "planar" geometry. It fol- 
lows from (22) that this spectrum is obtained by solving the 
equation 

In the long-wave region, when IklS 2kFw/p(,u is the 
electron-gas Fermi energy and k, is the Fermi quasimomen- 
tum), assuming a quadratic dispersion law for the electrons, 
calculation of the polarization operator n, (k,a)  accurate 
to terms quadratic in the quasimomentum leads to the 
expression 

We take two circumstances into account in the calcula- 
tion of the function L" ( a ) .  First, we consider hereafter the 
specific spectral properties of s-f magnets only at low tem- 
peratures, T< T, . This allows us to neglect the contribution 
from transitions between upper one-ion states, whose popu- 
lations are exponentially small. Second, we confine our- 
selves to ferromagnets that satisfy the relation 

We use the letter a to designate the spin variable as well as 
the magnetization of the itinerant electrons: 
a = (n, - n ,  )/2. 

Accurate to terms quadratic in ( D  /H) we have 

 where^^, = 2 H +  4 ( J -  1)D. 
Using the expressions obtained for the polarization op- 

erator n, (k,w) and for L" (w), we obtain from (24) the 
dispersion law for the longitudinal branch: 

where R, is the unit-cell volume and n = n ,  + n ,  is the nor- 
malized itinerant-electron density per magnetoactive ion. 

The transverse-oscillations spectrum of an easy-plane 
s-f ferromagnet (or an easy-axis one but in a strong enough 
transverse magnetic field) is determined, as follows from 
(22), by the solutions of the equation 

[ l - L + - ( a ) H t + ( k ,  o )  I [ l -L+- ( -o ) r I+ t (k ,  o ) ]  
- L + + ( o ) L - - ( m ) n t + ( k ,  o)II+, ( k ,  0 )  =O.  (28) 

This equation describes, generally speaking, many spectrum 
branches of the elementary excitations due to collectiviza- 
tion of the transitions between one-ion states. In the low- 
temperature region, just as for the longitudinal-oscillation 
spectrum, we can neglect transitions between excited one- 
ion states. We obtain then from the solution of the one-ion 
problem and from Eqs. ( l o )  and (23), accurate to terms 
- (D  /H) inclusive, 

where E,, = En - Em is the difference between the energies 
of the one-ion states. By retaining the terms of second order 
in D /H we can obtain in explicit form the quantum correc- 
tions to the spectrum. 

In the long-wave region, the analytic expression for the 
polarization spectrum can take the form of a series in powers 
of the quasimomentum. Using a quadratic dispersion law for 
the conduction electrons, we get 

where x = A / 4 r  and A = 2p, H + 2A (S ) . This expansion 
is valid under the condition 

An expansion for lI , , (k,w ) is obtained from ( 3  1 ) by recog- 
nizing that 

Substituting (29)-(31) in the dispersion equation (28) 
and solving the latter, we find that the low-frequency spec- 
trum branch of an easy-plane s-f ferromagnet in collinear 
geometry is described by the equation 

a 2  ( k )  = [gpBH+cQo5k2] [gp,H+2D+cQo"k2] + sZ, (33) 

where theg factor renormalized by the conduction electrons 
is 

It is interesting to note that in the particular case g = 2 no 
renormalization of the g factor takes place. The absence, at 
g = 2, of renormalization for isotropic s-f ferromagnets was 
noted earlier (see, e.g., Ref. 5). The "phenomenological" 
anisotropy constant Z) contains both the usual quantum re- 
normalization and the renormalization due to free electrons: 

The spin-wave rigidity is defined by the expression 
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The gap in the spectrum of the considered branch is equal to 

where w,, (0)  has the usual phenomenological form for a 
uniaxial ferromagnet in transverse geometry: 

ad (0 )  = (zp# (zpBH+2D) )'", (38) 

and the additional term 

is due to quantum corrections. Such corrections for the ele- 
mentary-excitation spectrum were predicted earlier in the 
theory of anisotropic and multisublattice Heisenberg mag- 
net~.".'~ Allowance for zero-point quantum oscillations 
leads to a higher activation energy of the spin-wave excita- 
tions. 

It follows from (37) that at D < 0 our analysis is valid 
for fields 

The second term in the square brackets determines the quan- 
tum renormalization of the critical field with respect to an 
orientational transition. 

It follows from (28) that the expression for the gap in 
the spectrum of the upper branch is 

Let us discuss the peculiarities of the dispersion law for 
spin-wave excitations of s-f ferromagnets in the considered 
geometry. It follows from (36) that the second term in the 
square brackets is a product of a small quantity by the square 
of a large parameter, since the approximation employed im- 
plies that p % IA I J. For H = 0 we have from the Goldstone 
theorem w, = 0 and the second term vanishes. This term can 
also be disregarded for finite magnetic fields, subject to the 
inequality 

The dependence of the frequency of the long-wave excita- 
tions on the field H, on the anisotropy D, and on the quasi- 
momentum k will coincide then with the corresponding re- 
sults of a theory based on the use of the Heisenberg model to 
describe exchange interaction between localized moments, 
followed by allowance for one-ion anisotropy and for Zee- 
man interaction. The exchange constants of the Heisenberg 
Hamiltonian are calculated from the usual RKKY theory. 
We designate hereafter, for brevity, this use of the RKKY 
theory with subsequent allowance for single-site interactions 
(SI) by RKKY + SI. 

It can be stated in this connection that the inequality 
(41) is the condition under which the RKKY + SI model 

can be used to describe the properties of long-wave excita- 
tions of metallic uniaxial ferromagnets in a transverse geom- 
etry. 

If D > 0, condition (41 ) can be written in simpler form: 

We have neglected here the fact that the terms -D  in the 
expression for w,, (0) and in Eq. (41) differ by the factor 
two. Therefore in the magnetic field region 

the spin-wave rigidity is independent of H. The character of 
the dispersion law changes greatly at H-H,. This is most 
pronounced for positive A. In this case the frequency varies 
anomalously at H >  H,, and an increase of the quasimomen- 
tum decreases the excitation energy. The dispersion law has 
therefore a minimum at a certain quasimomentum value. 
Since an increase of the magnetic field leads to an increase of 
w, it is obvious beforehand that a change of the dispersion for 
small k does not mean instability of the ferromagnetic states, 
since 0 < wmin < w,. 

The onset and behavior of this anomaly is, naturally not 
confined to the considered easy-plane ferromagnet. The 
point is that the cause of the change of the spectral properties 
is the peculiar frequency dependence of the polarization op- 
erator. This operator is known to play the role of a Fourier 
transform of the exchange integral (this is easily verified in 
our case by comparing the dispersion equation (28) with the 
corresponding equation of the RKKY + SI model.15 The 
polarization operator n , ,  (k,w) is therefore indicative, on 
the one hand, of the interaction between the localized mo- 
ments, and defines, on the other, the dispersion properties of 
the spin-wave excitation spectrum. It is important here that 
the character of the dependence of n , ,  (k,w) on k in the 
long-wave region is determined, as seen from ( 3  1 ) , by that 
energy interval in which the excitations of interest to us are 
realized. Since the energy of excitations with k = 0 is deter- 
mined by the external magnetic field, by the intensity of the 
single-ion anisotropy, and so on, variation of these fields en- 
tails also variation of the energy region in which long-wave 
excitations exist. It is owing to this peculiarity of the polar- 
ization operator that variation of the energy of an excitation 
with k = 0 influences also the character of the dispersion. 

Naturally, since this mechanism is general, it is effective 
also in an easy-axis s-f ferromagnet and others (see below). 
The quantitative aspect of the anomaly question is whether 
such excitation energies can be reached when w, - Ax2 and 
depends on the initial parameters of the system. 

Let us demonstrate the described peculiarity of the 
transformation of a long-wave spectrum when the magnetic 
field is varied, using an isotropic s-f ferromagnet as the ex- 
ample. The excitation spectrum can then be obtained from 
(33) by putting D = 0. We have 

This equation agrees with a known result5 if g = 2 and 
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H = 0. To find the excitation energies outside the long-wave 
region we use a numerical solution of the dispersion equation 
for an isotropic s-f ferromagnet5: 

We choose in the numerical calculations the same values for 
the parameters of the rare-earth metals Gd, Tb, ..., Tm as in 
Refs. 5 and 6. We estimate here only the external magnetic 
field strength H, starting with which the dispersion depen- 
dence becomes a function of H. 

In pure rare-earth single-crystal Gd, Tb, ..., TM, the RE 
ions give up three electrons each to the collectivized states. 
In the simplest es t imateP one assumes for these metals 
n = 3, an atomic volume S1, = 18 cm3-mol-', and 
m = 3mo, so that p = 2.63 eV. This choice of the model pa- 
rameters ensures satisfactory agreement of the experimental 
and theoretical values of the paramagnetic Curie tempera- 
tures @ for the rare-earth metals (see Fig. 20.35 of Ref. 5)  if 
the de Gennes factor6 is taken into account, i.e., if we substi- 
tute A-+A = Asf(g - 1) and choose As/. = 0.19 eV.5 Using 
these data we get H, = 1.83.106 Oe for single-crystal Gd 
(J = 7/2 and g = 2 for Gd3+ ) . Such fields are difficult to 
produce, and it is therefore difficult to change the spin-wave 
rigidity of metallic Gd by using a magnetic field. The situa- 
tion for single-crystal Tm, however, is already different. 
Recognizing that J = 6 and g = 7/6 for Tm, we obtain, at 
the same values of the remaining parameters, H, = 73.3 
kOe. In strong magnetic fields, Tm is a collinear ferromag- 
net,' and the anomaly induced in the spectrum by the field H 
can be investigated experimentally. 

Figure 1 shows the dependence of the frequency on the 
wave vector for ferromagnet Tm without allowance for the 
anisotropy at H = 0 (curve 1 ) and in a field H = 100 kOe 
(curve 2). The abscissas are the values of the wave vector in 
units of (2mA)'I2. The "boundary" value of the quasimo- 
mentum k = ~ / a  corresponds here to q  = qb = 1.85. The 
ordinates are the frequencies reckoned from w, = g,ugH, 
measured in units of the width Wof the spin-wave band. The 
quantity W is defined as the excitation frequency in a field 
H = 0 at the "boundary" of the band, i.e., Wis obtained by 
solving the dispersion equation with q = q b ,  namely 
W = (k  = .rr/a). In our case W = 5.07 K. It is seen from the 
figure that in a zero external field the dispersion curve has 
only an insignificant anomaly in the dispersion curve at wave 
vector values q z  (A/p) '12/2. In dimensional units we find 
that the anomaly occurs, as usual, at quasimomentum values 

k z  A (m/2,u 'I2 zp, - p i ,  where p, is the limiting Fermi 
momentum for a subband with spin projection a. 

In a field H = 100 kOe the behavior of the excitation 
frequency changes radically with increase of the quasimo- 
mentum. For small quasimomenta the spin-wave rigidity is 
negative, with a minimum in the rgion k = p ,  - p ,  . This 
anomaly of the behavior of the frequency as a function of the 
quasimomentum is induced by the magnetic field and cannot 
be described in the framework of the RKKY + 0 1  model. 

Qualitatively similar results are obtained also with oth- 
er parameters of the model. The described anomaly will 
therefore be induced by a magnetic field also in other s-f 
ferromagnets, such as intermetallides. The experiments 
should be performed with ferromagnetic compounds that 
are magnetically ordered at low temperatures. The field H, 
is then easily attainable in experiment. 

IfA < 0, an increase o fH  does not reverse the sign of the 
spin-wave rigidity. However, in this case too the spin-wave 
rigidity becomes dependent on the field and on the anisotro- 
py constants, starting with a field H-H,. 

b) H parallel to the anisotropy axis 

For this geometry we align the z axis with the crystal 
axis. We express the one-ion anisotropy Hamiltonian as an 
arbitrary function of the operator S;  

It is assumed that the conditions that ensure collinear geom- 
etry of the problem are met (see below). The dispersion 
equation is 

CI-L+-(o)H++(k,  0 ) l  [I -L+-  (-o)rI++ ( k ,  m)] =O (45) 

and has been obtained earlier in Ref. 9. In the low-tempera- 
ture region, the spectrum of the lower branch of the long- 
wave oscillations of the magnetization is given by 

o ( k )  =oo+cSZoYsk2, (46) 

where the spin-wave rigidity c is of the form 

and the gap in the spectrum is w, = gp, H + JE,/(J + u),  
where E, = p (5) - p (J - 1 ) . The frequency of the upper 
branch is given at k = 0 by 

FIG. 1 .  Spectrum of magnetic excitations of the lower branch of an 
isotropic s-f ferromagnet at two values of the external magnetic field: 
1-H = 0,2-H = 100 kOe. 

Our reasoning is correct if w, > 0. The foregoing analysis is 
therefore valid for easy-axis ferromagnets also at H = 0, 
whereas if E, < 0 the magnetic field should exceed a certain 
critical value. It is seen from (46) that the conduction elec- 
trons renormalize the energy of the single-ion anisotropy. 

Just as in the preceding cases, strengthening the mag- 
netic field can influence the spin-wave rigidity of the system. 
The difference in the geometry considered here is that the 
one-ion anisotropy energy enters additively in the expression 
for w,. Thus, for p ( M )  = DM2 we have 
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It follows hence that in easy-axis ferromagnets (D > 0)  the 
field H,, starting with which a strong anomaly appears in the 
dispersion law for the lower branch, becomes weaker. This 
anomaly can occur therefore in a strongly anisotropic ferro- 
magnet also at H = 0. Thus, the theory of strongly aniso- 
tropic easy-axis ferromagnets, when 

cannot be consistently considered in the framework of the 
RKKY + SI model, for in the latter approach an increase of 
the anisotropy leads only to a shift of the entire spin-wave 
spectrum (towards longer wavelengths), without changing 
the character of the dependence of the frequency on the wave 
vector. Actually, however, at large D the spin-wave rigidity 
becomes dependent on the anisotropy. This means in fact 
that the exchange interaction that sets in between the RE 
ions in strongly anisotropic metallic ferromagnets is deter- 
mined not only by the properties of the electron subsystem, 
but also by the character of the nonequidistant one-ion ener- 
gy levels. 

5. METALLIC FERROMAGNETS WITH CUBIC-SYMMETRY 
ONE-ION ANISOTROPY 

Consider a metallic ferromagnet in which the magne- 
toactive ions are in a cubic-symmetry crystal field. Examples 
of such systems are monochalcogenides of ~ r a n i u m , ~  and 
some intermetallic compounds of the ReA1, family.'.2 If the 
quantization axis is aligned with one of the fourfold axes, the 
Hamiltonian of the single-ion anisotropy takes the form 

This parametrization of the crystal-field energy operator 
was introduced in Ref. 23 and is constantly used to describe 
the physical properties of RE compounds with cubic aniso- 
t r ~ p y . ' , ~ . ~ ~  The energy parameter Wspecifies the splitting of 
the multiplet level by the crystal field. The parameter x can 
take on values in the range from - 1 to + 1 and determines 
the relative contribution made to the anisotropy energy by 
invariants of fourth and sixth order. The actual values of W 
and x specify the direction of the easy-magnetization axis 
(EMA) and depends therefore both on the RE ion (in the 
structurally isomorphous compounds (DyAl,, HoAl,, and 
TbAl,, for example, the EMA at low temperatures coincides 
with the directions [ 1001, [ 1101, and [ 11 1 1, respectively), 
and on the type of compound (the moments of the Ho3+ ion 
in ferromagnetically ordered HOP are oriented along the 
[ 1001 direction). The ranges of the parameters Wand x in 
which a phase with a specified EMA axis exists, at least in a 
metastable state, is determined from the condition that the 
elementary-excitation spectrum be positive-definite. The co- 
efficients F4 and F, depend on the values of the angular mo- 
mentum J., 

We begin the analysis of cubic ferromagnet metals with 
the case when the easy magnetization axis is C,. Confining 
ourselves to the collinear case, we assume that the external 
magnetic field is also oriented along the fourfold axis. 

a)EMA I1[100111H 

In this geometry, the one-ion Hamiltonian is obtained 
from (49) by adding a term - with an effective field 
a = gp, H + 24. From an analysis of the properties of the 
wave functions of one-ion statesZ5 it follows that 
yL (a) y, ( - a) = 0, y,, (a) yl ( - a) = 0. We find therefore 
that the spectrum of the transverse oscillations is described 
by an equation that coincides formally with (45), while the 
spectrum of the longitudinal oscillations is described by Eq. 
(24). These dispersion equations make it possible to investi- 
gate the spectral properties of metallic ferromagnets at suffi- 
ciently high one-ion anisotropy energies. The entire manifes- 
tation of the quantum effects can then be traced. 
Unfortunately, owing to the large values of J ,  it is impossible 
to solve analytically the one-ion problem for real ferromag- 
nets. Numerical methods are therefore used. There is none- 
theless a parameter range in which the SA energy is lower 
than the splitting due to the field H, but at the same time high 
enough for the quantum effects to become noticeable. In this 
case the one-ion problem can be solved by standard pertur- 
bation theory. Inclusion of terms of second order in ( w/R) 
yields the first-order quantum corrections. The analysis is 
carried out for arbitrary J. 

Thus, an investigation of the transverse-oscillation 
spectrum shows that at I( T, we have 

It follows from this equation and from (45) that in the given 
geometry a cubic anisotropy leads to collectivization of the 
excitations due to transitions between the states /*,I and 
(TI  1, and also between (Y,) and (Y ,). The characteristic 
energies of such excitations are w =: w,, and w =I a,,, respec- 
tively, and the bandwidth is - w2/H and is small since the 
anisotropy is small. 

Solving Eq. (45), we find that the gap in the optical- 
branch spectrum is given by Eq. (48) in which we substitute 

The coefficient Kj = ( W - 1 ) (J - 1 ) (2J - 3) takes into 
account the "kinematic" renormalization of the anisotropic 
constant and show in explicit form that there is no cubic 
anisotropy for J=  1/2, 1, and 3/2. The quantity 
C, = (J- 2)  ( W -  5) (F4/F6) vanishes at J =  2 and 5/2, 
since there is no sixth-order invariant for these values of J. 

It follows from the expression for the optical-branch 
gap that the anisotropy contribution is subject to substantial 
renormalization. The reason is that the optical branch of the 
excitation is due to Stoner transitions of the conduction elec- 
trons, which by themselves are unaffected by the anisotropy. 
On the other hand, the term connected with the anisotropy is 
governed by the extent to which the itinerant and localized 
electrons are coupled. Since the SA plays a substantial role 
for the latter, the anisotropy effects are transfered via the s-f 
exchange coupling to the collectivized subsystem and are 
manifested, in particular in the excitation energies of the 
itinerant electrons. 

The spectrum of the long-wave excitations of the lower 
branch of the transverse oscillations is described by Eq. 
(46), except that w, must be understood to mean 
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1 
m = ~ , ~ . ~  + ( I + o ) e l d - ~ @ , .  (51) 

Here Aw,, is due to quantum effects: 

1 K j  IOW 
= (%) (%) (x ) { J f 2 ( x )  -3 (1-2) [2q2(x )  

+f ( x ) q ( x )  I), 
where 

The constraint on W for each J follows from the condition 
for the validity of our analysis when IAw,, <a,. Just as be- 
fore, an anomaly appears in the spectrum of the considered 
branch if 

Let us find the long-wave spectrum of the longitudinal 
oscillations. At the stipulated accuracy we have 

Using expression (25 ) for the polarization operator 
II,(k,w) for small quasimomentum values, we get from 
(24) the desired dispersion relation 

(3n2n) 'h [ 5 WAf ( x )  ] 
a,, (k) =eai+JKJ 

n2 F,H2 
- p6boY'k2. (54) 

Let us analyze the excitation spectrum of a cubic metal- 
lic ferromagnet with a threefold axis as the easy magnetiza- 
tion axis. 

WEMA I l t l l l I l lH  
In this geometry, the z axis is aligned with the C, axis. 

The form of the cubic-anisotropy operator for this choice of 
the quantization axis is well knownVz4 Just as in the preced- 
ing case, the excitation spectrum is determined by Eqs. (24) 
and (45). 

The dispersion relation for the lower branch of trans- 
verse oscillations is described by Eq. (46) in which the gap is 
given by 

We obtain an equation fo the optical-branch gap from (48) 
by making the substitution 

It follows from the analysis of the one-ion problem that 

The spectrum of the longitudinal oscillations, in contrast to 
the preceding case, consists of two branches; the dispersion 
relation for the lower branch is 

The dispersion equation for the upper-branch oscillations is 
described by the equation 

5 (3n2n) " 
011(1' ( k )  =e,, + I ( ] -2 )  (21-5) KJ 

3n2 

C)EMA I1[110llIH 

The form of the SA energy operator in the case when the 
quantization axis coincides with the [ 1 101 direction is given 
in Ref. 24. The difference between this geometry and the two 
previously considered is manifested, in particular by the fact 
that L + + ( 0 )  and L -- ( a )  do not vanish. The spectrum of 
the transverse oscillations is therefore described by the solu- 
tions of Eq. (28). Calculations by the described procedure 
yield the spin-wave spectrum of the lower branch of the 
transverse oscillations (disregarding the quantum correc- 
tions for the gap) 

where 

J WKJ 21.13 
~liO~(z~(7){5x+TcJ(1-~x~)}~ 

In a zero external magnetic field, the region of existence of a 
ferromagnetic state with the magnetic moment directed 
along a twofold axis is defined by the conditions 
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The spectrum of the longitudinal oscillations consists of 
three branches: 

It follows from the results that in the long-wave region 
of the spectrum the spin-wave rigidity of the acoustic branch 
of cubic metallic ferromagnets depends on W, x ,  and H if 
w,Z A(A/4pI2. 

In conclusion, the author thanks V. V. Slabko, A. S. 
Alkesandrovskii, and S. A. Myslivets for help with the nu- 
merical calculations, and E. V. Kuz'min, I. S. Sandalov, and 
A. N. Podmarkov for a helpful discussion of the work and 
for remarks. 

APPENDIX 

To find D jz we rewrite Eq. ( 17) in analytic form 

Expanding the trace operation, we obtain in explicit form 
the summation over the spin indices. Summation over the 
intermediate frequencies leads to formation of the polariza- 
tion operator: 

where nu ( p )  = f, { [E ,  ( p )  - p ] / T )  is the Fermi-Dirac dis- 
tribution function. To solve the system ( A l ) ,  we introduce 
the following combination of the functions D :T(k) :  

I t  follows then from ( A l )  that Dhs) can be expressed in 
terms of @;;"': 

Multiplying this equation by Tulu l ' (a )  and summing over a, 
we obtain a closed system of four equations (o, u' = _+ 4 for 
each p) for @r' ( k  ): 

where 

rala~l (a) rm' (-a) Da (urn) b (a) .  Lam* 

Introducing a 4X 4 matrix W with elements 

W ~ , ~ , ~ , ~ ~ ~ ~ L ~ ~ ? '  (an) IIca' (kt an) r (A61 

we get 

0,01' 

where I is a unit matrix. Equations ( A 3 )  and ( A 7 )  deter- 
mine the sought function D $). The dispersion equation that 
describes the spectrum of the spin-wave excitations is 

'K. H. J. Buschow, Rep. Progr. Phys. 42, 1373 (1979). 
'P. Fulde and M. Loewenhaupt, Adv. Phys. 34, 589 (1986). 
3K. G. Kurtovoi and R. Z. Levitin, Usp. Fiz. Nauk 153,193 ( 1987) [Sov. 
Phys. Usp. 30, 827 (1987)l. 

4P. -A. Lingaard, Theory ofspin Excitations in Rare-Earth Systems, Ros- 
kilde, Denmark, RisQ National Laboratory, 1986. 

' S .  V. Vonsovskii, Magnetism, Halsted, 1975. 
6K. N. R. Taylor and M. I Darby, Physics of Rare-Earth Solids, Chap- 
man & Hall, 1972. 

'I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 47, 336 (1964). [Sov. Phys. 
JETP 20,223 ( 1965)l. 

'Yu. A. Izyumov, F. A. Kassan-ogly, and Yu. P. Skryabin, FieldMethods 
in Ferromagnetism Theory [in Russian], Nauka, 1974. 

9A. N. Podmarkov and I. S. Sandalov, Zh. Eksp. Teor. Fiz. 86, 1461 
(1984) [Sov. Phys. JETP 59,856 ( 1984) 1. 

"A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare- 
Earth Ions in Magnetically Ordered Crystals [in Russian], Nauka, 1985. 

"V. S. Lutovinov and M. Yu. Reizer, Zh. Eksp. Teor. Fiz. 77,707 ( 1979) 
[Sov. Phys. JETP 50,355 (1979)l. 

"A. V. Vedyaev and M. Yu. Nikolaev, ibid. 82, 1287 (1982) [55, 749 
(1982)l. 

I3L. P. Gor'kov, ibid. 34,735 (1958) [17, 505 (1958)l. 
I4V. V. Val'kov, T. A. Val'kova, and S. G. Ovchinnikov, ibid. 88, 550 

(1985) [61,323 (1985)]. 
I5V. V. Val'kov and T. A. Val'kova, Fiz. Nizk. Temp. 11, 951 (1985) 

[Sov. J. Low Temp. Phys. 11, 524 (1985)l. 
I6R. 0. Zaitsev, Zh. Eksp. Teor. Fiz. 68,207 ( 1975) [Sov. Phys. JETP 41, 

100 (1975)l. 
"R. 0. Zaitsev, ibid, 70 1100 (1976) [43, 574 (1976)l. 
"A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Quantum- 

Field Theoretical Methods in Statistical Physics, Pergamon, 1965. 
19V. G. Bar'yakhtar, V. N. Krivoruchko, and D. A. Yablonskii, Green's 

Functions in Magnetism Theory [in Russian], Nauk. dumka, Kiev, 
1984. 

*OD. A. Garanin and V. S. Lutovinov, Fiz. Tverd. Tela (Leningrad) 26, 
2821 (1984) [Sov. Phys. Solid State 26, 1706 (1984)]. 

'IT. Oguchi, Phys. Rev. 117, 117 ( 1960). 
"V. G. Kukharenko, Zh. Eksp. Teor. Fiz. 69, 632 (1975) [Sov. Phys. 

JETP 42,321 (1975)l. 
23K. R. Lea, J. M. Leask, and W. P. Wolf, J. Phys. Chem. Sol. 23, 1381 

(1962). 
24G. Fischer and A. Herr, Phys. Stat. Sol. 133, 157 ( 1986). 
25V. V. Val'kov and T. A. Val'kova, Teor. Mat. Fiz. 59,453 (1984)l. 

118 Sov. Phys. JETP 68 ( I ) ,  January 1989 

Translated by J. G. Adashko 

V. V. Val'kov 118 


