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Clustering of mobile defects by interaction with one another in a crystal matrix is considered. It is 
shown that the form of the resultant clusters can depend strongly on the competition between the 
short- and long-range parts of the interaction. The temperature dependence of the diffusion of 
quantum defects, with account taken of their clustering, is obtained. 

INTRODUCTION 

A number of interstitial impurities can diffuse in a met- 
al from one interstice to another. Examples are hydrogen 
isotopes and positive muons. The diffusion can be either 
classical or by quantum tunneling. 

The interaction of hydrogen atoms in a metal matrix is 
the subject of many works (see, e.g., Ref. 1 ). All of them take 
into account only one type, elastic, of long-range interaction 
between the impurities, meaning indirect interaction via 
acoustic phonons. The energy of this interaction is' 

where R is the distance between the impurities, ll is the unit- 
cell volume, and n = R/R. Depending on the orientation of 
the vector n relative to the crystal-lattice axes, W(n) can be 
either positive or negative. 

One of us2 has pointed out the substantial role of an- 
other long-range interaction, indirect interaction via Friedel 
oscillations of the electron density. Let V ,  (q)  be the Fourier 
component of the potential of the interaction of an electron 
with a point defect (we confine ourselves hereafter to the 
Born approximation). The energy of interaction via the con- 
duction electrons is then given, in analogy with the RKKY 
interaction, by 

where II (q,O) is the static polarizability of the electron gas. 
Allowance for screening in the random-phase approxima- 
tion leads to the appearance of a dielectric constant 

E (q, 0) =1-4ne211(q, 0) /q2 ( 3  

in the denominator of (2):  

If the point defect has a charge Ze, we have 

V .  (q) -+ - 4~Ze~q-~ ,and  W ( ) + - 4nZze2q-2 
q-rO 'I 9-4 

and compensates fully for the Fourier component, which 
diverges for small q, of the direct interaction between the 
impurities: 

where kF is the Fermi momentum of the electrons and N(0) 
is their density of states on the FS. For interaction between 
impurities of different species, ( V ,  (2kF ) l 2  must be replaced 
by 

where the subscripts 1 and 2 pertain to the different impurity 
species. Owing to the temperatures smearing of the II (q,O) 
singularity, the interaction ee, (R)  is exponentially damped 
over distances R, = a&,/T, where a is the interatomic dis- 
tance and E, is the Fermi energy.4 This effect is immaterial 
in the considered low-temperature region. A static disorder 
does not lead to exponential damping of We, (R ) .5,6 

The resultant long-range interaction between the im- 
purities is given by 

The value of W(n) ranges from 1 eV for heavy interstitial 
impurities to eV in the case of hydrogen in a metal.' 
The quantity N(0) I V ,  (2k, ) I2/2rk2x (2kF, 0 )  with pa- 
rameters typical of metals ranges from lo-' to l eV, i.e., 
eel ( R )  is of the same order as We,,,, (R) .  Indirect interac- 
tion via the electrons may turn out to be predominant in the 
case of substitutional impurities. 

In addition to impurity interactions with one another, 
there exist interactions with the crystal matrix; these have 
minima in the interstices (for interstitial impurities). We 
assume these minima to be abrupt enough and the matrix 
potential to be substantially stronger than W(R). This al- 
lows us to neglect the displacements, due to W(R), of of the 
equilibrium positions in the interstices, and examine the dis- 
tribution of a small number of impurities among the inter- 
stices, with allowance for their pair interaction. In the case of 
small R-a, of course, account must be taken also of the 
short-range part of this interaction. The clustering of the 
defects will be dealt with in the first part of the paper, while 
in the second we shall study the temperature dependence of 
the impurity diffusion coefficient with account taken of their 
clustering. 

W,,, (q) 4nZ2e2q-2. CLUSTERING OF DEFECTS 

Since W(n) and ee, (R)  can have either sign, there ex- 
The direct interaction is thus screened at atomic dis- ists a set of interstices with W(R) < 0, and the state with the 

tances, and the long-range part of We,, which is due to Kohn lowest energy W,, at k,a - 1 corresponds to R -a.  There- 
singularities of II (q,O), is given in the case of a spherical fore all the mobile point defects in a metal and neutral mobile 
Fermi surface (FS) by3 impurities in a dielectric form clusters. With further lower- 
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ing of the temperature, a transition takes place from the state 
of a lattice gas to one in which lattice-gas and lattice-liquid 
phases coexist, meaning an ordered solid solution. At low 
defect density x, the clustering temperature is much higher 
than the temperature T, = x ( 1 - x )  1 W,, 1 of stratification 
into 

The cluster forms and the structure of the highly-con- 
centrated phase depend on the ratio of the short- and long- 
range parts of the pair-interaction potential. If the short- 
range part of the potential predominates the clusters take the 
form of isotropic or almost-isotropic aggregates of defects. 
In the opposite case they are strongly anisotropic. Depend- 
ing on the form of W(R), the number of particles in a cluster 
can increase as the temperature is lowered, or remain bound- 
ed. Examples of clusters of the first type are those of mobile 
defects in dielectrics (where We, = 0).  Since W(n) is mini- 
mal along definite crystallographic directions, the impurity 
atoms will form chains along these directions. In cubic crys- 
tals we have in the case of weak anisotropy 

where X, Y, and Z are the components of the vector R along 
the cubic-lattice axes and the sign ofa  depends on the combi- 
nation of the elastic m ~ d u l i . ~  If c,, - c,, - 2c4, < 0 we have 
a > 0 and defect chains will be produced along the [ 1001, 
[OlO] , and [001] directions. Interstitial silicon atoms were 
gathered into such chains in silicon crystals after prolonged 
annealing.'' In this case the interstitial atoms are identical 
with the matrix atoms, so that subsequent annealing pro- 
duced dislocations and stacking faults. 

The foregoing defect arrangement in a cluster may be 
difficult in metals because k',, ( R )  oscillates as a function of 
distance. The following clustering picture is then possible. 
Clusters of several particles (quasimolecules) are formed at 
a certain characteristic temperature T, , , followed by clus- 
tering of the quasimolecules at a lower temperature T,, . The 
characteristic distance between the quasimolecules in the re- 
sultant cluster is much larger than the distance between the 
defects in the quasimolecule. If the number of quasimole- 
cules in the second-generation cluster is limited, the next 
stage of the clustering process sets in at a lower temperature 
T, , , and so on. 

Stratification into phases with low and high quasimole- 
cule densities takes place at the temperature T,. 

Formation of quasimolecules consisting of two hydro- 
gen atoms were observed by neutron diffraction in the com- 
pounds LuD, (Ref. 1 1 ) and YH, (Ref. 12). The deuterium 
atoms were located in tetrahedral pores of an fcc matrix. 
When a pair is produced, the second deuterium atom occu- 
pies the next nearest tetrahedral pore along the hexagonal 
axis. The phase diagram of hydrides of yttrium and of a num- 
ber of rare-earth elements has the form shown in Fig. 1 
(Refs. 13 and 14). The value ofx,, varies in the range 0.03- 
0.25, depending on the metal. The fraction of quasimole- 
cules at 400 K is quite large, and it is the pair production 
which hinders a stratification into low- and high-density 
phases in the region of small x .  A plot of the hydride resis- 
tance vs temperature revealed in the interval 160-200 K an 
a n ~ m a l ~ " ~ ' ~  attesting to pair clustering. 

In substances in which the density of immobile defects 

FIG. 1 .  Phase diagram of yttrium hydrides and of a number of rare-earth 
metals. 

greatly exceeds that of the mobile ones, the clusters pro- 
duced will consist of one immobile and several mobile im- 
purities. 

Formation of a cluster in the form of a chain of atoms is 
analogous to the polycondensation reaction A ,  _ , + A  
+ A ,  in a s o l u t i ~ n . ' ~ " ~  The fraction of single defects (mon- 
omers) is determined by the chemical-equilibrium constant, 
which depends on the temperature and on the difference of 
the binding-energies E of clusters of m and m - 1 particles. 
We assume for simplicity that E is independent of m, as is 
always true of large m. 

Let us find the clustering temperature T, for two cases. 
1. The temperature T, ,A, where A is the characteris- 

tic bandwidth of the quantum impurity in a perfect crystal, 
with allowance for the polaron effect. In this case we can 
neglect the heat capacity of the lattice gas if we assume that 
all the impurities in the interstices are on the lower vibra- 
tional level ( T, is much lower than the local vibration fre- 
quency). We obtain then from the law of effective masses" 
for the equilibrium constant 

and for the fraction of single defects 

where f i  = XK and 

The characteristic clustering temperature is thus obtained 
from the condition f i  = 1 and is equal to 

Equations (9)  and ( l o )  do not change when clusters of a 
different form are produced. Here E is the specific binding 
energy of the cluster. 

2. If, however, T, < A  but is much higher than the lat- 
tice-gas degeneracy temperature, the lattice gas can be re- 
garded as ideal, monatomic, and Boltzmann-like. We ne- 
glect here and below the probability of tunneling of a cluster 
of two and more particles. In this case, 

and the clustering temperature is determined from the con- 
ditionxK = 1. It is easy to verify that in this case T, is higher 
than when classical impurities are clustered. 

We have considered so far clustering in analogy with a 
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chemical reaction. However, as noted above, there exists a 
large number of interstices with W(R) < 0. Recognizing 
that W(R) decreases like R -3, the value of W(n) averaged 
over a unit sphere is zero, and that cos 2k,R oscillates rapid- 
ly with a characteristic period of order a, we shall consider 
the following simplified model: one defect is at the origin and 
the other is at a distance R from it. In a spherical layer of 
radius R and thicknessdR thereare41~R *dR /a3 states whose 
energy is distributed with equal probability in the interval 
from - E4z3/R to + E4z3/R l .  The minimum distance be- 
tween particles is rm, -a and the maximum is 
r,,, -ax-'I3. The probability of finding a particle in a 
spherical layer of radius R and thickness dR is 

where A is obtained from the normalization condition. 
This model allows for the presence of a large number of 

two-particle bound states, but ignores multiparticle effects. 
For the limiting case of one bound state of energy E, however, 
it yields for T, and for the limiting values of x the same 
expressions as the preceding analysis [see Eqs. (9) and 
(1011. 

The average distance between impurities is ( R  ) -r,,, 
at high temperatures T s  Tk and ( R  ) - rmi, at low tempera- 
tures (T<  Tk ). The characteristic value of Tk can be ob- 
tained by studying the temperature dependence of (R ). We 
obtain for Tk expression ( 10) in which - E is replaced by 
the minimum defect-interaction energy W,, . It can be con- 
cluded thus that the principal role in the clustering of mobile 
defects in the case of a potential W(R) - R  -3 is played by 
states with the lowest energy, and the presence of a large 
number of states with W(R) < 0 is immaterial for the deter- 
mination of T, . The probability of states with binding ener- 
gy E < T (absence of binding) is 

where y - 1. It can be seen that the presence of a large num- 
ber of interstices with W(R) < 0 leads to the appearance of a 
pre-exponential factor in ( 13), but does not affect the expo- 
nential decrease of x at T <  Tk . 

For substances with large density of immobile defects it 
is necessary to replace x in ( 10) and ( 13) by the density of 
the immobile effects. 

QUANTUM DIFFUSION IN A SYSTEM OF MOBILE DEFECTS 

Clustering influences substantially the coefficient of 
quantum diffusion of impurities; a theory of this diffusion 
was developed in Refs. 18-20. We consider a concentration x 
such that the following condition is met: 

In this case, down to the phase-stratification temperature 
T, - W(UX-"~), in the greater part of the crystal no defect 
localization is caused by the static collapse of the levels in the 
different  interstice^.^' Let us consider a hypothetical picture 
of diffusion in the absence of clustering. 

FIG. 2. Temperature dependence of the diffusion coefficient in the ab- 
sence of clustering. 

At high temperatures the main contribution to diffu- 
sion is due to a classical above-barrier activation mecha- 
nism, and the diffusion coefficient decreases as the tempera- 
ture is lowered. Below a certain temperature To the main 
contribution to the diffusion is made by tunneling processes, 
and D begins to increase as the temperature is lowered. A 
typical D( T) plot is shown in Fig. 2 (Ref. 20). The diffusion 
consists first of individual below-barrier hops, and at tem- 
perature below T, the impurity motion acquires an itinerant 
character. I8-'O NO consistent calculation of the diffusion co- 
efficient in the region T, < T <  To has yet been made in view 
of difficulties similar to those encountered in localization 
theory. For a quantum-effect mean free path IS a it is neces- 
sary to take into account all the corrections to the bare vertex 
of the defecton-phonon or defecton-electron interaction 
that causes the damping. All the calculations known to us for 
the diffusion coefficient in this region are based on replacing 
the total vertex by the bare one. 

If T <  TI we have D-T-9 in  dielectric^'^.'^ and 
D- - ' ( b  < 1 ) in  metal^,*,^'-'^ while in semimetals D( T) 
is a nonmonotonic function.24 

Let us examine how D(  T) is changed by clustering. It 
was noted in Ref. 20 that for attraction between defects the 
diffusion at T< / W,, 1 ~ ' ' ~  has the usual activation character 
with an activation energy E, =: I W,, I. It will be shown below 
that at small x the clustering leads to a change of the diffu- 
sion coefficient in a substantially larger range of tempera- 
tures. The tunneling probability of a cluster consisting of 
two or more defects is vanishingly small. Therefore only sin- 
gle defects execute quantum tunneling and 

where Do( T) is the quantum-diffusion coefficient in the ab- 
sence of clustering, and K is defined by Eq. ( 13). For T) Tk 
we have D,, ( T) z D, ( T), and if T< Tk 

Note that an exponential D,, (T )  dependence is observed 
not for T<x2I3 1 Wgr I but for T< / W,,/ln xi .  Consider the 
following limiting cases: 

(a )  Tk > To.In this case there is no minimum ofD( T) at 
all. At the temperature T,, for which 
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FIG. 3. Temperature dependence of the diffusion coefficient with 
allowance for clustering. 

where Dab ( T) = v,exp ( - Ea /T) is the coefficient of 
above-barrier classical diffusion, and Ea is the activation en- 
ergy, one exponential dependence replaces another, as 
shown in Fig. 3a. It must of course be noted that clustering 
changes also the value of E, when T < Tk . 

Note that notwithstanding the exponential character of 
the D( T) dependence at low temperatures, the principal dif- 
fusion mechanism is tunneling. 

(b)  Tk < To. In this case D(T)  goes through a mini- 
mum at T = To, and then reaches a maximum at T = T,,, 
and tends to zero as T-0 (Fig. 3b). For a power-law Do( T) 
dependence of the form Do- T-"  with n-  1 we have 
Tma, - Tk . 

Let us consider now specific quantum-defect systems. 
Hydrogen in metals. According to the estimates above, 

at realistic hydrogen concentrations we have Tk - 10-lo3 K. 
Therefore the case Tk > To is realized in such a system. It is 
indeed the clustering which can explain the decrease of acti- 
vation energy of transition-metal hydrides2= when the tem- 
perature is lowered. 

p+ in metals. In this case it is meaningful to speak only 
of formation of a bound state of muonium with an immobile 
impurity. It must be remembered, however, that after ther- 
malization the muons have no equilibrium distribution over 
the interstices. It can be assumed that after thermalization a 
muon can occupy, with equal probability, any equivalent 
interstice. At the same time, for an equilibrium distribution 
the probability of staying in a given interstice as a result of 
interaction with an immobile defect depends on W(R ). The 
equations we derived pertain only to an equilibrium distribu- 
tion, so that the ratio of the relaxation time of the distribu- 
tion function to the lifetime of the muon plays an important 
role. The value of T, for,u+ is the same as for hydrogen in a 
metal, and in general both To < Tk and T >  Tk are possible 
for,uf. 

Solid solution of He3 in He4. In this system the cluster- 
ing is least substantial. He3 in He4 has W(n) - 10-2-10-' K 
(Refs. 19 and 20), so thatTk - 10-3-10-2 K. The case 

Tk g To is therefore certainly realized for solid solutions of 
the helium isotopes. 

CONCLUSION 

We have shown thus that all mobile defects in metals 
and neutral mobile defects in dielectrics become clustered 
when the temperature is lowered, and the form of the clus- 
ters can depend substantially on the character of long-range 
indirect interaction via acoustic phonons and conduction 
electrons. The characteristic clustering temperature Tk is 
determined by the concentration of the defects and by their 
binding energy, and also by the bandwidth of the quantum 
defects at low clustering temperatures. 

Clustering alters substantially the temperature depen- 
dence of the diffusion coefficient D. It can, in particular, 
eliminate completely the low-temperature minimum of the 
diffusion coefficient and result in a monotonically increasing 
D(T) dependence. In other cases, clustering can destroy the 
monotonic increase of D with decrease of temperature in the 
low-temperature region, leading thereby to a suppression of 
the maximum of D(T) at a temperature T- Tk and to an 
exponential decrease of D at T < Tk . 

The authors are deeply grateful to A. F. Andreev for 
interest in the work and for valuable remarks. 
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