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Theoretical investigations are reported of the energy spectrum of holes in a thin semiconductor 
film with a complex valence band of the type found in Ge and GaAs, and of the electrical 
conductivity of such a film in strong electric fields. It is shown that the presence of a cone of 
negative transverse heavy-hole masses results in crossing of the first two hole size-quantization 
subbands, which provides an opportunity for a population inversion of these subbands in strong 
electric fields and, consequently, a negative hf conductivity may be established in the film. In 
contrast to a bulk oscillator utilizing negative effective masses, this negative conductivity does not 
require the application of a magnetic field. 

INTRODUCTION 

The energy spectrum of holes in a film of a semiconduc- 
tor with a diamond structure is calculated. I t  is shown that 
the presence of cones of negative transverse masses of heavy 
holes results in repeated crossing of the first two size-quanti- 
zation subbands in the momentum space. The energy spec- 
trum obtained in this case is shown qualitatively in Fig. 1, 
where fiw, is the energy of an optical phonon. The energy 
spectrum of holes in a film had been calculated earlier.'.' 
Crossing of the first two subbands was not predicted by these 
calculations, because the treatment in Ref. 1 ignored the cor- 
rugation of the constant-energy surfaces of the holes and the 
calculations reported in Ref. 2 were limited to small mo- 
menta. 

Such crossing or intersection of the valence subbands 
occurs also in other cases, for example when a semiconduc- 
tor is subjected to a quantizing magnetic field' or to uniaxial 
deformation." 

The application of a strong static electric field to a sys- 
tem with such a spectrum may invert the hole distribution. 
The physics of the process resulting in inversion is as follows. 
In the case of pure samples at low lattice temperatures the 
main mechanism of the scattering of "hot" holes (with the 
kinetic energy considerably higher than the lattice tempera- 
ture) is spontaneous emission of optical phonons by these 
holes. Therefore, in the presence of an electric field the holes 
from both subbands acquire the optical-phonon energy, emit 
this phonon, and drop down to the minimum of the first 
subband. If there is no tunneling between the subbands, the 
second subband is always empty and in the range k,, < k ci k,  
(Fig. 1 ) there is no population inversion. For example, cal- 
culations showed that in the case of GaAs films of - 
cm thickness in fields of - 10' V/cm the probability of hole 
tunneling between the subbands during the time that a hole 

FIG. 1. Appearance of a population inversion of holes in a system with 
crossing valence subbands (fico, is the energy of an optical phonon). 

acquires an energy h, is less than 0.2 and the energy ac- 
quired by a hole exceeds the optical-phonon energy by less 
than 0. l h j .  Therefore, these two factors have little influ- 
ence on the distribution of the holes between the subbands 
and the population inversion is preserved. 

We shall use the approximation of an absolutely rigid 
"phonon lid" (implying instantaneous emission of an opti- 
cal phonon by a hole whose energy reaches fiw, ) to calculate 
the small-signal conductivity of a film. We shall find the 
ranges of frequencies where a population inversion results in 
a negative conductivity. 

This population inversion mechanism may apply also to 
other systems in which crossing of the energy terms is ob- 
served. An important example of a system which may exhib- 
it a negative conductivity of this kind is a three-layer struc- 
ture with variable thicknesses of the layers. A section 
through one variant of such a structure (GaAs-GaAlAs- 
GaAs) is shown in Fig. 2. We shall consider the specific case 
when size quantization occurs in the films, but this is not an 
essential condition. When electrons tunnel weakly in the 
transition region and when they flow from region B to a 
region A,  a population inversion of the energy levels appears 
in the latter region. As in the preceding case, this may give 
rise to a negative conductivity of the structure. 

SPECTRUM OF HOLES IN A FILM 

The valence band of a semiconductor with the diamond 
structure (Ge, Si) is quadruply degenerate at the point in a 
momentum space characterized by p = 0. The behavior of 
holes near this point is described by the Luttinger Hamilto- 
nian for a particle with spin 3/2 (Ref. S), which can be rep- 
resented in the form 

1 
f f L  =--{[y,+2y, 26 +- p z - ~  

2mo 
2 ~ S 2 ~ } ,  ( I )  ( i 6 ) I  6 

here m,, is the mass of a free electron; p and p ,,,, are the 

FIG. 2. Three-layer GaAs-GaAIAs-GaAs system 
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S = I / ~  (136-7) xJ+'/~ (1-6) ( x ~ ~ ~ ~ + x ~ J ~ ' ~  ~ 1 1 2 ) ~  ~ = k / k .  

(3 )  where 

momentum operator and its projections along the principal basis (m, is the projection of the spin along the z axis), we 
axes of a crystal, selected as the Cartesian coordinate axes; J find that the Hamiltonian and the reflection operator in 

and J,,,,,, are the operator of spin 3/2 and its projections question are described by 
along the same axes; y ,  , , are dimensionless parameters P k,L M I) 

i.e., S depends only on the direction of the momentum and is 
independent of its value. In the case of an isotropic model 
( 6  = 1)  the operator S represents the projection of the spin 
along the momentum, i.e., it represents the helicity. The op- 
erator S commutes with H,. Therefore, in the case of an 
unbounded crystal the quasihelicity is conserved and the 
state of a hole is defined uniquely by the eigenvalues of p and 
S. Light holes have smaller absolute eigenvalues of S (in the 
isotropic model we have S, = + 1/2), whereas heavy holes 
have larger values (in the same isotropic model we find that 
S,, = 13/2). When the direction of the three-dimensional 
momentum is altered (or  reversed), the states of heavy and 
light holes become mixed. In particular, such a situation oc- 
curs in a film because holes are reflected from its boundaries. 
Therefore, the eigenstate of a hole in a film is generally a 
super-position of states of heavy and light holes. 

We shall consider a homogeneous film of thickness d. 
We shall assume that it is cut at right-angles to the principal 
crystallographic axis z of a crystal and the coordinates of the 
boundaries are z = + d /2. The energy spectrum of holes in 
such a film is described by the Schrodinger equation with 
zero boundary conditionsh: 

In accordance with the symmetry of the system, the 
state of a hole in a film will be described by the following 
integrals of motion: the number ofthe size-quantization sub- 
band, the two-dimensional wave vector k, (k ,  ,k, ) lying in 
the plane of the film, and the parity reflection by the z = 0 
plane. Using the momentum representation and the lJ,m, ) 

' 
which govern the dispersion laws of light (E, ) and heavy 

f i e  
(E,, ) holes in an unbounded crystal: HI,== - 21n, 

The labeling of the rows from top to bottom and of the co- 
lumns from left to right corresponds to rn, = + 3/2, + 1/2, 
- 1/2, and - 3/2. The operator O(z )  represents the substi- 
tution z -  - z as a function of the coordinate or k ,  - - k ,  
as a function of the momentum. Since - T i  is a unit matrix, 
its eigenvalue are T, = + i. The states with T, = i will be 
called even ( I ) ' s '  ) and those with T, = - i will be called 
odd ($'"' ) .  They are transformed into one another by the 
coupling operator C: $ ' A . s '  = C$'S."' ( C  represents a prod- 
uct of the operator of time reversal and of inversion, and in 
particular C reverses the spin of a hole). This relationship 
follows from the commutation of C with T, . The I)' '' and 
$'." states differ in respect of the signs of the average values 
of the odd powers of J,, whereas the even powers of J,  are 
the same and the odd powers of J,, vanish. The commuta- 
tion of H ,  with T, leads double degeneracy of the spectrum 
in respect of the parity. This degeneracy is lifted in the ab- 
sence of the z = 0 symmetry plane in a film, but it is still 
retained at the point k, = 0 (see, for example, Ref. 7 ) .  

The dispersion equation and the corresponding eigen- 
functions of holes in a homogeneous film deduced from Eqs. 
( 4 )  and (5 )  are of the following form 

el ,  h= ( f i2/2m0) {yik2_t2 [ ~ ~ ' k ' + 3  ( y 3 2 - y Z 2 )  (kXZkV2 ( 2 )  0 M* - k,L* P 
+ k,ZkZ2+ k,2k,2) ] I h ) ,  0 0 0 

p = fik; 6 = /y,/y,; S i s  a quasihelicity operator which in the 
momentum space has the form Tz=l  

kzL* R 0 M 
M* 0 H - kzJ, 

'1 q,\ . q z sin (q1/2) 
ql(cv-R2)-q,(C,  - R l )  t gGc tg  T j / s ~ ~  L- I { -  2 ,  d sin (q,/2) 

qlz cos (q,/2) q z ' .ii* (a, - R,; cos - - cos 2) ( d cos(ql12) d 

I 
whereA is a normalization constant. The quantities P ,,? and -oZ+4) k,9+ev2d-'+Eo~,k 'tE-'+ !a2-$)  ~ k X 2 k , , ? ]  ) (0 '-  /o - I .  

R ,., are equal to P and R with kz = k i'.": 
p a n  f= { (P2-P , )  (H,-R,) - ILII'(~i2+q12))/2.(LILq,'//~?r d2 &., fi2 
-=-=-= 
P R M  q,,2=dk,"~2', o=y,/y?, E=?) ( ~ : ~ / y ? ~ -  I ) .  

? v ' I  (k. .  r)  T ~ ~ h , r  x A 

86 Sov. Phys. JETP 68 ( I ) ,  January 1989 V. Ya. Aleshk~n and Yu. A. Romanov 86 

91-00" (41/2) qzZ {(i, - - ~ , ) ( b ,  -R , ) -  .il 2-qlq,tg <Ctg+j (cos, - -- - cos ((,,2, 71 
q. 91 ) - 

I ( q )  . q,z \ [,TAU* (q ,  - q, tg p t g  Sill - 
I ( 2 )  d ,' 



Equation ( 7 )  defines an infinite set of two-dimensional sub- 
bands. It is equivalent to the expression obtained in Ref. 6 
and in the isotropic case it reduces to a dispersion equation 
investigated in detail in Ref. 1. 

The spectrum is simplest at k, = 0 when, because of 
conservation (apart from the sign) of the direction of mo- [iiolksl; * i i i  J 3 10 Pin1 

mentum of a hole reflected by the boundary of a film, there is 
no mixing of the states of heavy and light holes. We then 
have "/;. 

1 Ann ' 1 hnn ' 
= (  2mh , E1(n2)=-(*) 2mL , 

(10) 
n,, n,=l, 2 , 3 , .  . . 

( m ,  and m, are the masses of heavy and light holes along the 
z axis). The projection of the spin along the z axis has a FIG. 3. Sections across auxiliary ( to the left of the ordinate) and disper- 

specific value and the coordinate and spin parts of the eigen- sion ( to the right ofthe ordinate) surfaces of holes in a film ofGealong the 
[ 1101 and [loo] directions in the wave-vector space; E,, = ii2y2/2m,,d2. 

functions of Eq. (8 )  are separable: 

where n';,, are the odd and ni,z the even integers; x,, is a 
spinor with an eigenvalue of the spin projection along the z 
axis amounting to m. In general (k ,  5 0 )  the function of Eq. 
(8)  are a mixture of the states of heavy and light holes and do 
not have a specific spatial parity (i.e., they are not even or 
odd functions of z).  

Following Ref. 1, we shall denote the solutions of the 
dispersion equation ( 7 )  by ~j,' ' (k ,  ), where the indices j = I, 
h,  and n = 1,2, ... identify the level into which a given sub- 
band transforms in the limit k, -0. The subbands &j,/"(k, ) 
with odd values of n and &I,!' (k,  ) with even values of m are 
described by the dispersion equation (7 )  with the minus sign 
in front of the root, whereas the subbands with even n and 
odd m are described by Eq. ( 7 )  with the plus sign in front of 
the root. The two signs in Eq. ( 7 )  correspond to two families 
of the dispersion surfaces ~ ( k ,  ).These two surfaces may in- 
tersect only if they belong to different families, i.e., intersect- 
ing surfaces should either have the same values o f j  and dif- 
ferent parities of n and m, or different values of j and the 
same parity of n and m. Along the lines of intersection we 
have k = an  ,,, /d, where n ,  and n,  are integers of the 
same parity. These lines (and the values of k, and E )  can be 
found easily since they are identical with the corresponding 
lines of intersection of auxiliary surfaces governed by the 
dispersion relationships of the type ( 2 )  with k, = m,,, /d. 
However, the common lines of intersection in the case of the 
auxiliary and dispersion surfaces does not allow us to deduce 
unambiguously the qualitative shape of the latter from the 
former, contrary to the isotropic model of Ref. 1. Break- 
down of the procedure of Ref. 1 for determination of the 
nature of the dispersion surfaces occurs at the lines of inter- 
section of the auxiliary heavy-hole surface with one another, 
which occurs because they have cones of negative transverse 
masses.* These intersections do not occur when the disper- 
sion law is isotropic (6  = 1 ) . 

Figure 3 shows the auxiliary and dispersion cures of 
holes in a film of germanium, plotted for the [ loo]  and 
[ 1101 directions to illustrate the above discussion. Features 

which distinguish these curves from those of a bulk sample, 
mentioned earlier also in Refs. 1 and 2, are a strong nonpara- 
bolicity of the spectrum, appearance of additional energy 
extrema and of regions of negative longitudinal and trans- 
verse effective masses, and crossing of the subbands. Multi- 
ple (double in Fig. 1 ) crossing of the first and second size- 
quantization subbands, formally related to single 
intersection of all the auxiliary surfaces of heavy holes with 
one another, is a new feature most important from the point 
of view of realization of the inverted hole distributions. Fig- 
ure 4 shows the difference &:"' (k ,  ) - &'?, (k,  = A& (k,  ) of 
the energies of the second and first subbands plotted as a 
function of k ,  . We shall show later that an important feature 
for the realization of a negative differential conductivity 
(NDC) of a film is the presence of a minimum of the differ- 
ence A&(k, ) = - &,, in the negative range of its values. 

TUNNELING OF HOLES BETWEEN TWO-DIMENSIONAL 
SUBBANDS IN AN ELECTRIC FIELD 

We shall now consider the behavior of a hole in a static 
electric field E directed along the film. This electric field 
alters the two-dimensional wave vector of a hole state and 
also a set of directions of three-dimensional momenta, which 
(because of inertia of the spin vector) generally alters the 
quasihelicity, i.e., it gives rise to transitions between the size- 
quantization subbands. The parity of the states introduced 
above is thereby preserved, confirming the convenience of 
the selected wave-function basis. 

We shall find the probability of tunneling of a hole 

FIG. 4. Dependence of the difference between the energies of the first and 
second hole size-quantization subbands in a Ge film of k ,  : the continuous 
curve corresponds to k ,  = 0 and the dashed curve to k ,  = k , . .  
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between the first and second subbands and ignore the influ- 
ence of the other subbands. We shall assume that at the ini- 
tial moment t = 0 a hole is located in the upper subband near 
its minimum characterized by a wave vector k, = k:. At an 
arbitrary subsequent moment of time t the wavefunctior, of a 
hole can be represented by 

( k ' ,  r, t )  
2 

= dk, a:*"' (k.) (k., r )  6 (kE-k/-rEt) , 

where j is the number of the two-dimensional subbands; k, 
and k ' are the components of k, parallel and perpendicular 
to E. Substituting Eq. (12) into the secular Schrodinger 
equation, we obtain two systems of two equations for a:"."': 

with the boundary condition ala(k:) = 1, aiA'(k:) = 0, 
A = A,S. The index h and the argument k, in Eq. ( 13) are 
omitted for the sake of simplicity. The quantities .xiA' are 
related to the matrix elements of the projection of the radius 
vector r along E: 

Figure 5 gives the probability of the tunneling of a hole 
in a Ge film from the first to the second subband in the 
course of its motion from k, = 0 to k, =_17/d in a field 
Ell [ 1001 plotted as a function of k, when E = 2rn,,d ' e E /  
y2fi2 = 10 and as a function of for k ' = 0, deduced by nu- 
merical solution of Eq. (13). In the case of a film with 
d = 250 A in a field E< lo7 V/cm the tunneling probability is 
50.1, i.e., it is low. The tunneling probability depends on the 
sign of the mixed product k, . [ E X  (J)], i.e., if k ' # O  it de- 
pends on the parity of the state because the matrix element 
xiA' is parity-dependent. If k '  = 0, the probability is inde- 
pendent of the parity. 

Figure 6 shows the dependences of the hole tunneling 
probability on the value of k, in the final state obtained for 

= 4 and 10 (when the initial value is k, = 0) .  Clearly, the 
tunneling occurs mainly in the vicinity of the first minimum 
of AE (Figs. 1 and 4) .  A hole passes practically without tun- 
neling across the subband crossing region and this is decisive 

FIG. 5. Dependences of the probabilcy of the tunneling o f a  hole from the 
first to the second subband on k ,  ( E  = 10) and E  (k,. = 0 )  during the 
motion from k ,  = 0 to k ,  = 15 ' : 1 )  even states; 2 )  odd states. 

FIG. 6. Dependences of the probability of the tunneling of a hole from the 
first to the second subband on the final value of k ,  ; the initial value is 
k ,  = 0 ( k , .  = O), E(1[100]. 

for a population inversion. The nonmonotonic dependence 
of the tunneling probability on k ' is related mainly to the 
nonmonotnic dependence of the first minimum Ae on the 
direction of k, . 

INVERTED DISTRIBUTIONS OF HOLES 

We shall find the distribution of holes between the sub- 
bands in a strong electric field. We shall assume that the film 
is pure and that its lattice temperature is at absolute zero. As 
pointed out already, the main hole scattering mechanism is 
then spontaneous emission of optical phonons. Therefore, 
the holes from the subbands are accelerated by an electric 
field and acquire a momentum k ,,, (Fig. 1 ) corresponding 
to the optical phonon energy fwj = el,, ( k  ,,, ) and then in- 
stantaneously (in the rigid phonon lid approximation) emit 
an optical phonon and are scattered to the minimum of the 
first subband characterized by k, = 0. This creates needle- 
shaped distributions of holes elongated along the field E 
(Ref. 9): 

4n2nd 
Iz(k,) = - 

k i 
D(kfi) 0 ( k ~ )  0 (k,-kE) 6 ( k ' )  , ( kl-k2 I <k,, 

(15) 
where n is the density of holes averaged over the film thick- 
ness and D(k, ) is the probability (averaged over the parity) 
of the tunneling of a hole characterized by k ' = 0 from the 
first to the second subband as it moves from k, = 0 to k,. 
Hence, as pointed out above, the tunneling is negligible in 
the subband crossing region and it follows that the function 
f ,,, is practically independent of k, in theinterval (k,,, k ,,, ). 
If D ( k , )  < 1/2, which is easily satisfied, then the popula- 
tions of the subbands are inverted in the interval (k,,,k, ).In 
the case of small values o fD of interest to us the nondiagonal 
elements of the density matrix play no significant role and 
we shall therefore ignore them. 

If D > 1/2, an inversion appears at k < k,, after the first 
minimum of AE (where strong tunneling occurs). This is an 
interesting case but it is difficult to achieve and we shall not 
consider it any further. 

In reality the phonon lid is not absolutely rigid and 
holes penetrate this lid to a depth SE in excess of the energy of 
an optical phonon before emitting such a phonon. If this 
penetration is slight (SE <eZrn,,, - E , ~ , , ,  ), SO that after scat- 
tering a hole drops only to the first subband, and the result is 
simply swelling of the needle-like distribution and it can be 
allowed for approximately by making the substitution 
6 ( k 1 )  -B(k :s" k "")/2k,s in Eq. (14);  here s represents 
the dimensionless width of the hole distribution function in a 
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plane perpendicular to E. An increase in s activates a third 
subband (which is the first light-hole subband) and we then 
have an equally interesting opportunity for a population in- 
version relative to the fourth subband (which is the third 
heavy-hole subband). 

CONDUCTIVITY OF A FILM 

We shall now consider the small-signal hf conductivity 
of a film in the presence of a strong static electric field E. For 
simplicity, we shall ignore the influence of this field on the 
photon emission and absorption processes. 

An inversion of the subband populations in the region 
(k,,,k,) is insufficient for a negative electrical conductivity 
in the frequency range (O,o,,), since regions with a nonin- 
verted populatien (O,k,,) absorb photons of these frequen- 
cies. The resultant sign of the conductivity depends on the 
relative values of the matrix elements of transition between 
the subbands, on the coordinate operator r, on the density of 
states, and on the intrasubband conductivity. Because of the 
alternating sign of the longitudinal and transverse effective 
masses of a hole, this intrasubband conductivity may also be 
both positive and negative. The frequency (o,, corresponding 
to an infinite one-dimensional density of states is special in 
this context. 

In this approximation the real part of the conductivity 
of a film averaged over its thickness is described by 

where we find from Eq. ( 14) that 

u"' and u" represent the components of the real part of the 
superconductivity due to transitions between subbands and 
inside a subband; a = x,y,z. The contribution to 01'1 comes 
from transitions between states of different parity, whereas 
the contributions to a/:: and a:;: are due to transitions 
between states of the same parity. The finite values of?,, are 
independent of the parity of states. 

Substituting Eq. ( 15) into Eq. ( 16), assuming that the 
phonon lid is absolutely rigid, and using a tunneling coeffi- 
cient D(k,, ) = const (as pointed out already, D depends 
strongly on k,.: only near the first minimum where E? - E , ) ,  
we find that the dimensionless conductivity because of tran- 
sitions between the subbands (intersubband conductivity) is 
given by 

(17) 
where k ,  and k, obey the relationship Ae(k, )  
= - Ac(k,) = fim. Figure 7 shows the dimensionless con- 

ductivity of a film of Ge of thickness d = 300 A subjected to 
a field El1 [ 1001 calculated using Eq. ( 16) ( k , d  = 15, 
(~ , , zz  1.2, x 10" rad/s). I n  this case we find that (in the cgs 
esu system) 

FIG. 7. Frequency depyndence\ of theconductivity between subbands i n  u 
Gr film with d = 300 A, El/ [ 1001. 

In view of the one-dimensional nature of the motion ofa 
hole (s = 0 ) ,  we find that a:',:, -- - w in the limit o--(0,). for 
a hole distribution of finite widths (s#O) the conductivity 
CT~::, is everywhere finite (when the influence of a static elec- 
tric field on the process of phonon emission is allowed for, it 
is found that is finite even when s-0) .  In the case of the 
Ge film under discussion we find that the values of the con- 
ductivity components at w = ro,, are given by [the dimen- 
sions of the quantities in Eqs. 1(90),  (20). (22),  and (23) 
are the same as in Eq. ( 18) ] : 

a,,'" =5,0.10-"0,8-s-') ( 1 - 2 D )  n .  

These expressions are useful for estimating the order of mag- 
nitude of the negative conductivity. It is clear from them that 
in the case of a wide hole distribution function (large values 
of s) the negative conductivity is not observed. The discon- 
tinuities of 8:' in Fig.7 correspond to the onset of phonon 
emission from holes with a wave vector k,, = k, .  

Figure 8 gives the value of a::':, calculated for a Ge film 
of thickness 350 A in a field El/ ( 1  101 ( k , d  = 23.3). In this 
case we have ro,,=: 3.5 x 10' ' rad/s, A E ( ~ ,  ) = fi(o,,, and 

The quantity a,, in Fig. 8 denotes the dimensionless conduc- 
tivity along E, i.e., along [ 1101, whereas u2: is the conduc- 
tivity along [ 1701, i.e., at right-angles to E. 

There are contributions to the conductivity u,,, (u2') 
from intrasubband motion of holes, which is in contract to 
o,, (CT, , ) and a;;. The conductivity averaged over the thick- 
ness of the film, calculated in the approximation s-0 and 
D-0 is 

FIG. X. F~.eque~lcq depe~~de~lcc~oftheco~lductivit~ hct\bec~l suhh;~nti \  for 
a Ge film \\it11 (1 = 3 5 0  A. b:(I1 l l O 1 .  

89 Sov. Phys. JETP 68 (I), January 1989 V. Ya. Aleshkin and Yu. A. Romanov 89 



2m d a2e, 
a (z) = -5 -1 sin (.$dl dk.. 

y2fizxo dk'2 ,,,, 
Figure 9 shows !he dependence i r ( to /co, .  ) fot- two G e  films 
with the parametel-s given above. I n  the case when El/ [ 1 0 0 1 ,  

we have 

whereas for El/ [ 1 0 0 1 ,  we obtain 

A numerical analysis shows that they polarization of an 
alternating field (o,.,. ) in the case when EJJ [ 1 0 0 1  and the z 

Sov. Phys. JETP 68 (I) ,  January 1989 

polarization (a.., ) in the case when E/I [ 1001 are the most 
fi~vorable configurations for NDC of Ge. T h e  former case 
corresponds to  higher frequencies. 

The estimates give11 for G e  cult also beapplied to GaAs.  
since the case of these two mntcrials the ratios 7 r 1 / 7 j 2  and l f 4 /  

are  similar and they determine the following dimension- 
less quantities: the spectrum of holes. the conductivity. and 

- I .X/I  and the tunneling probability. However. y'" /y:"' " - 
the energies of optical phonons are approximately the same. 
Therefore the corresponding dimensional thickness and 
conductivity of a G a A s  film are 1 . 8  times le\s than for Gc .  

O u r  analysis demonstrates that thin sen~iconductor  
films may exhibit a new mechanism for an inversion of the 
distribution of holes as  a result of crossing a size-quantiza- 
tion subbands. Under certain conditions this may give rise t o  
a negative hfconductivity. T h e  magnitude and the frequency 
dispersion of this negative conductivity can be controlled by 
altering the shape and magnitude of the potential well repre- 
sented by the film. 

The authors are  grateful to A .  A.  Andronov for valu- 
able discussions. 
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