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A nonlinear equation in the form u; + uu: + Hu: = 0, which describes the instability of a planar 
flame front in the slow-combustion regime, is derived with account taken of quadratic 
corrections. Instability leads to a cellular structure of the front, in qualitative agreement with 
observations. 

1. The instability of a burning gas is particularly impor- 
tant in rocket technology, since it can lead to detonation and 
undesirable explosions, for the prevention of which special 
measures are taken. In the present paper, however, we con- 
sider this problem in the classical purely hydrodynamic Lan- 
dau-Zel'dovich formulation for a plane flame front (FF)  in 
the regime of slow combustion and esentially subsonic veloc- 
ities. 

To be specific, we assume that a hot gas flows upward 
along thez axis, and that z = 0 and z = a (t,x) are respective- 

h 

tor H. These equations arise in hydrodynamic problems with 
boundary conditions on a perturbed plane surface 
z = a (  t,x), if the flow of the medium in the volume is charac- 
terized by a potential cp that satisfies the Laplace equation 
V2cp(t,x,z) = 0. Examples of such equations are 

g t r+Aqx+"=--~~~,  (4)  
gt1+A*;=gag, ( 5  

qtf+Aq*'=gz'Aqz', (6) 
Q~'+A$~'= [q2+ (H$) "I.', (7)  

ly the unperturbed and perturbed flame fronts. This problem 
was first considered in the linear approx~mat~on by Landau expressed in dimensionless variables. Recall that the known 

in 1944 (Ref. 1; see also Ref. 2), who obtained for perturba- Ko'eteweg-de Vries equation $: + $$: + $::x = O, which 

tions in the form a = a,ep the growth rate is widely used, is also partly similar to the group (2)-(6),  
but does not contain the Hilbert operator. Equation (4)  is 

r=lkl viOpv, v= ( ~ - 1 ) / ( 1 + ~ ) ,  x=(~+P--P-')". ( 1) the well-known Benjamin-Ono equation, which has a partic- 

Here vy is the front velocity and p = pl/p2 is the mass-den- 
sity ratio of the hot gas ahead of the front and behind it. Since 
p > 1, it follows from Ref. 1 that the front is unstable. 

In practice, however, the F F  is frequently stable, and to 
resolve the paradox it was resorted in many papers to viscos- 
ity, thermal conductivity, and diffu~ion,~ and also to the in- 
fluence of the bending of the front,4 by making the formal 
substitution v, + vy ( 1 - la; ), where Iis an empirically cho- 
sen constant with the dimension of length. 

In the present paper, remaining in the framework of 
Landau's purely hydrodynamic approach,' we attempt to 
take into account nonlinear effects. These were also taken 
into account earlier, particularly in a paper by Zel'dovich5 
(see also Refs. 6 and 7),  where it was concluded on the basis 
of estimates that the nonlinearity exerts a stabilizing influ- 
ence, but the estimates there are of qualitative character. It is 
shown in the present paper that if account is taken of qua- 
dratic corrections the F F  instability is described by the equa- 
tion 

which has heretofore not been derived. We introduc%here 
the dimensionless variables T = yt and X = kx, while H de- 
notes the Hilbert operator 

with an integral in the sense of principal value. 
2. Equation (2)  will be derived somewhat later. We 

note here that in view of its relative simplicity this equation 
may apparently be encountered also in other problems, and 
is by itself also of mathematical interest, since it is a member 
of a special group of equations containing the Hilbert opera- 

ular solution in the form of a soliton. Equation ( S ) ,  pre- 
viously derived in Ref. 8, describes electron^flows in a planar 
plasma layer and reduces for w = $ + iH$ to the form 
iw; + w: = w2/2, yhich can be solved. Its simplified variant 
in the form $: = $H$ was proposed in Ref. 9 as a model for a 
vortex in an incompressible liquid. The next equation, (6),  
was obtained by us earlier'' and describes a classical tangen- 
tial discontinuity (the Kelvin-Helmholtz instability), but 
with quadratic nonlinear corrections included. To solve ( 6 )  
it is useiul to introduce two new functions p = 1 - $: and 
v = - H$:, and then, with allowance for the identity 
22(JH^f) = H( f ) 2  - f 2, we obtain from (6) the system 

which is fully integrable by the holograph method." Finally, 
Eq. (7)  which we include for subsequent comparison, can 
have a particular solution in the form of a traveling soliton: 

with an amplitude that increases with time in the interval 
- w < t < 0. A general method of deducing new equations 

containing the Hilbert operator from known integrable ones, 
such as the Korteweg-de Vries, sine-Gordon, Kadomtsev- 
Petviashvili equations, and also from ordinary differential 
equations, was proposed in Ref. 12. Unfortunately, none of 
these methods is suitable for the solution of the FF equation 
(2 ) ,  but a solution that increases with time can be sought in 
the form of an expansion in power of the amplitude by as- 
suming 
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Here E = $,eT, and P :: are polynomials that depend on the 
dimensionless time T =  yt, with Pi = 1. Substitution of 
( l o )  in (2)  leads to the recurrence relation 

x [ (n-X) ~ ~ + ~ ~ ~ l s i n  k ~ = -  xcp.-4mr, (11) 

from which, in particular, we find that 
P = ( - nT/2) " - '/n!, but the derivation of a general 
equation for P :: is an extremely complicated problem. We 
present therefore only the first few terms of the series: 

T 
cpi=sin X, cp2 = - - sin 2X, 

2 
3 1-2T 

cp, =-Fsin3X+- 
8 16 

sin X, 

and also 

cp4=P4' sin 4X+P,2 sin 2X, 

cp,=P," sin 5X+PSS sin ~x+P,' sin X, (13) 

where the polynomials are equal to 

Note, however, that Eq. (2)  allows correctly only for 
quadratic corrections. 

3. We now derive Eq. (2).  To this end we note that the 
flows outside the front are adiabatic, so that the density per- 
turbations are connected with the pressure perturbations by 
the relations Sp = c; 'ap, where c, is the speed of sound, and 
if slow combustion with essentially subsonic velocities v0 ( c, 
is considered we can, following Landau,' neglect completely 
the density perturbations, assuming the latter to be constant 
and unperturbed. The equations of motion of the gas take 
then the form 

div v=O, p[v,'+(vV)v]=--vP (16)  

and the flow ahead of the flame front can be regarded as 
potential, putting v, = vy + $, where f ,  = V p ,  and 
V2p ,  = 0. Behind the front, on the other hand, we assume 
that v, = v; + f 2  + q, where f 2  = Vp2 and V2p2 = 0, and q 
is an "entropy wave" that satisfies the nonlinear equation 

div q=0, qt t+ ( (vz0+E2) V)q+ (qV) (E2+q) =0, ( 17) 

whereas for the potential terms we have the Bernoulli equa- 
tions 

These equations must be supplemented with boundary con- 
ditions at z = a(t,x): 

which mean invariance of the normal and continuity the tan- 
gential velocity components, and also equality of the pres- 
sures on the front. In the four boundary conditions ( 19), 
n = (n, ,n, ) = ( - sin X, cos X )  denotes the normal to the 
front, t = (t, ,t, ) = (cos X, sin X )  is a unit vector tangential 
to the front, and vJ = nu: cos x is the velocity of the front 
itself, with tan x = a:. 

The foregoing relations constitute the exact nonlinear 
formulation of our essentially subsonic problem, but the ac- 
tual calculation can be performed only by retaining small 
terms of order not higher than quadratic. We note in this 
connection that it follows from the condition V 2 p  ,,, = 0 
that 

~ , , , ( t ,  2 , ~ )  = J k) BXP(* I k I z+ikx) dk, (20) 

and if we put for brevity a = (g,, ), and f l =  (c2, ),, we ob- 
tain, by expanding in terms of the small amplitude a (A, the 
relations 

To shorten the subsequent calculations we separate right 
away the growing branch of the perturbations, using for the 
linear factors in the quadratic corrections the linear equa- 
tions 

where T = vypt. The first three boundary conditions ( 19) 
yield then 

and substitution of the entropy componeng in ( 17) yields an 
expression for the quantity G = (0: + HP: )/vy,u, which 
can conveniently be written in the form 

where we put for brevity a = (a: )' + (va: )', and also 
A = (1 + p v ) / ( l  - v). On the other hand, from the last 
condition (Sp, - Sp,), = 0 of ( 19), we obtain for the same 
quantity G the expression 

I+ pv (ffa;-,,,f) +i(? 0+2 - G=- a a '  (25) 
viO1" v X 

so that by equating (24) to (25) and substituting the value of 
a from (23) we obtain for the boundary a(r ,x)  an equation 
that can expediently be written in the form 

h 

where we have introduced for brevity the operator L and the 
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notation 

4. The resultant equation (26) can be simplified. We 
note for this purpose that its left-hand side contains the oper- 
ator of the usual Landau linear theory. ' Separating therefore 
the growing branch of the perturbation, we can assume the 
left-hand side to be equal to 

where N = 1 + (1 +,u)Y. If we now introtuce in place of 
a(r ,x)  the function ~ ( T , x )  = a  + ( pv/N) H(aa:), we ob- 
tain the equation 

h 

where we can put b : = - vHb : in the right-hand quadratic 
terms, so that actually only the function b: is contained 
here. We can therefore replace further, to the s%me quadratic 
accuracy, b : by the new function Y = b : + H(B /2N) .,, 
and arrive at the final equation for the flame front: 

Introducing in place of T, x, and \y the new dimensionless 
variables 

X=kx, k>O, T=kv.r=kvpvlot, $=Y/v, 

we obtain the equation 

where the constants C ,,, are equal to 

1+v (vpf p-') 
C, = Cp = V=P 

I+v(l+p) ' 1+v(I+p) ' 
(32) 

For C, = C, we would obtain an equation of type (7) with a 
s4ution of type p), yhile at C, = - C,, using the identity 
(Ht+b)' - t+b2 = 2H($Ht+b) and putting $ = H@:/C2, we 
would obtain the equation 

of type ( 6 ) ,  which describes a tangential discontinuity with a 
fully integrable solution of type (8). 

Unfortunately, the equation (31) for the flame front, 
with constants (32), is unsuitable for either case, and we 
were unable to solve Eq. (3 1 ) for arbitrary constants C ,,, . 

We confine ourselves therefore to the case of small v<  1, 
when the densitiesp,,, are close enough. In practice it is just 
this case, called isothermal, which corresponds to the slow 
combustion regime. In this simplified variant one can put 
C, = 1 and C, = 0, and Eq. (31) takes the form (2 )  

which was in fact considered by us above. We call this the 
nonlinear flame-front equation (NFFE). In view of its rela- 
tive simplicity one can expect it to play a fundamental role 
also in certain other problems. 

5. Let us examine this equation in greater detail and 
show that it can lead to a cellular structure of the flame. Note 
that at Y <  1 it can be approximately assumed that 
Y = ( p1 - pz)/2pl > 0 and b = a, so that in terms of the ini- 
tial variables rand x we have for the F F  and NFFE: 

which, as already noted, we were unfortunately unable to 
solve exactly. In practice, however, there is no need for this, 
for in their derivation we took into account correctly and 
fully only corrections quadratic in the amplitude, so that 
allowance for higher correction terms would be unjustified. 
To the same accuracy, for example, a solution periodic in the 
coordinate x for Eq. ( 10) leads to the following shape of the 
front: 

As T+ - oo this perturbation is exponentially small, and 
the correction to the function - cos kx is maximal at 
T = - 1; it is easily seen that this correction leads to a flat- 
tening of the crests of the function - cos kx and simulta- 
neously to a deepening and narrowing of the troughs near its 
minima, so that qualitatively we get a cellular structure of 
the flame. Let us consider supplementary examples, putting 

h 

Landau1 considered for the linear approximation 2?$, = 0 
only a solution in the form $, a eY' sin kx, but here we can 
have also another simpler soliton-type solution with a Lor- 
entz profile: 

and this solution corresponds to a steplike front shape: 

2 Z 
a, (t ,  x) = -ao x arctg - 

A(t) ' 

which takes on values f a, far from a transition region hav- 
ing a width of order Sx- A = - V,t>O. Out of a set of such 
steps it is easy to construct, by superposing linear solutions, a 
set of elementary platforms with gaps between them. Such 
solutions are apparently more typical of a flame than the 
Landau sinusoidal solutions. 

Let us consider one such platform (in other words, 
"cell"), described in the linear approximation by the equa- 
tions 

$T'+$$x'+ll~x'=O, (34) functions %, and also their powers (but not products) are 
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solutions of the equation 2 (6) " = 0, so that & should be 
written in the form 

A 

where Y D , , ,  = 0 and 6, =x,,/A, so that the functions 
f,,, ( t )  do not depend on the coordinate x.  For the quadratic 
correction ( 3 7 )  we have therefore 

and, recognizing that [ f ( r )  D, ] = Djdf /a t  V ,  
= - D,af/dA, we get 

1 
-i~.(- + arctg € l o ) ] .  

80 

In addition, the following expressions are valid: 

so that we get ultimately for the flame front the equation 

a/ao= (ai+az+ . . .)/ao=n-I (a+-a-) --A{(1+O0 arctg O r )  
Hsin 2a+-sin 2a-)  +go[ ( I + ' / ,  cos 2a++'12 cos 2a-)  

Mn (l+Bo" - (l+cos 2a+)cos 2a+- (I+cos 2a-) cos 2a-]  ), 

where 2 = ao/8$vx0 is a constant. Figures 1 and 2 show 
separately the quantities a, /ao  and a,/ao described by these 
equations, in the time interval - co < t < 0. At the instant 
t = 0 they acquire singularities that prevent consideration of 
the succeeding positive instants of time t >  0. Ths can be 
done, however, in the two-dimensional case. 

6. Before proceeding to the two-dimensional case, we 
note that the one-dimensional equation ( 3 5 )  can be trans- 

FIG. 1 .  Time evolution of the flame cell ( 4 )  with chosen parameters 
x, = 1 and A = 0.1. The numbers on the curves indicate the time in units 
of A = - V,,r. 

FIG. 2. Growth ofthe quadratic correction (43) that must be added to the 
linear solution (40) describing a single cell of the flame. 

formed into 

it is assumed that 

a ( t ,  r )  = I n ,  ( t )  exp (ikx) dk. 

It is easily seen that a two-dimensional generalization of this 
equation is 

it is assumed that 

a( t ,  x, y) = a. ( t )  erp ( ikq+ik,y)  dk, dk,,. 

We attempt next to solve this equation not by expansion in 
the amplitude, but by expansion in the eigenvectors of a two- 
dimensional periodic lattice. Such a procedure was used in 
Ref. 13 to construct a lattice made up of hexagons for para- 
metric buildup of waves on the surface of an oscillating liq- 
uid. 

Using the same procedure, we assume in our problem 
that 

where nj stands for three unit planar vectors equal re- 
spectively to 

We obtain for such a sum of the three cosines the squared 
gradient 

(V R )  2=1/zk2 ( R f  2) , Z=3-cos 2q1-c0s 2qZ--cos 2 ~ 3  
-COS ( c p i - c p z )  -COS ( ~ 2 - q ~ )  -cos (92-qs) ( 50)  
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where qj = Ik In,*r. The term Z contains here only "non- 
resonant" spatial harmonics, and can therefore be approxi- 
mately disregarded. We get then for the amplitude 

where to is a certain integration constant. In the limit as the 
time t-  - co this perturbation vanishes, A+O, and as 
t- + co the amplitude takes on a stationary value A = 4v/ 
Jk  1, and this yields stabilized honeycomb-like hexagonal 
cells on the flame front. Equation (5 1 ) coincides with Zel- 
'dovich's results5 (see also Refs. 6 and 7) obtained from 
qualitative, essentially dimensional, considerations. 

The theory developed here, in which full account is tak- 
en of all the quadratic corrections, permits thus a more r i g~ r -  
ous explanation of the experimentally observed cellular 
structure of a flame front even without introducing dissipa- 
tive terms with viscosity, heat conduction, or diffusion. 

In conclusion, the authors thank V. I. Petviashvili for a 
helpful discussion of the work. 
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