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It is shown that particles in interfering optical fields are acted upon by a radiation force that varies 
little over the light wavelength (rectification effect). In a monochromatic field the rectified force 
is of the order of the spontaneous light pressure and is mainly solenoidal. In a bichromatic field 
the rectified force is of the order of the stimulated light pressure and can be potential. The 
potential wells in tunable-laser fields can reach a depth 10 K. 

1. INTRODUCTION 

It is that a resonance light field can act effec- 
tively on the translational motion of atoms. An atom in a 
spatially homogeneous field of a traveling wave is acted upon 
by a spontaneous light-pressure field whose magnitude ex- 
ceeds fiky/2.' Here k is the resonance wave vector, y is the 
width of the upper level, and the lower is taken to be the 
ground level. 

Predominant in strong inhomogeneous fields is the gra- 
dient force due to stimulated transitions.' In a field given by 
E(r)eciA'  (A is the detuning from resonance and d is the 
dipole moment of the transition) the potential of the gradi- 
ent force of slow atoms is3 

V (r) =dE (r) /A. 

In a standing-wave field V(x) = Vo cos kx the potential os- 
cillates in space with a period n-/k and has potential wells 
with a depth on the order of fiVo with Vo-A) y. 

The hysteresis due to spontaneous relaxation produces 
also a friction force that acts on the atom and depends on the 
v e l ~ c i t ~ . ~ * ~ - ~  In the field of an intense standing wave, at 
A < 0, the atoms execute above-barrier motion, at fixed ve- 
locities (bunching in velocity space), while at A > 0 the 
atoms are captured by the potential wells of the standing 
wave. lo The velocity bunching effect and localization (chan- 
neling) of atoms in a standing wave have recently been ob- 
served in experiment. ".12 

The oscillating character of the gradient wave, how- 
ever, imposes certain restrictions on its use. We show in the 
present paper that in a bichromatic field of standing waves 
the atoms are acted upon by a force of order fikV, with a sign 
that is constant over large ( ) l /k) spatial scales. In other 
words, the radiation force is rectified in interfering fields." 
Note that rectification of a gradient force in a bichromatic 
field, with no account taken of spontaneous relaxation, was 
discussed in Refs. 4 and 5. This imposes very stringent reso- 
nance conditions on the external field (the Rabi resonance). 

We consider here another limiting case ( yt, 1 ), in 
which the spontaneous relaxation plays an important role. 
In particular, the conditions for a generalized ("global") 
Rabi r e sonan~e '~ . ' ~  turn out to be much simpler. The spatial 
structure of the rectified radiation force can be either poten- 
tial or solenoidal. This means that the atom can be localized 

2. INTERFERENCE PHENOMENA IN A MONOCHROMATIC 
FIELD 

The force acting on an atom in a resonance light field is 
given by 

f=hpV v'+ c.c., V (rt) =dE(rt)/R. (2)  

The induced dipole moment p ( t )  is determined from the 
Bloch optical equations for p and for the difference q of the 
working-level populations: 

dq - + 7 ( q f  I )  =2iV(t)p'+ C.C. 
d t  

It is assumed that the atom moves at constant velocity 
r = v(t) .  We assume hereafter that the atoms move slowly 
(kv< y)  and represent the radiation force in the form 

where f,  is the friction force and is proportional to the veloc- 
ity, while fo is independent of the particle velocity. We are 
interested mainly in the fo singularities due to the interfer- 
ence between the fields. 

We begin the study of the interference phenomena with 
the case of a monochromatic external field of the form 
V(r)e - In the zeroth approximation in velocity we have 
for the force the expression 

I is proportional to the field intensity and J has the meaning 
of the field-momentum flux. For example, in a traveling 
wave V(r) = Vo exp(l'k*r) we have VI = 0 and J = kl. In a 
standing wave V(r) = Vo cos(k*r) there is no momentum 
flux ( J = 0 )  andVI#O. 

The first term in ( 6 )  is the gradient force and the second 
is the force of spontaneous light pressure. To simplify the 
calculation we expand the expression for the force in powers 
of the field, assuming that I /lvI2 < 1: 

in deep potential wells or can rotate. f o = f o ( 2 ) + f , ( 4 ) +  . . . . (7 )  
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Linear approximation with respect to field intensity 

In second order in the field we have 

Using the wave equation for the field V(r), we readily see 
that 

div J (r) =O. (9)  

The condition (9)  means absence of local potential minima 
of the spontaneous-light pressure force (the optical analog 
of the Earnshaw theoremI6). It can be stated that the sponta- 
neous light-pressure force has a solenoidal structure. We ex- 
amine this question using as an example a field in the form of 
a superposition of several plane waves: 

The momentum flux in such a field is given by 

The interference effects of interest to us are most pro- 
nounced if there is no average momentum flux, i.e., if 

z nja?=o. (12) 
j 

The coordinate-independent component of the spontaneous 
light-pressure force is then zero. The variable part of the 
force is proportional to the double sum in ( 1 1 ) . 

If the directions of the vectors n, and nj, differ substan- 
tially, the corresponding force components oscillate rapidly 
in space, with a period - l/k. If, however, the directions of 
n, and nj, are close, Eq. ( 1 1 ) acquires a constant-sign term 
over distances much larger than l/k. 

We calculate now the "rectified" radiation force, i.e., 
the light-pressure force component which a )  varies slowly 
over the length of the light wave and b)  has a maximum 
possible value at a given field ~trength.~ '  This value is of the 
order of fiky for the spontaneous light-pressure force and of 
the order of fikV for the gradient force. 

To separate the continuous (rectified) component, we 
average the force over a spatial scale much larger than 2 ~ / k .  
We use angle brackets to denote averaging. We obtain then 
from (8)  

Obviously, the gradient force drops out in this averaging. 
The only terms left in (J) are those with I n, - n,, I < 1. 

By way of a concrete example, we consider a two-di- 
mensional field configuration in the form of a superposition 
of six fields with equal amplitudes (a, = 1 ) and directions of 
the wave vectors n, and n, ', where 

nj- (cos(2nj/3) ,  s in (2nj /3) ,  0 )  , j=l, 2, 3, 
(14) 

ni=nj+ [anj], a= (0, 0, a) ,  a&l. 

The angle between the vectors n, is 120". The system of vec- 

FIG. 1. 

tors n; is "rigidly" rotated around the z axis by a small angle 
a (relative to the vectors nj (see Fig. 1).  Obviously, the 
condition ( 12) is satisfied in this case. 

The averaged radiation force is purely solenoidal: 

<f,")(r) >=rot A, A= (0, 0, A ) ,  
I 

A (r) =A. sin %, A. - 2fiyIV0lZ 
a l v l '  ' 4-i 

The solenoidal force (15) has the scale fiky of the light- 
pressure force and oscillates in space with a period l/ak 3 1/ 
k. 

The friction force is given by 

For simplicity, oscillating terms of the type cos(p, - p;) 
have been left out of ( 16), since they do not change qualita- 
tively the picture of the motion. 

We consider by way of illustration the motion of a parti- 
cle near a node of the force ( 15 ) , when a k r  ( 1. Linearizing 
the rotational force with respect to the small displacement, 
we obtain the following equation of motion: 

where the constant C with I C I < 1 depends on the phases of 
the interfering fields. Putting x + iy - exp( - T t ) ,  we ob- 
tain from ( 17 ) 

X r=- {1~k[ l -4 i ( I '~m/x )~]" ) .  
2m 

(18) 

The character of the motion is determined by the magnitude 
of the parameter mro/tt, if Imro/xI < 1, i.e., if 

the rotational force acts little on the particle motion, and the 
particle velocity attenuates exponentially at A < 0. Note that 
for atoms with strong (allowed) transitions we have fik 2 /  

my - If a R a,, , the particle motion becomes unstable 
and the particle leaves the vicinity of the rotational-force 
node after a time t- ro- ' .  

It is thus possible to produce in a weak monochromatic 
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field a rectified radiation force having a solenoidal structure. 
By varying the angle between the propogation directions of 
the interfering fields it is possible to vary the spatial period of 
the force (f,"') . 

Quadratic approximation in intensity 

The averaged radiation force is expressed in fourth or- 
der in the field amplitude in terms of the spatial correlator of 
the intensity and the momentum flux: 

For a field in the form ( 14) we obtain thus 

(fo(')(r)>=rot A+ VU, A= (0, 0, A ) ,  (21 
S a 

where 6, are constant phases, 6, = g, 1°' - g, p' + g, ;''I, 
and 6, and C2 are obtained by cyclic permutation of the in- 
dices. 

We see that in the quadratic approximation in the inten- 
sity there appears, besides the small increment to the sole- 
noidal force, and "admixture" of a potential field. The 
depths of the potential wells are quite large: 

for I V,/vI - 1. The period of the negative relief is of the order 
of l/ak. In a monochromatic field the averaged (rectified) 
radiation force has thus a characteristic scale fiky, i.e., it is 
determined by the strength of the spontaneous light pres- 
sure. 

The Earnshaw theorem is valid for the averaged force 
only in the lowest (linear) approximation in the field inten- 
sity. In the next (quadratic) approximation the force has a 
potential component. The solenoidal force, however, pre- 
dominates. 

A different force picture appears in a bichromatic inho- 
mogeneous light field. 

3. INTERFERENCE PHENOMENA IN A WEAK BlCHROMATlC 
FIELD 

Let the external field be a superposition of two mono- 
chromatic fields with detunings from resonance A, and A,: 

v (rt) =Vo(r)e-'A~t+Vl(r)e-iA~t. (23) 

In the calculation of the force (2)  we can leave out the terms 
that oscillate at frequencies that are multiples of the differ- 
ence. Allowance for these terms leads to small oscillatory 
increments, of order 5 fik, to the particle momentum. We 
seek a perturbation-theory solution of the Bloch equations in 
weak fields, I V, /y l4  1 with 1 = 0 and 1. In the lowest order 
in intensity we have for the force and for the averaged force 
the expressions 

where I, and J, are the intensity and momentum flux in the 
I th mode of the field. In fourth order in the field we obtain 
the following expression for the averaged force: 

vl=lvll exp  XI), x=2(x1-xo). 

A new correlator (I,VI,) of the intensity-intensity type ap- 
pears in expression (25) for the force. We consider next the 
case of large detunings (A, % y )  . In this limit Eq. (25 ) takes 
the simpler form 

In a field of the form 

where the vectors n, and n; are defined by relations (14), 
there are no momentum fluxes in any of the modes: 
( J ,  ) = ( I ,  J, ) = 0. The rectified force is in this case poten- 
tial: 

We arrive at the following conclusion: interference of 
the fields V,(r) and V, ( r )  produces in a bichromatic field a 
radiation force in which the principal role is played by the 
potential component. This circumstance can be most impor- 
tant for the solution of the problem of atom localization by 
light fields. 

4. BlCHROMATlC FIELD OF FINITE AMPLITUDE 

We proceed now to consider the rectification of the ra- 
diation force in sufficiently strong fields, when stimulated 
transitions play an important role. 

We regard the field V,e - in the superposition (23) 
as "high-frequency" and assume the following hierarchy of 
the frequencies of the problem: 
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The frequencies in the right-hand side of the inequality (28) 
are taken to be slow, and the relations between them can be 
quite arbitrary. Under these conditions the action of the 
high-frequency field reduces to formation of a spatially inho- 
mogeneous Stark shift + I Vl(r) 12/Al of the atom levels. 
The question is: what is the light-pressure force if the atom is 
acted upon also by an inhomogeneous "low-frequency" field 
V,(r)? Note that the inequalities in (28) constitute the con- 
dition of the generalized Rabi re~onance, '~ . '~  which is not 
local in space, in contrast to the case considered in Refs. 4 
and 5. 

We derive first the basic equations for the slowly vary- 
ing quantities, the atom density matrix and the light-pres- 
sure force. To this end we represent the dipole moment and 
the atom level-population difference as expansions in the 
high-frequency harmonics: 

The higher harmonics of this expansion can be omitted in the 
first approximation in the parameter l/Al. From the Bloch 
equations (3) and (4) we get 

Let us substitute these quantities in the equations for the 
slow density-matrix components and omit for brevity the 
zero subscripts ofp,, q,, and V,,. The initial equations for the 
slow quantities take then the form 

d p  
i - + v (r)p=V (r) q, v (r) =A (r) +iy/2, 

d t  (3a) 

dq - + 7 (q+I) =2ipWV(r) + c.c., A (r) =A, + 21 Vi(r) I z  
dt A, 

These equations generalize the Bloch equations (3)  and (4)  
and expression (2)  for the force to include the case of an 
inhomogeneous Stark shift of the atomic levels. The effective 
detuning A(r) depends now on the coordinate, viz., it plays 
the role of a potential in expression (2a). In particular, for 
V= 0 we have U(r) = fiA(r)/2. 

Slow atoms 

We consider in greater detail the case of slow atoms 
(ku< y).  In the zeroth approximation in the velocity we 
have 

This expression generalizes Eq. (6) to include the case of the 
inhomogeneous Stark shift due to the additional high-fre- 
quency field. It must be emphasized that in Eq. (30) the 
induced light pressure is no longer a gradient of an effective 
potential. In other words, the gradient force is rectified. The 
expression for f ,  

is where q is determined by Eq. (30) and d /dt = vV. Expres- 
sions (30) and (3  1 ) become considerably simpler in the lim- 
it of a weak or strong low-frequency field V(r). 

Weak field 

Let V< y and A ( r  ) ) y. We have then 

f ,  (r) =-V U, U(r) =AA (r) 12, (32) 

and the force f ,  can be represented as a sum of the rotational 
and friction forces: 

Ay dV 
ffr = ,(- v V'+ C.C.) 

A (r) dt 

It is easily seen that v-fro, = 0, i.e., the rotational force per- 
forms no work on the particle. 

In the limit considered, the high-frequency tield pro- 
duces thus an effective potential fiA(r)/2 and the weak low- 
frequency field rotates and decelerates (or accelerates) the 
particles. 

Strong field 

Let now the low-frequency field be strong: 

V(r) -A(r) By, ku. 

Using the quasistationary approximation to obtain the di- 
pole moment, we reduce the system (3a) and (4a) to the 
formt3 

A 
f  = - -AV(A(r)e(r) ) ,  e(r)=[l+I2V(r)/A(r) 1'1%. 

2 
(35 

The force is proportional to the population difference A of 
the quasienergy states and to the quasienergy gradient 
A(r)s(r)/2. The quantity A is determined by the function 
~ ( r )  and is, generally speaking, not a function of the quasien- 
ergy. It is this which leads to the rectification-to the ap- 
pearance of a constant-sign component of the force compo- 
nent over "macroscopic" spatial scales much larger than 1/ 
k. For slow atoms (kv < y) we have in the zeroth approxima- 
tion in the velocity 

The averaged radiation force (36) is determined by the rates 
of the induced processes. We shall call it the "rectified gradi- 
ent" force. For weak saturation ( I V/A,(2 1 and A,% ( V, 1 2 /  
A, ) we have 
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We use now (37) to consider several simple examples. 
In the one-dimensional case of two standing wave, 
V(x)=Vocoskx and V l (x )=  V ,cos [ (k+Sk)x+p] ,  
Sk<k, we get from (37) 

dU 
<foz(x)  )=- - U ( x )  = Uo cos (26kx+2q),  

ax ' 

The averaged radiation force is of the order of the gradient 
force fik Vand oscillates with a period r/Sk that can exceed 
by several orders the wavelength of the light. The potential- 
well depth Uo-kfiV/Sk exceeds the usual depth fiV by a 
factor k /6k. 

In fields of tunable lasers the value of fiVis 0.01 K. For 
Sk /k- 10V3 we have Uo- 10 K. 

Rectification of the radiation force produces thus in a 
bichromatic field superdeep potential wells. 

Force rectification in the two-dimensional case 

Let a two-dimensional field constitute the following su- 
perposition of traveling waves: 

V ( r )  = Vo [exp (iknor) +a exp (ikn,r) +a exp (ikn,r) 1, 
V ,  ( r )  =V,  [exp (ikno'r+irpo) 

+ b  exp (ikn,'r+icp,) +b  exp (ikn2'r+icp2) 1 ,  

where the unit vectors ni and nl ( i  = 0, 1,2) lie in the (x, y )  
plane. We align the vectors ni with the bisectors of the first, 
second, and fourth quadrants of a Cartesian coordinate 
frame with unit vectors ex and e,, i.e., we put 
n, = 2-'/2(e, + e,), n, = 2-l1'(eX - e,) and n, = - n,. 
The vectors n,! = ni + Sn, differ little from the vectors ni,  
[ani 14 1. Note that (Sn,.n) = 0 (see Fig. 2) .  

We assume for simplicity that the coefficients a and b 
are small. The averaged force takes then the form 

( f o  ( r )  )=f { s in[k  (6n,--6no)r+ cp,  

-cpol  e. +sin [ k (6n,--6no) r+cpi-cpo1e,), 

We introduce small rotation angles ai (ai 1) defined by 
the relations Sn, = - a ,no, Sn, = aon, and Sn, = a,n,. The 
vector detunings entering in the force (39) are then given by 

FIG. 2. 
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By varying the angles ai we can control the vector detun- 
ings. We note the following two qualitatively different situa- 
tions: 

Potential field 

If a, = - a, and a, = - a,, a potential force field is 
produced, with a potential 

f U ( r )  = 2''2ak [ -COS (-2'haokx+cp,-~o) 

+cos (2'"aoky+cpl--cp,) I, (40) 

The well depths are of the order off /kao) fi Vo and the peri- 
od is 2112r/a0k. 

Solenoidal field 

If a, = a, and a, = a,, we have the case of a solenoidal 
field: 

( f o ( r ) > = r o t A ,  A=(O, 0, A ) ,  (41 

A=--- - -  [cos (2'aoky+cp,-cpo) +cos (-2'I1a0kx+cp,-9.) 1. 
2'"u0k 

Such a force causes particle rotation. The characteristic fre- 
quency of the rotation can be determined from the linearized 
equation of motion of the particle near a node of the force 
(41): 

where f is defined in (39). We have used here as the friction 
force the retarded gradient force'' for Vi/Ao < V: /A ,. 

If the field is not very weak, namely, 

the rotation frequency (x + iy a exp(if2t) ) is given by 

The particle rotates with a frequency no,  and the rotation 
radius increases slowly iff > 0. 

Thus, by varying the directions of the light rays, one can 
obtain either a potential or a solenoidal force field. In the 
general case, of course, the rectified radiation force (39) is 
some combination of a potential and a solenoidal field. 

5. CONCLUSION 

We have shown that field interference causes rectifica- 
tion of a radiation force. In a monochromatic field the recti- 
fied radiation force is of the order of the spontaneous light- 
pressure force, in which case the solenoidal component 
predominates. In a bichromatic field one can produce a rec- 
tified radiation force in which the potential component pre- 
dominates. Superdeep potential wells are produced, 1/ 
a- lo3 times larger than the characteristic depth fiV. Such 
wells can be used for prolonged localization of atoms in a 
light field. 

"This was briefly reported in Ref. 13. 
"To avoid misunderstandings, we note that not all continuously varying 

gradient.force is rectified. For example, in the field of a light-beam field 
V,,(x, y)e'h' having an amplitude V,,(x,y) and varying over a length 1 (kl 

1 )  there is no rectification, since thegradient force VI Y,,(x,y) 12A1v12 is 
small in respect to the parameter l/kl compared with the maximum 
possible value k I V,,/*A/lv12. 
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