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The influence of a spatial-temporal inhomogeneity of a strong optical field on the electron 
dynamics and on the spectrum of above-threshold ionization is investigated. A modified two-step 
modelofphotoelectron ionization and detection is formulated and is based on the premise that in 
an optical field the electron oscillations follow the translational motion adiabatically. The peak 
widths and shifts produced in the above-threshold ionization spectrum by the spatial and 
temporal inhomogeneity of the light pulse are calculated. It is shown that the suppression of the 
low-energy channels is relative in character; in short pulses the suppressed peaks become 
superimposed in the low-energy part of the spectrum. 

1. INTRODUCTION 

A distinctive feature of above-threshold-ionization 
(ATI) experiments is that the ionized electron is found to be 
in a strong nonstationary field of the focused pulsed-laser 
radiation. Nonlinear scattering by this field (the Kapitza- 
Dirac effect'.') alters the initial momentum and energy of 
the electron. In the classical description of the field, the 
photoelectron is scattered3 by a ponderomotive potential 
( f i = m = e = 1 )  

U (x, t )  =EZ (x, t )  / 4m2 ,  (1)  

where E(x,t) is the amplitude of the field of frequency w. 
This scattering must be taken into account for an adequate 
description of the experimental AT1 data. The influence of 
the potential ( 1 ) on the electron motion was directly con- 
firmed by an experiment4 in which reflection of the electron 
from the light focus was observed. 

The energy spectrum of the AT1 ionization constitutes 
a succession of peaks separated by the photon energy. The 
spectrum structure depends relatively weakly on the type of 
atom, but is sensitive to the properties of the laser emission. 
In long pulses, the peak positions do not depend on the emis- 
sion intensity. As the intensity increases, the low-energy part 
of the spectrum is suppressed and each peak is broadened. 
Decreasing the pulse duration shifts the peaks towards lower 
energies and changes their widths. 

Starting with Ref. 5 (see also Refs. 6-8) the AT1 theory 
makes use of a two-step model in which the elementary ioni- 
zation act is calculated in a locally homogeneous field, while 
electron acceleration in the potential ( 1 ) is taken into ac- 
count in the region away from the focus. 

The ionization probability in a long pulse was calculat- 
ed in Ref. 9 with wave functions that take accurate account 
of the ponderomotive acceleration. In the physical picture 
corresponding to these functions, the electron translational 
motion is determined by a ponderomotive potential, while 
the oscillations follow adiabatically the field variation due to 
the electron displacement in space. It has been found that the 
energy relations in both models are formally identical but 
differ in the physical meaning of the quantity U = E '/4m2. 
In the two-step model this quantity is regarded as the aver- 
age electron-oscillation energy in the optical field in the 
treatment of the elementary act, and of the potential energy 
(1) during the stage of departure from the focus. In the ap- 

proach of Ref. 9, Uenters only as the potential energy of the 
electron translational motion. The models differ essentially 
in the mechanisms that suppress the channels. In the first 
case the suppression of the low-energy peaks is due to the 
increase of the ionization potential by an amount equal to the 
oscillation energy, while in the second case it is due to the 
inability of an electron with energy lower than that of the 
potential barrier to penetrate into the classically inaccessible 
r e g i ~ n . ~  

Within the framework of the two-step model, the phys- 
ical reason for the shifts and widths is that the decrease of the 
photoelectron kinetic energy as a result of the increase of the 
ionization potentiallo is not completely offset by its subse- 
quent increase by the ponderomotive acceleration on leaving 
the focus. To our knowledge the latter mechanism has not 
been taken into account in any calculations of the shape of 
the peak. The results of numerical simulation" demonstrate 
the presence of shifts and widths, but cannot explain their 
dependences on the field parameters. 

Mechanisms other than ponderomotive can produce 
shifts and widths, but will not be considered here. The width 
contribution due to the uncertainty relation AEAt- 1 in the 
elementary act is too small compared with the observed 
quantities, and the influence of the residual space charge" 
comes into play only at high densities of the atomic target. 

We describe here a modified two-step model in which 
the elementary ionization act is regarded in the spirit of the 
adiabatic approach9 extended to include the case of pulses of 
finite duration (Secs. 2 and 3 ) .  General expressions are ob- 
tained for the peak profile due to the spatial and temporal 
inhomogeneity of the field (Sec. 4).  The peak shifts and 
widths are obtained for a Gaussian envelope of the field in 
the limiting cases of long (Sec. 5) and very short (Sec. 6) 
pulses. In Sec. 7 is discussed the constant-flight-velocity ap- 
proximation for calculations of the spectrum shape. The re- 
sults of Secs. 5-7 are compared in Sec. 8 with the experimen- 
tal data of Refs. 13 and 14. 

The use in Sec. 3 of the transition probability per unit 
time to describe the elementary act presupposes the absence 
of ionization saturation. Allowance for this factor in the evo- 
lution of the spectrum may be essential and requires a sepa- 
rate analysis. 

We use a one-dimensional model in which the electron 
moves along the linear field polarization that coincides in 
direction with the field inhomogeneity. 

, . 

53 Sov. Phys. JETP 68 (I), January 1989 0038-5646/89/010053-06$04.00 @ 1989 American Institute of Physics 53 



2. ELECTRON IN AN OPTICAL FIELD 

A ponderomotive potential enters in the analysis of 
electron motion in a weakly inhomogeneous optical field 
E(X,t) cos wt through the use of the method of averaging 
over fast  oscillation^.'^ The coordinate X and the general- 
ized momentum 9 of the electron are represented as sums of 
slow translational and rapid oscillatory terms: 

The vibrational and oscillatory motions can be effectively 
separated if the characteristic dimension R and time rint 
which characterize the translational motion are respectively 
large compared with the oscillation amplitude and with the 
optical period: 

At such a substantial difference between motion scales, it is 
natural to assume that the oscillations are determined by the 
local value of the field amplitude at the center of the oscilla- 
tion, and when the electron moves along the translational 
trajectory x ( t )  the oscillations follow adiabatically the 
changing conditions: 

E (2 (t), t) 
- cos ot. 

o2 

We shall consider below the properties of electron motion in 
an optical field in the framework of the adiabatic picture 
(4) .  A quantum description of the motion, in the same ap- 
proximation, is given for a stationary field in Ref. 9. 

Application of a standard procedureI5 to the equations 
of motion that follow from the exact Hamiltonian 

with a field vector potential 

A = -  cE ( X ,  t) sin at, 

leads to translational-motion equations corresponding to a 
Hamiltonian 

p2 H(p,x, t)=-+ U(x, t). 
2 

The oscillation dynamics is described in the adiabatic pic- 
ture by the equations 

. E ( x ,  t )  jt=0, g =- sin ot, 
o 

from which are omitted terms that add to the solutions only 
small corrections ( - g / R ,  - ~/wT, ,~  ). In the integration of 
the fast equations ( 7 )  the field amplitude is assumed con- 
stant and the values averaged over the optical period are 
assumed to be zero: 

Equation (7) leads thus to (4)  and to pg = 0, the latter 
meaning that in a weakly inhomogeneous field the general- 
ized electron momentum is equal to the translational mo- 
mentum. 

The Hamiltonian (6)  depends explicitly on the time, 

and the translational energy is strictly speaking not con- 
served. Since the potential energy in (6) has a temporal scale 
on the order of the pulse duration T, one can speak only of 
approximate conservation of the translational energy during 
time intervals shorter than T (as discussed in the present 
section below and in Secs. 3 and 5).  An electron in an oscil- 
lating optical field can be ascribed an energy equal to (H, ). 
Since (H, ) = H(p,x,t) in the approximation considered, 
one can speak to equal accuracy of a "dressed"-electron en- 
ergy equal to the translational energy. The fast-motion ener- 
gy should be assumed to be zero. The reason is that the non- 
oscillating part of the exact Hamiltonian 

is included, in the form of potential energy, in the slow-mo- 
tion Hamiltonian. 

Solution of the equations of motion with a Hamiltonian 
(6)  and with a gradient force 

together with the boundary conditions (to, x,, p,), yields the 
time dependences of the coordinate x ( t )  and momentum 
p ( t )  of the translational motion. In our units, the velocity is 

v(t)-i(t) =p (t) .  

The asymptotic ( t 3 r i n t  ) value of the momentum p deter- 
mines the kinetic energy of the free electron, no longer inter- 
acting with the optical field, recorded by the detector. The 
change of the kinetic energy can be expressed in the form of 
the work performed by the force (8)  along the trajectory 

The difficulties encountered in the solution of the slow-mo- 
tion equations and in the determination of the work (9)  are 
due to nonconservation of the time-dependent gradient 
force. 

The character of the translational motion and the mag- 
nitude of the work (9)  depend substantially on the relation 
between the time R /v of emergence of the electron from the 
focal region and the pulse duration T (Ref. 16). The time of 
electron interaction with the optical field is equal to the 
smaller of the two: 

If R /UT< 1, the long-pulse regime is realized: the electron 
traverses the focus so rapidly that no explicit dependence on 
the time manages to manifest itself in the field amplitude and 
in the force (8).  The motion is close to conservative. In the 
intermediate case R /VT- 1 the light pulse is short and the 
time dependence cannot be neglected. The strong inequality 
R /UT) 1 (ultrashort pulses) means that the electron dis- 
placement during the time of the light pulse is small. In this 
limiting case the electron is moved by a force f (x,, t )  that 
depends only on the time. 

If it turns out in the latter case that the momentum 
increment Ap- fr is short, and the conditions 
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are simultaneously met, the free electron momentum is 
equal to the initial value. Since the translational momentum 
is equal to the generalized momentum, the inequalities ( 1 1 ) 
determine the conditions under which the action of an opti- 
cal field bounded in space and in time can be regarded as an 
adiabatic application of a spatially homogeneous field. 

3. ELEMENTARY IONIZATION ACT 

We describe ionization of an atom by means of the prob- 
ability w, , per unit time, of a transition from a bound state of 
energy E, to a continuous spectrum, accompanied by ab- 
sorption of n photons. If an atom located at a point x, is in a 
bound state at an instant of time to, its ionization takes place 
in the same way as in a homogeneous monochromatic field of 
amplitude E(x,, to). At distances Ax and times At satisfying 
the conditions 

the field amplitude has not yet changed, but the electron no 
longer interacts with the atom and has an energy determined 
by the conservation law 

The excess of the energy of n photons over the ionization 
potential (the channel energy E, = nw + E, ) is transformed 
in the optical field into an electron energy equal to the trans- 
lational energy. The role of the fast oscillations reduces to 
the appearance of the term nw in ( 13). The left-hand side of 
( 13) can be represented as the sum of the kinetic and poten- 
tial energies only in the semiclassical description of the 
translational motion, while the constancy of the energy is 
due to the approximation conservation of the translational- 
motion energy over short time intervals. The quantities to, 
x,, andp(x,, to) introduced above determine the initial con- 
ditions for the motion of an ionized electron in an optical 
field. 

The central part of the focus is classically inaccessible to 
an electron having an energy lower than the height of the 
ponderomotive barrier. The probability, in the nth channel 
(E, < U,) of ionizing an atom located between the turning 
points x, of this channel is practically zero in view of the 
exponentially small overlap of the localized initial state and 
the final-state wave function in the ponderomotive potential 
(Fig. 1 ). For atoms in the region classically accessible to the 

FIG. 1. Mechanism of suppression ofbelow-barrier channel: l-pon- 
deromotive potential, 2-wave function of bound state E, of an atom 
located at the point x,,, 3-wave function of final state with energy e,, ; 
x,, is a turning point. 

nth channel potential we shall assume a power-law probabil- 
ity with a large nonlinearity exponent i i )  1, as is usually the 
case in the multiphoton limit.'' In perturbation theory we 
have ii = n, but no such equality obtains in the other mod- 
e l ~ . ' , ~ , ' ~  Ultimately we have 

A quantum-theoretical verification of the ionization-chan- 
nel suppression mechanism ( 14) is given in Ref. 9 for a sta- 
tionary beam (R / v r - + O ) .  The slow time variation of the bar- 
rier height leads to motion of the turning points, but does not 
alter qualitatively the damped behavior of the electron wave 
functions in the below-barrier region. The generalization of 
the result of Ref. 9 to include a nonstationary case is there- 
fore justified. 

4. PHOTOELECTRON SPECTRUM 

The number of electrons produced when n photons are 
absorbed in a time dt, in a volume dx, by ionization of a gas 
of density c, is 

dN,=c,w, (so, to) dxodto. (15) 

As seen from (13), in the elementary act all the electrons 
produced have the same energy, equal to the channel energy. 
In the succeeding large-scale motion (Sec. 2) in a nonsta- 
tionary potential the energy is not conserved and it follows 
from (8 )  and ( 13) that the electron energy recorded by the 
detector is 

E=E,--U (xo, to) + ( ~ o ,  to), (16) 

and depends not only on the creation place and time, but also 
on the motion at later instants of time, since the last term of 
( 16) is integral in character. The energy spread is due both 
to the inhomogeneity of the potential and to the difference 
between the work values. We shall show below that the spec- 
trum is formed mainly in a narrow range of variables (x,, to) 
in which it is convenient to represent the energy ( 16) in the 
form 

with separation of the homogeneous ( 8 )  and inhomogen- 
eous [y(x,, to) ] parts that determine the shift and broaden- 
ing of the peak, respectively. 

The distribution of the detected electrons in energy is 
obtained by transforming in ( 15) from the variables (x,, to) 
to the variables (E, y )  with the aid of ( 16) or ( 17): 

The choice of the variable y is arbitrary and is governed by 
convenience considerations; in particular, we can put y = x, 
or y = to. 

If 

the electrons produced in different space points and times 
(x,, to) can reach the detector with equal energies by absorb- 
ing different numbers of photons. In this case it is necessary 
to sum the contributions of different channels (see Sec. 6). 
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Owing to the high nonlinearity of the probability, the 
main contribution to the integral in ( 18) is produced near 
points where maximum channel intensity is reached. For 
above-barrier channels, this intensity is equal to the maxi- 
mum intensity of the light pulse and is reached at the point 
x, = 0, to = 0. For a partially closed channel, the maximum 
channel intensity is reached near a turning point and is de- 
termined by the condition U = E, . It is independent of the 
maximum light-pulse intensity. It follows therefore that the 
number N, of electrons in the partially closed channel does 
not depend (or depends weakly) on the maximum light- 
pulse intensity. Once the nth channel becomes below-bar- 
rier, the electron-production rate w, ceases to increase, but 
in above-barrier channels the nonlinear increase of the prob- 
ability continues until the light-pulse intensity reaches its 
maximum. The channel suppression thus has a relative char- 
acter,I3 but owing to the high nonlinearity of the ionization 
the electron fraction in the suppressed channels is small.9 

5. LONG PULSES 

In the zeroth approximation in the parameter R / v r 4  1 
one can neglect the change of the force during the exit of the 
electron from the focus, and put t = to by virtue of (8). The 
translational motion becomes conservative, and the work of 
the gradient force is exactly equal to the initial potential en- 
ergy. The electrons resulting from an n-photon transition are 
thus detected, as follows from (16), with equal energies E, 

regardless of where and when they were produced. In this 
approximation, the spectrum has an infinitesimally thin 
peak at the energy E,, with an area determined by the total 
number of electrons in the given channel: 

To determine the work performed, with account taken 
of the corrections for the parameter R / v r  4 1, we expand the 
force (8) in powers ( t  - to) of the explicit time, and to cal- 
culate the work (9)  we use the x ( t )  dependence obtained for 
the potential motion. Integration by parts yields 

se (50, to) =U(xo, to) +ti&(') (z0, to), (20) 

where 

The sign of the nonstationary correction is determined by 
the sign of the derivative dU/dt at the instant of the photo- 
electron creation. The electrons created on the leading front 
of the laser pulse are accelerated as they leave the focus more 
strongly than in potential motion, since the force is in- 
creased. On the contrary, electrons created on the trailing 
edge are detected with an energy lower than E, (Ref. 4). The 
largest number of electrons is created at the instant to = 0 
and at maximum intensity, but have S d " ' ~ 0 .  Thus, in a 
long pulse that is symmetric in time the electron peak is 
broadened symmetrically near the energy E, . The shift of the 
peak position is of second order in the small parameter R /vr. 

Consider the case of a Gaussian pulse 

u(x, t) =Uo exp ( - X ~ / R ~ - ~ ~ ~ ~ )  (22) 

and of fully open ionization channels: E, > U,. Owing to the 
high nonlinearity of the probability (14), the bulk of the 
electrons is produced at 

In this space-time region expression (2 1 ) can be easily cal- 
culated and leads to a detected-electron energy 

where v, = { 2 ( ~ ,  - u ~ ) } " ~  is the initial velocity of the 
photoelectron in the region (23). If the barrier height U, is 
close to the channel energy E, , the interaction time is length- 
ened and the energy spread is increased. Expression (24) is 
not valid for E, - Uo( U,, when the exit time becomes lo- 
garithmically large. 

Using relation (24) in (18) and integrating over the 
atom positions, we obtain the shape of the electron peak 

with a width equal to 

Expression (26) determines the dependence of the width on 
the laser-emission characteristics and on the degree of non- 
linearity. In long pulses, the peak width is a small fraction of 
the height of the ponderomotive barrier, and the peaks do 
not coalesce (r, <a) even in strong fields with Uo/w > 1, 
when a certain number of channels is suppressed. 

6. ULTRASHORT PULSES 

In the ultrashort-pulse regime, vr/R 4 1 and the elec- 
tron is practically stationary during the time of interaction 
with the light pulse. When calculating the work (9)  we can 
put in the forcex(t) z x o  and represent the momentum as the 
sum of the initial momentump, and the increment acquired 
by the action of the force f (x,, t) .  Equation (9) is then 
transformed into the obvious expression 

(xo, to) = 
(PO+AP)' poa -- 

2 2 '  

where 
m 

The work (27) is a quantity of first order of smallness in v r /  
R 4 1 with a velocity value v = p, + Ap. 

We consider first channels with E, > Uo, which remain 
above-barrier during the entire laser pulse. The maximum 
probability is reached in them at xo = 0 and to = 0, and it 
follows from ( 16) and ( 17) that 

where d (x,, to) is determined by (27) and (28). All the 
above-barrier peaks are shifted towards lower energies by 
the same amount. The lowest of them lands in the energy 
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region 0 < E < W, where the threshold channel corresponding 
to absorption of a maximum number of electrons was locat- 
ed in the case of long pulses and weak fields. 

We shall analyze the peak broadening for the Gaussian 
envelope (22). In the multiphoton limiting case, we can con- 
fine ourselves in expression (9)  for the work in the signifi- 
cant region (23), to the term linear in Ap for all channels 
with the possible exception of the first below-barrier one. We 
have then 

In this region d-a, U,/ii 'I2, while the spread of the po- 
tential energy is 6 U  = U, - U(x,, t,) - U,/ii; consequently 
the relative contribution of these two terms to the broaden- 
ing is determined by the dimensionless parameter a, ii '/'. In  
the case 

we can neglect the work in (29). This means that the ob- 
served quantity is the distribution in the initial kinetic ener- 
gies, a distribution not distorted by the influence of the pon- 
deromotive scattering (cf. Ref. 1 1 ). At the instant of 
creation the electron has an energy equal to the channel en- 
ergy en (Sec. 3). It moves subsequently in the optical field 
without energy conservation, since the external field is rap- 
idly turned off whereas the momentum remains constant. 

In Sec. 2 we formulated the conditions for approximate 
momentum conservation ( 11 ), in which it was implied that 
the motion is characterized by distances - R and by a force 
f- U,/R. When the strongly nonlinear ionization spectrum 
is calculated, the effective dimension with which the shift UT 

is compared becomes -R /ii 'I2, and the force becomes 
f- U,/(Rfi I/ ' ) .  As a result, the conditions for observing an 
undistorted spectrum differ from the adiabatic-switching 
conditions: the first in ( 11 ) becomes more stringent, and the 
second less so. 

It follows from ( 18) and (29), subject to the condition 
(3  1 ), that the distribution in energy takes in the below-bar- 
rier channel the form 

This equation describes an asymmetric peak with a maxi- 
mum near t, = E, - Uo and smeared out on the high-ener- 
gy side. Formally, the electron energies are contained in the 
interval t, < E < E, , but since ii $1 the distribution decreases 
rapidly and has a width 

which is independent of the form of the light pulse. The 
peaks do not coalesce in the considered multiphoton limiting 
case (I?, < w). 

A detailed analysis of relations ( 16)-( 18) and (9),  
with account taken of terms of second order in a, < 1 and 
with arbitrary value of the parameter a, ii 'I2, leads to a posi- 
tive correction -an 2Uo for the shift S and to the following 
expression for the width: 

If a, ii ' I2 < 1, Eq. (34) goes over into (33 ). When a, in- 
creases the contribution of the work to (29) becomes domi- 
nant and the peak becomes symmetric. Let the initial veloc- 
ity be along the x axis. The electrons created on the right of 
the center of the focus ( x ,  > 0)  are accelerated, and those on 
the left (x, < 0) are decelerated by the gradient force. 

A few remarks concerning the below-barrier channels. 
The electrons are created in them, with overwhelming prob- 
ability, near the turning points (Sec. 2), and have therefore 
low initial kinetic energies ( < 0). Since the initial electron 
momentum changes insignificantly in very short light 
pulses, the contributions of all the partially closed channels 
are summed in the low-energy spectral region. The main 
contribution to this sum is made the uppermost below-bar- 
rier channel, and can be comparable with that of the lowest 
above-barrier channel. 

7. CONSTANT-FLIGHT-VELOCITY APPROXIMATION 

The work can be easily calculated for any value of the 
parameter R / v r  by assuming the electron velocity con- 
stantI4 and by putting in (9)  

In the case of the Gaussian envelope (22), the answer is 
expressed in terms of the error integral. We present its limit- 
ing expression for the region lxol <R and It,l ( r .  The homo- 
geneous shift is equal to 

and the inhomogeneous part of the shift, with account taken 
of only the terms linear in x,/R and t,/r, takes the form 

and leads in accordance with (18) to a Gaussian peak of 
width 

In the limiting cases of long and ultrashort pulses, ex- 
pressions (35)-(37) differ only by the definition of the ve- 
locity from the corresponding results of Secs. 4 and 5 for 
above-barrier channels. Since terms quadratic in (x,, to) 
have been left out of (36), the region of validity of Eqs. (36) 
and (37) on the short-pulse side is limited by the condition 
ur/R > 2ii ' I 2  [see the discussion following Eq. (3  1 ) 1 .  

The constant-flight-velocity approximation is justified 
if the initial and final electron velocities are close and it is 
immaterial which one is used in the definition of u, i.e., if 
Ap <p,. This condition is equivalent to the inequality E, $ U, 
(it is satisfied by only high-lying above-barrier channel) in 
the case of long pulses, and to the weaker inequality an U d  
(6  ' I2u2 )  < 1 in the case of short ones. Under long-pulse con- 
ditions, for above-barrier channels with energy on the order 
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TABLE I. Comparison of experimental and theoretical widths T and shifts S of the photoelec- 
tron peaks (7, = 50 ps). 

of the barrier height (these are precisely the channels in 
which the largest number of electrons land), and all the 
more for below-barrier channels (at any pulse duration), the 
initial and final velocities differ insignificantly and the con- 
stant-flight-velocity approximation can no longer be used 
for quantitative calculations. One can hope, however, for a 
suitably defined velocity v, that expressions (35) and (37) 
will yield reasonable interpolation equations. Comparison of 
(37) with (26) and with (34) shows that (37) can be used 
for all above-barrier channels by assuming the velocity v to 
be equal to the initial one. 

8. CONCLUSION 

Shifts and widths of electron peaks under conditions of 
negligible ionization saturation and space charge were mea- 
sured in Refs. 14 and 15. (The influence of saturation on the 
above-threshold ionization spectrum may turn out to be im- 
portant and calls for special consideration.) Xenon atoms 
were ionized by Nd-laser radiation (0 = 1.17 eV) at a maxi- 
mum intensity 7.5.10" W/cm3 ( Uo = 0.79 eV) . The focal 
radius in the experiment was R = 14pm (field-envelope ra- 
dius f lo  = 2 ' " ~  = 20 pm),  and the pulse durations were 
T, = 136 ps and T, = 50 ps. The effective pulse duration T, 

is connected with the Gaussian-envelope parameter T by the 
relation T, = IT~/'T. 

Just as in Refs. 13 and 14, we assign to the channels 
integer numbers 0, 1,2 ,..., i.e., we put n = 11 + S. The chan- 
nel S = 0 has an energy E, = 0.6 eV lower than Uo, and does 
not appear in the experiment. The initial electron velocity is 
us = { 2 ( ~ ~  + SO - u ~ ) ) ' / ~ .  The parameter u,T/R 2 1 for 
all the observed peaks, with the exception of the case S = 1 
and 7, = 50 ps. 

Table I lists the values of the shift S and of the full width 
at half maximum T, obtained from experiment and calculat- 
ed using Eqs. (34), (26), and (35). (One-dimensional cal- 
culations can be used in the three-dimensional problem be- 
cause of the sharp directivity of the angular distribution in 

8-4 

-0.12 
-0.10 

the direction of the linear polarization.19) The table demon- 
strates the reasonable agreement between the theory and ex- 
periment. 

In the ultrashort-pulse region, the widths obtained 
from Eq. (33) agree well with the experimental data of Ref. 
20,vis., r,,,,, -0.20 eV and re,, -0.26 eV for Uo = 1.6 eV 
a n d n = 8  (S= 1). 

Comparison with the experimental data leads to the 
conclusion that the broadening in above-barrier ionization 
spectra is due in the main to the space-time inhomogeneity 
of the optical field. 
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