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An investigation is made of the photoionization of Rydberg atoms in a strong electromagnetic 
field. An allowance is made for the level degeneracy in respect of the orbital momentum, for the 
Stark splitting of the levels, and for the possibility of a resonant interaction with levels of lower 
energy. The complex quasienergies of the system, the spectrum of photoelectrons in the limit of a 
long interaction, and the time-dependent total ionization probability are found. It is shown that 
narrowing of quasienergy levels occurs in a strong field. The quasienergy spectrum consists of 
more or less narrow levels against the background of a quasicontinuum. The photoelectron 
spectrum acquires then many peaks. An increase in the field enhances the amplitudes of the peaks 
and reduces their width. The rate of ionization decreases on increase in the field. The presence of a 
continuum is responsible for the partly nonexponential nature of the decay of such atoms. 

1. INTRODUCTION 

We report here an investgation of the photoionization 
of Rydberg atoms in a strong electromagnetic field general- 
izing directly an earlier study' of the case of a weak field. The 
criterion of a strong field is determined by the magnitude of 
the matrix elements for bound-free transitions. In the semi- 
classical range, where n $ l  and E< 1 (n is the principal 
quantum number of a Rydberg level and E is the energy of an 
electron in the continuum), it is known2v3 that 

where Vn, are the matrix elements of the operator 
V = - +d-F,; d is the dipole moment of an atom; F, and w 
are the amplitude and frequency of the field; w > nP2/2; here 
and later we shall use the atomic system of units. A field is 
strong if V >  1 and we shall assume that this condition is 
satisfied. We shall adopt two formulations of the problem: 
the problem of complex quasienergies with real and imagi- 
nary parts governing the position and width of quasienergy 
levels in a strong field, and the initial problem with instanta- 
neous activation of the interaction at t = 0. In the latter case 
we shall consider the dynamics of the ionization process and 
the energy spectrum of photoelectrons in the limit ,of a pro- 
longed interaction. 

It is well known4 that in a weak field a perturbation of a 
level En that is degenerate in respect of the orbital momen- 
tum I, can be described by a matrix Q I,'!' a F: . Its real part is 
proportional to the polarizability tensor a;,"), 
(ReQ I,'!' = - +a:i!'F: ), which governs the modification of 
a multiplet in a nonresonant field. The imaginary part of 
Q ::', which differs from zero for w > n-2/2, determines the 
ionization broadening of the levels. If we write down expli- 
citly the usual expression for a:,'!' in the form of a sum over 
intermediate states In') and expand the energy denomina- 
tors in powers of ]En - En, l /w,  we can readily estimate the 
first two nonzero terms of this expansion. The first of them is 
dominated by contributions characterized by n' close to n. 
Calculations carried out using the sum rule5 give the familiar 
result 

[Re Q!:? ] ' " '= ' l r6 , ,~  Foza-". 

In this approximation the polarizability tensor is diagonal 
and it determines the general shift of all the Rydberg levels 
by an amount equal to the average energy of oscillations of 
an electron in the field of a wave. This shift does not affect 
the dynamics of the ionization process. It can be included in 
the definition of the energy E n ,  which we will henceforth 
assume. A calculation of the correction to [ReQ //']"' by 
means of an expansion in terms of IE, - En. ( / w  meets with 
certain difficulties because the corresponding sum over n' 
diverges at high values of In' - n I. This can easily be demon- 
strated if the matrix elements V,,. are described by semiclas- 
sical expressions analogous to those given by Eq. ( 1 ) [see 
Refs. 2 and 31 : 

The divergence of the sum which gives [ReQ I,'!']"' 
demonstrates that in fact the expansion IE,. - En J/w is not 
correct and [ ReQ :,'!'I ''I is dominated by the contribution of 
the range IE,. - En I -w. Nevertheless, we can estimate 
[ReQ :,'!'I ' ' I  using this incorrect expansion, replacing the 
sum over n' with an integral which we cut off at 
(En. - En I -w.  The result is then 

[Re Q::: 1"' a VZn-S a Im Q!;! ( 3  

Therefore, the main contribution to [ReQ :,'!'I ( I '  

comes from transitions via levels which are far from the ini- 
tial one: In' - nl -n. If n$1 the matrix elements of such 
transitions are semiclassical [Eqs. ( 1 ) and (2) ] and it fol- 
lows from Ref. 3 that they depend weakly on the quantum 
numbers n and 1. A weak dependence on n is observed if the 
characteristic number An of the Rydberg levels of interest in 
the vicinity of the initial value n, is small compared with no: 
An (<no. The weak dependence on 1 occurs for 1 < n;l3 (Ref. 
3). It follows also that if n$l ,  the matrix 
[ReQ ;,'!'I "' + i Im Q can be described by a single com- 
plex constant Q,: 

[Re Q~I: ' ] (~)+~ Irn Q,';) 
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where the structure of the factor in the square brackets is 
governed by the selection rules given in Ref. 6. 

The most stringent of the above conditions of validity of 
the approximation described by Eq. (4)  is I < n;". If no is not 
too large, then nil3 is slightly greater than unity ( n p - 6  
when no- 10). This is clearly the reason for the dependence 
of the elements of the matrix Q on I, detected in numerical 
calculations in Ref. 7. In the subsequent analysis the as- 
sumption of a weak dependence of the elements of the matrix 
Q on I is unnecessary and we shall therefore describe the 
matrix Q by a set of complex constants Q j,'!' a V2n; a F i ,  
where the relationship between I ' and I is given by the selec- 
tion rules I '  - I = 0, + 2. However, many formulas and ex- 
pressions are generally very cumbersome. We can simplify 
them using the approximation of Eq. (4),  which is formally 
valid only if no is very large. 

The weak dependence of Q :;t' on n is on the other hand 
extremely important in our subsequent analysis. We shall 
assume that Q 1:' =: Q jp'. The dependence Q I,'!' ( n )  has not 
yet been investigated numerically for Rydberg levels. Natu- 
rally, this dependence cannot be weak under conditions of a 
resonance between a level En(, and a lower Rydberg level 
EmC, =En,, - w. The resonant interaction will be included ex- 
plicitly in the equations and solutions; we shall assume that 
the maxtrix Q is governed by the sum ofjust the nonresonant 
terms. 

In a strong field characterized by V >  1 we have to in- 
clude also the elements of the matrix Q between Rydberg 
states with different values of n. We shall assume that all 
such matrix elements Q,.,,,,, are characterized, irrespective 
of the values of n and n'-no, by the same set of complex 
constants Qas. Moreover, in a strong field when V >  1, the 
corrections to Q,,. , of higher order in V2 may become impor- 
tant and in the final analysis this results in renormalization 
of the constants Q,. . One of the models describing the renor- 
malization effect V 2  + T- V, based on the method of "essen- 
tial states"' and allowing for multiple transitions to the con- 
tinuum, was discussed in Refs. 9 and 10. We shall not specify 
here the renormalization model. We shall assume that the 
constants Qll.  are determined allowing for the renormaliza- 
tion effect and that they are growing functions of the param- 
eter V of Eq. ( 1 ), which are not necessarily quadratic, in 
contrast to the weak field case described by Eq. (3) .  

3. COMPLEX QUASIENERGIES 

We shall assume that an atom at a Rydberg level E,, 
experiences a field of frequency w > f n; ' .  The ionization 
process results in secondary population of the Rydberg lev- 
els En close to the initial level E,rc,. We shall assume that 
there may be a resonance with lower Rydberg levels Em (in 
the vicinity of E,,,<, -- E,, - a ) .  Expanding the wave function 
of an atom in terms of the basis functions of the levels En and 
Em and of the continuum, and excluding from the equations 
for the amplitudes the probabilities of finding an atom in the 
continuum (employing the standard method of Refs. 11- 
13), we obtain equations with constant complex coefficients 
for the amplitudes of the probabilities of finding an atom at 
the levels E,, and Em.  We shall seek the solution of these 
equations in the form exp( - iyt), where y is a complex qua- 
sienergy. The resultant equations for the amplitudes C,, and 
Cm, are 

n ' l '  m,l'-l*l 
( 5 )  

1 
(y-~~-m)C,, = ~ Q ~ ~ ~ c ~ ~ , ~  +(norno)-% Vl,Cn,l., 

m ' l '  n ' , l P - l f l  

where Q,,. and a,,, are the elements of the matrix Q for the 
Rydberg levels in the vicinity of En<, and Em<,, respectively, 
and V,,. - V in Eq. (1).  

The assumption that the constants Q, , . ,  ~,, .  , and V,,, , 
are independent of n, m, n', and m' simplifies the system of 
equations (5) .  ~ u l t i p l ~ i n ~  the first of these equations by 
( y  - E n ) - '  and the second by ( y  - En - w)-', summing 
them over n and m, respectively, and introducing 

we obtain the following equations for A, and B, : 

The first terms on the right-hand sides of the system (7)  
describe modification and broadening of Rydberg levels be- 
cause of the dynamic Stark effect and because of ionization. 
The second terms on the right-hand sides of the system (7)  
represent a resonant interaction of Rydberg multiplets. 
Since the levels Em - are not coupled directly to the contin- 
uum, we have ImQ,,. = 0. 

A number of transformations can convert the system 
(7)  into equations containing only the constants A, (but not 
B, ). With this in mind we begin with the first equation in the 
system (7)  and find the sum 

Subtracting the result from the second equation in the sys- 
tem (7) ,  we obtain an explicit expression for B, in terms of 
the constants A,.  Then, substituting the resultant expression 
for B, into the first equation in the system (7) ,  we find the 
required equations for A , .  In general, these equations are 
cumbersome. We shall therefore write down only a simpli- 
fied variant corresponding to the approximation described 
by Eq. (4) ,  i.e., we shall replace Q,,. and GI,.  with Q, and Go: 

where 1 < 1,,, ar ni'3. 
In a strong field ( V >  1 ) the last term in the first square 

brackets on the right-side of Eq. (8)  can be omitted since it is 
small compared with the coefficient in front of the third set 
of square brackets ( Q o a  V 2 n ;  ', Q ~ K  V2m;- 3) .  Although 
the products XQo and goo occur quite symmetrically in Eq. 
(8),  their meaning and role are very different. The function 
Z (y )  is much smoother thanX( y)  because m < n. The struc- 
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ture of the function X( y)  essentially determines the quasien- 
ergy spectrum. In a strong field ( V >  1 ) the quasienergies of 
the system are localized in those regions where the function 
X(y) is small and we have X( y ) ~ , -  1 (see below). The 
product X(y) Qo then can have any value and it determines 
the degree of resonant mixing of the multiplets. If 
?( y) Go ),9 1 then Eq. (8)  can be simplified by dropping all 
the terms proportional to X Q ~ ,  which eases the situation 
greatly. We shall write down the resultant nonresonant sys- 
tem of equations for A, in its general form (with arbitrary 
constants Q,,, ) as well as in the approximation represented 
by Eq. (4):  

1f XQo) 1, then Eq. (8)  can be simplified by dropping 
all the terms that do not contain a large f a c t ~ r k Z , ~ ,  when Eq. 
( 8 ) becomes 

In general, for arbitrary values of Q,,, and Q,,. we find that 
the approximation of strong resonant mixing still leaves the 
equations for A, very cumbersome and, therefore, we shall 
not give them here. 

Although at first sight Eq. ( 10) is much more complex 
than Eq. (9),  we can show that their solutions are identical. 
This is a general result associated not with the use of the 
approximation represented by Eq. (4) ,  but simply with the 
fact that the Stark mixing and ionization broadening of the 
levels are much more significant in a strong field than the 
effects of resonant mixing. We shall therefore consider a 
simpler system than Eq. (9)  and adopt the approximation of 
Eq. (4).  Introducing 

we find that we are facing the eigenvalue problem 

In the system ( 12) there is no dependence whatever on the 
field V. In the limit I,,,,, - m ,  the system ( 12) has the solu- 
tion 

which is defined for A < 0 and A > 4. The value of A is then 
obtained from Eq. ( 12) with I = 0: 

which gives A = 0. This is the only eigenvalue of the system 
of equations ( 12) when I,,, - GC . In the case of a finite but 
large value of I,,, the solution ( 13) is valid for A < 0 and 
A> 4, where according to Eq. ( 14) the system ( 12) has no 
eigenvalues. In the interval [O, 41 when I,,, is finite, we find 
that the right-hand side of Eq. ( 14) is replaced by a function 
which varies many times between - co and + m ,  and 
which passes through zero. This gives rise to I,,, with eigen- 
values A, (a = 1,2 ,..., I,,, ) concentrated in the interval [0, 
41. For our purpose it is important to note that all the eigen- 

values of the system ( 12) are limited to the range 0 <A, <4 
and they are different. 

It follows from Eq. ( 1 1 ) that in a strong field ( V >  1 ) 
the value of lQol is large ( lQo/ > n; 3 ,  so that for all A, - 1 
the corresponding quasienergies y, are localized in those 
regions where the function X(y)  is small, i.e., near the points 
described by 

and located between the energies of the neighboring Ryd- 
berg levels of an unperturbed atom. In the last approximate 
equality [Eq. ( 15) ] we are making use of the approximation 
of equidistant levels, which is valid if In - no/ <no. In this 
approximation the quasienergies of the system in a strong 
field become 

where we have allowed for the fact that 

The result ( 16) is valid if the second term in the defini- 
tion (16) of y,, is small compared with the separation 
between the neighboring levels n, ', i.e., if 

Consequently, the conditions for transition to the strong- 
field asymptote depend on A,. For low values of A, (A, < 1 ) 
there is no transition to the strong field case at values of V 
higher than in the case when A, - 1. If the reverse of the 
condition ( 17) is obeyed, the solutions of Eq. ( 11 ) are close 
to En : 

Equation ( 18) is quite conventional and natural. It de- 
scribes the splitting and broadening A,, ReQ, and A, I ImQol 
of the levels. According to the estimates given by Eq. (3) ,  
the shift and broadening are of the same order of magnitude. 
As long as the condition which is the opposite to the inequal- 
ity of Eq. ( 17) is satisfied, the splitting and broadening are 
small compared with the separation between the neighbor- 
ing levels of an unperturbed system. 

On the other hand, Eq. (16) is quite unusual and it 
describes a new result on narrowing of quasienergy levels in 
a strong field and localization of such levels near the values 
E'"' of Eq. ( 15 ), which are thus quasienergies of an atom in 
a strong field. 

Since A, is finite (A, <4),  there is a minimum field 
( V- 1 ) beginning from which the above-described narrow- 
ing and localization effects occur in the quasienergy spec- 
trum. On the whole, the pattern of its evolution is as follows. 
In a weak field ( V< 1 ) all the levels of an atom are weakly 
split and broadened [Eq. ( 18) 1. If V- 1, the broadening and 
splitting of the levels with the highest values of A, (of the 
order of unity) become comparable with the separation 
between the levels. For this group of quasienergy levels a 
discrete structure of the spectrum is lost completely and a 
quasicontinuum replaces it. Against the background of this 
quasicontinuum there are still weakly split and broadened 
lines corresponding to small values ofA,. In a stronger field 
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( V >  1 ) quasienergy levels with the highest values of A, be- 
come narrower and they are localized near E'"' [see Eq. 
( 16) 1. There are also levels characterized by lQ,lA, - n c 3  
and which consequently form a quasicontinuum. There are 
also levels with very small values ofA, for which we have to 
assume the reverse of Eq. ( 17). Such levels are weakly split 
and broadened even for V >  1 and are close to the corre- 
sponding values for En of Eq. ( 18). Consequently, for all the 
values of V >  1 the quasienergy spectrum has a quasicontin- 
uum with two groups of narrow levels superimposed on its 
background: quasienergy levels with A, satisfying the condi- 
tion ( 17) and localized near E'"' of Eq. ( IS), whereas the 
levels with very small values of A, [obeying a condition 
which is the opposite of Eq. ( 17) ] differs little from En .  
Figure 1 shows qualitatively the dependence of the structure 
of the quasienergy spectrum of an atom on a field. 

The results described are qualitatively insensitive to the 
assumptions made: they are insensitive to the approximation 
( 4 )  and to the absence of resonances I?( y,n ) Q,I < 1. In gen- 
eral, the matrix which governs the coupling between the 
components of multiplets characterized by different values 
of I also becomes more complex. However, even in the gen- 
eral case the field-independent eigenvalues of the corre- 
sponding matrices A, are bounded, which was used above. 
Equation (1 1) for the determination of quasienergies re- 
mains valid also in the general case. 

4. SOLUTION OF THE INITIAL PROBLEM 

In principle, formulation of the problem of complex 
quasienergies postulates that the interaction is activated in- 
stantaneously at the initial moment ( I  = 0).  However, it is 
far from simple to obtain information on the dynamics of the 
ionization process directly by solving the problem of qua- 
sienergies. Therefore, in fact, the initial problem requires 
separate formulation and solution. 

We shall assume that the interaction with an electro- 
magnetic field is instantaneous and it is activated at t = 0. 
We shall expand the wave function of an atom in terms of the 
wave functionsof thestates In1 ) and Iml ) and of the states in 
the continuum I El ) . The time-dependent amplitudes of the 
expansion will be denoted by C,, (t) ,  C,, (t) ,  and C, (t) .  In 
view of the instantaneous nature of the application of the 
field, the problem can be solved most simply by the Laplace 
transformation. The Laplace transforms of the required 
functions will be labeled En, (p),  em, (p), and e,, (p).  If 

FIG. 1 .  Quasienergy spectrum of an atom: the shading slanting 
to the right corresponds to high values of A ( A ,  -4) and that 
slanting to the left corresponds to small values of A (A ,  4 1 ). 

zE1 (p) is omitted from the resultant equations, we obtain 
equations of the type described by Eq. (5)  where y is re- 
placed with ip - w and the right-hand side of the first equa- 
tion in the system (7)  is supplemented by a term i8,,8,,n,, . 
Similar replacements occur also in Eqs. (6)  and (7) .  The 
additional term on the right-hand side of the first equation in 
the system (7 )  is i8,,(@ - En,, - w )  - I .  We shall consider 
only the simplest nonresonant case (see above). We shall 
adopt the eigenvectors A'"' and the eigenvalues q, of the 
matrix Q(Q,,. ) : 

which yields the solution of the equations of 2 (p) : 

In the approximation described by Eq. (4),  we have 
q, = Qd, ,  0 <A<4. 

a) Photoelectron spectrum 

The functions 2, (p) in Eq. (20) determine directly the 
photoelectron spectrum w(E) in the limit of infinitely long 
interactions t-  co : 

If we ignore both the degeneracy of the levels and their Stark 
splitting (Re Q-O), then Eq. (22) can be written in the 
simplest form: 

w (E) =Vn,-S(E-E,-w)-2 

This is the simplest model result first described in our brief 
communication9 [see also Ref. 101. 

According to Eq. (23) the photoelectron spectrum is 
very different for weak ( V< 1) and strong ( V >  1 ) fields. In 
a weak field the function w (E) is close to a Lorentzian curve 
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FIG. 2. Photoelectron spectrum deduced using a model of nondegenerate 
Rydberg levels. 

with a maximum at E = En,, + w, whereas in a strong field 
the function w ( E )  has many peaks (Fig. 2) .  The maxima of 
w ( E )  are located near E'"' + w of Eq. ( 1 5 ) .  The widths of 
the maxima are ( d V 2 n i  ) -' and the amplitudes of the first 
two maxima (closest to En<, + w ) are 4 V 'n:. An increase in 
the field causes narrowing and increases the maxima of the 
curve w ( E )  . 

Naturally, the model of nondegenerate and unsplit 
Rydberg levels is an idealization. However, we shall show 
that to a great extent it describes correctly also a more com- 
plex system with level degeneracy and splitting. 

In a strong field ( V >  1 ) we find quasienergy levels, lo- 
calized near E'"' of Eq. ( 16) and E,, of Eq. ( 18 ), against the 
background of a quasicontinuum. We can therefore expect 
that the photoelectron spectrum will have maxima in the 
vicinity of the energies E, + o and E'"' + w We shall con- 
centrate our attention on maxima of the latter type, i.e., we 
shall assume that EzE'" '  + o. Expanding the function 
X ( E  - o )  near E'"' , we find that Eq. (22)  considered in the 
approximation of Eq. ( 4 )  yields 

w'"' (E) = 
V2noS 

(n-no+'/,) 

The summation with respect to I and a requires finding ex- 
plicitly the eigenvectors A'"' in Eq. ( 19). In the approxima- 
tion of Eq. ( 4 )  this problem can be solved in the range of 
small values of A, and of A, close to the maximum value 
A,,, = 4. In the latter case the functions A I"' can be regard- 
ed as smooth fluctuations, so that A ;;', can be expanded in 
terms of small changes in 1 (by + 2)  and the difference 
equations of the system ( 12) can be replaced with the differ- 
ential equations 

The boundary conditions for this equation are 

The second condition follows directly from the system (25)  

when we substitute A, z 4 .  The normalized solutions of the 
system (25), satisfying the conditions set out above, are 

(a) 2 A1 =- 
sin [ '4--"' " 

1% 
max 

4 

In the range of small values of A, (A ,  ( I ) ,  the functions 
A'"' can no longer be regarded as weakly dependent on I. It 
follows directly from the system ( 12) that A p' = - A :") 
= A Y ) =  - A ? ) -  - ... in the limit A, -0. Making the sub- 

stitution A :;' = ( - 1 )  kB :;', we obtain in this case func- 
tions B I"' which can be regarded as smooth, so that it is 
possible to introduce a differential equation 

The normalized solutions satisfying the boundary con- 
ditions 

"J) - B~ 0, BY) 1 1 4 0  const, 

now are of the form 

The square of the modulus of the sum over a in Eq. (24)  
represents a double sum over a and a'. In the region of A, 
z 4  a weak dependence ofA'"' on could be used to ignore the 
difference between A I?, and A I?, . As a result, the summa- 
tion over I gives Saa8 because of the orthogonality of the 
functions A'"' and A'"", i.e., a square of the modulus of the 
sum over a in Eq. (24)  is converted into a sum of the squares 
of the moduli. At low values of a we have an analogous 
situation, except for the important difference that A I?, and 
A j?, differ in respect of the sign and can compensate each 
other. After substitution of the quantities A I" ' ,  defined by 
Eq. (28) ,  in Eq. (24)  we have to expand 
cos [A  k'2 ( I  f 1 ) /2  ] in terms of small corrections + 1 to 
1% 1 and then summation over I gives A, 6,". . 

It follows from the above discussion that the function 
w(") E of Eq. (24 ) ,  which determines the structure of the 
maximum in the photoelectron spectrum in the vicinity of 
E'"' + w, can be represented in the form 

2V2F (E-E'"'- 
w'"' (E) = 

0) 

n5 (n-n0+1/2) 1 QO I 2n09 
' 

where 

(30)  
a=Re Qo/lQo12n2noJ, b=Im Qo/lQoJZn2noa, c-l. ' 

Separation of the interval [O, 41 into parts with large and 
small values ofA is naturally arbitrary, and the parameter e 
separating the two parts can be found to within a coefficient - 1. In writing down the function F ( x )  of Eq. (30) in the 
form of a sum of integrals, we replace summation over a with 
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integration with respect to A and use the dependences A ( a )  
[Eqs. ( 2 6 )  and ( 2 8 ) ]  and also the assumptions I , , , )  1, 
1 )  1. The rapidly oscillating functions cosZ( U  '12/2) and 
sin2 [ ( 4  - A )  ' I 2  (21 + 1 ) / 4 ]  are replaced by their average 
values amounting to 4. 

Equations ( 2 9 )  and ( 3 0 )  allow us to describe qualita- 
tively the shape of the w'"' ( E )  curves. At x = 0, we have 

The derivative F 1 ( x )  differs from zero at x=O:  
F ' ( x  = 0 )  a a ( a 2  + b2)-2.Consequently,thepointx = Ois 
no longer the point of a maximum of the functions F ( x )  and 
w'"' ( E ) .  The maximum of w'"' ( B )  is shifted relative to 
x  = 0  ( E  = E'"' + W )  by an amount of the order of - a, 
i.e., by a distance of the order of the width of the maximum 
( - b )  . The amplitude of the maximum F ( x )  is slightly high- 
er than F ( 0 )  and, consequently, the amplitude of the maxi- 
mum of the w'"' ( E )  curve of Eq. ( 2 9 )  is of the same order of 
magnitude as in the absence of the degeneracy and Stark 
splitting of the levels: [w'"'(E)] , , ,  a V2n;. The function 
F ( x )  of Eq. ( 3 0 )  falls monotonically on increase in 1x1 for 
x/a > 0.  However, if x/a < 0, then as 1x1 increases the func- 
tion F ( x )  first rises, reaches a maximum at x -  - a,  and 
then falls. The condition x -  - a  determines the shift of the 
maximum and the width of the w'"' ( E )  curve, and it is of 
the order of the width of the curve described by Eq. ( 2 3 )  if 
the degeneracy and splitting of the levels are ignored: - ( V2ni ) - I .  The law describing the fall of the functions 
w'"' ( E )  [Eq. ( 2 9 )  ] and F ( x )  [Eq. ( 3 0 )  ] in the wings of the 
maximum were 1x1 % la1 can be estimated quite readily using 
Eq. ( 3 0 ) :  F ( x )  a ( b  1-"21xl-312.  heref fore, if we allow for 
the degeneracy and splitting of the levels the structure of the 
maximum of the function w'"' (E) of Eq. ( 2 9 )  differs from 
the structure of the maximum of the function ( 2 3 )  in the 
model of nondegenerate levels. The main differences are the 
non-Lorentzian nature of thew'"' ( E )  curve of Eq. ( 2 9 ) :  the 
asymptote is 1x1 -3'2 and not and the maximum is 
shifted by an amount of the order of the width of the curve 
( - - a )  relative to the value E'"' + w. On the other hand, 
such basic characteristics of the w'"' ( E )  curve as its ampli- 
tude and half-width remain unchanged (to within an order 
of magnitude) : they are - V2nA and - ( V2ni  ) - ', respec- 
tively. 

b) Dynamics of decay of an atom 

The narrowing and localization of the quasienergy 
spectrum of an atom described in Sec. 3  are reflected not only 
in the photoelectron spectrum but also in the dynamics of 
the ionization process. The time-dependent amplitudes 
C,, ( t )  of the probability of finding of an electron in the con- 
tinuum with an energy E are determined by the familiar La- 
place transforms of the amplitudes A, ( t )  of Eq. ( 2 0 ) .  We 
can readily show that 

+ ar 
e - i t z  

C., ( t )  =iV (2n)-'no-% j dz - -- z-E+iO 

Equation ( 3  1 ) allows us to determine also the time- 
dependent total probability of ionization. The calculations 

are largely similar to those described in Sec. 4a. Without 
going into details, we give the final result: 

I 
V ¶  

=I+V~.-'(Q,") -* j dh h-% exp (2tQCh) 
0 

+V2no-' (Q:') -' ( hl' &-I-2.f ( 4 4 )  -' dh) h-' 

The last two terms on the right-hand side of Eq. ( 3 2 )  
determine the nature of the decay of an atom. The term con- 
taining the integral with respect to A between 0  and V2 repre- 
sents the contribution of the weakly split and broadened 
quasienergy states (corresponding to small values ofA) . The 
last term on the right-hand side of Eq. ( 3 2 )  corresponds to 
the contribution of the quasicontinuum and of the narrowed 
(in a strong field) quasienergy levels localized near E'"' . 

In the simplest model which ignores the degeneracy and 
splitting of the levels there is only one quasienergy state with 
a given value of n, the integrals with respect to A disappear, 
and the probability w  ( t )   become^^.'^ 

The ionization rate is governed by a constant equal to 
twice the width of narrow maxima in the photoelectron ener- 
gy distribution (23 ) . An increase in the field slows down the 
decay process, i.e., it stabilizes the investigated atom or the 
populations become trapped in a discrete spectrum. The ion- 
ization time of the atom t, a V2ni increases on increase in 
the field. These effects are due to coherent population of 
neighboring Rydberg levels in the process of ionization (in a 
time which is proportional to ni ) and subsequent interfer- 
ence quenching of transitions from these levels to the contin- 
uum. 

In a real system with multiple degeneracy of the levels 
we can expect deviations from the simple exponential depen- 
dence of Eq. ( 3 3 ) .  It follows directly from Eq. ( 3 2 )  that if t  
is large, the main contribution to the integrals with respect to 
A comes from the range of small values ofA ( g V2 between 0  
and V  2 ,  and /Z close to the maximum value ( 4  - A 4 1 in the 
interval from c to 4 ) .  In this approximation the integrals of 
Eq. ( 3 2 )  are readily calculated and the function w ( t )  be- 
comes 

The last term on the right-hand side of this equation 
represents exponential decay similar to that described by Eq. 
( 3 3 ) .  Since IQh a IQ:l a V 2 n ,  3, the argument of the expo- 
nential function in Eq. ( 3 4 )  and the ionization time are of 
the same order of magnitude as in the absence of degeneracy: 
t ,  a V2ni .  A new circumstance, which is due to the degener- 
acy and quasicontinuum of levels, is the appearance of a 
power-law pre-exponential dependence in the last term on 
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tude as the coefficient in front of the function' 3S. P. GoreslavskiT, N. B. Delone, and V. P. Krainov, Zh. Eksp. Teor. Fiz. 
Consequently, the presence of the quasicontinuum acceler- 82,1789 ( 1982) [SOV. P ~ Y S .  JETP 55,1032 ( 1982) I .  
ates somewhat the ionization process which becomes rather 
nonexponential. However, the earlier definition of the char- 
acteristic ionization time ( t i  a V2) is retained and the stabili- 
zation of an atom in a strong field takes place. 

The second term on the right-hand side of Eq. ( 3 4 )  
describes completely nonexponential decay due to the pres- 
ence of a large number of weakly split and broadened qua- 
sienergy levels (with small values of A ) .  However, the frac- 
tion of such levels decreases on increase in the field and this 
reduces the nonexponential term in w ( t )  - 1 [see Eq. 
( 3 4 )  1 .  In fact, we can readily see that if t  2 t i ,  this term is of 
the order of 

The limits of validity of these results are governed main- 
ly by the above-mentioned assumption that the matrix ele- 
ments V,,',,,,.,, and Q,,',,,,.,. vary slowly with n and n'. 
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