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The existence of classically stable solitons with a time dependence of the exp ( iw t )  type is 
predicted by classical theories describing self-interacting charged fields. The authors show that 
there is a range of relative velocities of colliding solitons, ucr <v < v,,, ,in which their interaction is 
almost elastic. In particular, in this range the interaction of a soliton (S) with an antisoliton ( A )  
does not result in annihilation. Near vcr two solitons merge into one strongly excited soliton of the 
breather type: S + S-S *. The nature of the breather solution S * is discussed. Further reduction 
in the collision velocity may result in an "explosion" of the solution manifested by decay to a 
lower vacuum state. 

1. INTRODUCTION 2. NONRELATlVlSTlC LIMIT 

Properties of solitons in scalar charged fields have been 
discussed frequently in the literature (see Refs. 1-5). We 
shall adopt Coleman's terminology and call them Q-balls. ' 
In theories of this kind the charge Q is conserved and this 
leads to the possibility of existence of stable solitons. The 
ranges of stability of Q-balls were investigated in detail in 
Refs. 4 and 5. We shall consider the problems of the interac- 
tion between Q-balls which are stable from the classical 
point of view. 

We shall define a Q-ball as the solution of a nonlinear 
equation for a complex field Y 

We shall consider the Klein-Gordon equation with 
self-interaction: 

gZ\y /d22-d2'Y/dzZ+m2Y-p2'Y I ('=o, (4) 

corresponding to attraction. The potential in this theory 

is shown in Fig. 1. This theory has a soliton solution5 

which is stable if 

which is of the form w,,=Zo=Zm, 

Y E  (r, t )  =rp (r)ejWi, (2)  

and we shall assume that Ip(r) 1 ,, , -0. The quantity 
U( IY 1 2 )  in Eq. ( 1) is the potential. Equation ( 1 ) conserves 
the motion-charge integral: 

The soliton solution given by Eq. (2)  minimizes the energy 
functional for a given charge Q. 

The equation for p, ( r )  can be solved numerically in the 
three-dimensional case (see Ref. 2).  Examples of an exact 
analytic solution are known for the one-dimensional case.5 
Not all the soliton solutions of equations of type (1)  are 
classically stable. The range of stability is governed by the 
nature of the potential U( I Y 1 2 )  and by the values of the pa- 
rameter w.  

Our aim will be to study the evolution of solutions of 
Eq. ( 1) that are more complex than that predicting one soli- 
ton (for example, two-soliton, etc, solutions). By way of ex- 
ample, we shall consider the properties of the one-dimen- 
sional nonlinear Klein-Gordon equation with a four-boson 
attraction. We shall show that in this case there exists a wide 
class of many-soliton solutions. Although our analysis will 
be based on a specific model, a discussion will show that the 
results are not greatly affected in the qualitative sense by the 
model itself and can be applied to a wide class of equations of 
type ( 1 ) which lead to soliton solutions. 

where w,, is found numerically to be w,,z0.7 (for 
m = p = 1 ). The mass an charge for such a solution are, 
respectively, 

The subsitution w -  - w reverses the sign of the system 
Q- - Q and we then obtain a solution which would be natu- 
ral to call an antisoliton ( A ) .  

FIG. 1 .  Potential energy U( /Y / ) for Eq. (4 ) .  The units selected are such 
t h a t m = p =  1.  
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Among the solutions of Eq. (4)  there are some which 1 ~ 1  
are nearly nonrelativistic. We shall first go to the nonrelativ- 
istic limit in Eq. (4). Applying the standard procedure of 
Ref. 6, we shall introduce functions p(x, t )  and ~ ( x ,  t )  re- 
lated to Y by 0.2 

1 i y ( v  2 +-Y*), m 

Next, making the substitution (p, X) + e - '"'(@, i) we can 
readily show that the functions @ a n d i  satisfy the following 
system of equations: 

where 2mx = p2. Close to the nonrelativistic limit, we have 
1x1 ( (q I and in the zeroth (nonrelativistic) approximation 
we obtain 

Equation (8) is the nonlinear Schrodinger equation investi- 
gated in Ref. 7. It belongs to a class of fully integrable equa- 
tions and the properties of its solutions had been investigated 
in detail. The one-soliton solution of Eq. (8) is the nonrela- 
tivistic limit of the soliton Y, of Eq. (5). Equation (8)  also 
has many-soliton solutions. The two-soliton solution of Eq. 
(8) describes elastic scattering of solitons with a nontrivial 
dependence of the scattering phase of the initial velocity. 
Therefore, we may hope that for parameters close to the 
nonrelativistic limit the collisions of solitons in Eq. ( 1 ) are 
also nearly elastic. 

We checked this by a numerical experiment in which we 
considered the process of collision of two solitons separated 
by a distance exceeding their dimensions. The results of cal- 
culations for the soliton velocity v = 0.4 and the equal fre- 
quency w of both solitons are presented in Fig. 2. The main 
conclusion of this numerical calculation is that the collision 
process is nearly elastic in the range v 5 0.8 and an increase in 
v clearly results in growth of perturbations in the region of 
the continuous spectrum. In view of the stability of one-soli- 
ton solutions such waves subsequently quit a soliton. There- 
fore, the interaction is in the form of an almost elastic colli- 
sion and some of the energy and charge is transferred to 
small wave oscillations which leave the interaction region. 
An investigation of collisions of two solitons of different fre- 
quencies w ,  fw, shows that solitons do indeed pass through 
one another without experiencing backscattering. The range 
of stability of two-soliton solutions is narrower than that of 
one-soliton solutions. An estimate of a,, is readily obtained 
from the requirement that the maximum of the modulus of 
the solution should be to the left of ) Y ,,, 1 in Fig. 1 ( 1 Y I = 1 
when m = p = 1 ). Hence, in the case of an n-soliton solution 
with the same frequencies w,  we find that 

FIG. 2. Collisions of two solitons with identical frequencies w ,  = w ,  
= 0.95 traveling at a velocity v = 0.4. 

For example, if n = 1, we have w l f )  = l/fi-0.707, which 
is very close to the exact estimate given in Ref. 5. If n = 2, we 
find that w,, 20.935. It should be noted that the estimate 
given by Eq. (9) for n>2 does not allow for the absence of the 
principle of superposition for solitons. We shall return to the 
problem of stability (see Sec. 5).  

3. INTERACTION OF A SOLITON WITH AN ANTISOLITON 

We have described above an extensive class of solutions 
of Eq. (4)  which are close to many-soliton solutions of Eq. 
(8).  Following a similar procedure, but separating solutions 
proportional to exp( + imt), we obtain solutions for nonrel- 
ativistic antisolitons described by an equation which is a 
complex conjugate of Eq. (8).  Consequently, among all the 
solutions of Eq. (4)  there are two separate subclasses which 
are nearly nonrelativistic for particles and antiparticles. The 
question arises of what we can say about the interaction in 
solitons belonging to these two different subclasses. In this 
case the initial condition in the form of a soliton and an 
antisoliton separated in space does not allow us to separate a 
general rapidly varying factor proportional to exp( + imt). 

FIG. 3. Soliton-antisoliton collisions for u ,  1 - u ,  = 0.4 and w ,  = w ,  
= 0.95. 
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FIG. 4. Behavior of the field amplitude I \V(O, t ) (  for soliton- 
soliton collisions (dashed curve) and for soliton-antisoliton 
collisions (continuous curve) in the case when u = 0.4 and 
o = 0.95. 

An attempt to obtain an analytic solution of this problem is 
discussed in Sec. 4. However, we first tackled this problem 
by numerical solution of Eq. (4).  

The results of our calculations are presented in Fig. 3 
and can be summarized as follows: when the approach veloc- 
ities of S and A are small (v-0.3-0.4), a soliton and an 
antisoliton pass practically elastically through one another. 
An increase in the relative velocity increases the inelasticity 
of the interaction and the losses, by analogy with the case of 
S-S collisions. However, it follows from the numerical re- 
sults that in the principal approximation there is nos-A (or 
S-S) interaction in the scattering process. The difference 
between the behavior of the solutions for the cases ofS-Sand 
S-A interactions is demonstrated in Fig. 4, which shows how 
the modulus of the field IY (0, t)  I behaves as a function of 
time. 

4. LINEARIZATION OF THE PROBLEM. CHARACTERISTIC 
TIME 

Equation (4) is strongly nonlinear. However, a stable 
many-soliton solution is concentrated mainly in the range of 
small values of IY I to the left of the maximum of the poten- 
tial in Fig. 1. In this range the potential U( IY I ) is dominated 
by the term m2(Y 1'. We can thus hope that for short times 
the evolution of a soliton can be described approximately as 
the solution of the linear equation 

We shall therefore consider the evolution in time of a wave 
packet obeying Eq. ( 10) and identical at t = 0 with Y, (x, 0)  
of Eq. (5)  (such an identity is stipulated also for the first 
derivatives with respect to t at t = 0). Expanding the solu- 
tion of Eq. ( 10) as a Fourier integral and assuming the initial 
condition just stated, we obtain the following Klein-Gordon 
(KG) solution 

X exp [.i (m2+k2) Iht] 

where 0 = (m2 - w*) 'I2. It should be noted that particles 
and antiparticles are represented differently in the case of 

solitons. In the limit w --m the contribution of antiparticles 
disappears. In the nonrelativistic limit such a wavepacket is 
narrow in the momentum space: k,,,, 5 n < m .  

Naturally, the function Y ,, (x, t )  of Eq. ( 11 ), which is 
identical with Y, (x, t )  of Eq. (5),  begins to diverge from 
Y, (x, t)  at t # 0. However, this divergence is not very impor- 
tant as long as the phases of the harmonics dominating 
Y,, (x, t)  are the same. In other words, the solution given 
by Eq. ( 11 ) reproduces mainly a soliton up to a characteris- 
tic moment in time t,,,, described by the relationship 

which yields 

Any other solution of the problem ( 1 ) close to the nonrela- 
tivistic limit also differs little from the solution of the KG 
equation ( 10) when t < t,,,, . For example, in the case of the 
two-soliton (S-S) solution when the relative velocity is v 
and the characteristic dimensions of a soliton are 0 - ' ,  the 
collision time of solitons is t,,,, = 1/0v. If the mndition 
t,,,]! <tchar is satisfied, the interaction of solitons in the pro- 
cess of collision can be ignored in the zeroth approximation. 

The soliton-antisoliton (S-A ) scattering case is also de- 
scribed by the above scheme. In fact, if in this case we expand 
the initial state in terms of the solutions of Eq. ( lo), which 
are given by 

we can easily show that the contributions to the main har- 
monics of the function A,, come from an antisoliton and the 
contribution to B, come from a soliton. In view of the non- 
relativistic conditions, packets remain narrow in both cases. 
Therefore, the estimate of the characteristic time given by 
Eq. ( 12) remains valid. For all the cases under consideration 
(S-S and S-A ) the relative velocity in collisions has a lower 
limit: 

5. LAGGING AND LEADING EFFECTS IN SOLITON 
COLLISIONS 

We can thus see that there is a range of soliton velocities 
in which they interact weakly. This range is defined by the 
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inequalities 

The value of v,,, is defined only approximately. We can 
show that an increase in the soliton velocity increases the 
contribution of antiparticles to the expansion of Eq. ( 1 1 ) 
and the wave packet broadens. Consequently, the interac- 
tion process becomes increasingly inelastic. 

However, nonlinear effects appear also in collisions of 
solitons traveling at velocities in the range defined by Eq. 
( 13 ). One of these effects is the phase lead or lag of solitons 
in the course of their interaction. In the S-S interaction case 
the numerical results predict a phase lead in soliton colli- 
sions. This process is in qualitative agreement with a phase 
lead in the case of collisions of solitons described by the non- 
linear Schrodinger equation.' In the case of the S-A interac- 
tion, we find that for some values of the collision parameters 
(velocities u and frequencies w ) again we can expect a phase 
lead, but it is less than in the case of the S-S interactions. The 
results of calculations of the lead in the case of the S-S and 
S-A collisions of solitons of frequency w = 0.975 are given 
below for some of the soliton velocities u: 

u S+S S+A 

The results are presented in the form of the ratios of the path 
x traveled by a soliton to the theoretical path x,, that would 
have been traversed by a freely moving soliton in the same 
time interval. It is worth noting that the lead is less for the 
S-A collisions than for the S-S collisions. This difference 
can be explained as follows. If we write down the solution of 
Ea. (4) in the form . . ,  

Y=Yi(x, t)+Ya(x, t)f X(X, t)=Yo+x(x, t ) ,  (14) 

where Y, and Y, are the solutions for the first and second 
solitons, we can linearize the solution of Eq. (4) with respect 
to ~ ( x ,  t)  within the limits defined by Eq. ( 13). Then, the 
equation for ~ ( x ,  t)  becomes 

where V,  = - 2p2YoY,*, and V2 = - p2Y,Yo. The source 
function is determined by the overlap of the solutions Y , and 
Y, and is given by 

The behavior of the function Q(x, t )  is different in the case of 
the S-Sand S-A collisions. In the former case all the terms in 
Eq. ( 16) have the same fast phase: Q(x, t)  a exp(iot). In 
the S-A case the time dependence is different for different 
terms in Eq. ( 16). Therefore, the effect of the source on the 
functionx(x, t)  in theS-A case is weaker than that in theS- 
S case because of oscillations.'' Since the source acts on all 
the soliton modes, this applies in particular to the zeroth 
shift mode. Therefore, the phase shift in the S-A case is less. 
For some values of the parameters it may even show reversal 
of the sign. This last effect was observed by us. For the S-A 
interaction the frequency o changes at a fixed soliton veloc- 
ity u = 0.4. Then, a lead is observed for w = 0.870 and a lag 
for w = 0.875. Such a reversal of the sign may be due to the 

fact that up to the moment of full approach of solitons they 
acquire different phases (depending on the velocity and fre- 
quency) proportional to @Tap,,  where Tap, is the approach 
time. 

6. CRITICAL VELOCITY AND "EXPLOSION" OF A SOLUTION 

When the soliton velocity is reduced, the collision time 
increases and the role of the nonlinear effects should become 
greater. Numerical experiments demonstrate that there is a 
certain critical velocity v,, below which the behavior of the 
solution changes radically. In the case of Eq. (4)  and some 
values of the parameter o we can then expect an "explosion" 
of a two-soliton solution. This can be described as follows. 
The collision of solitons gives rise to a strong peak at x = 0 in 
a graph describing I Y (x, t)  I. The width of this peak is small 
and it is less than the soliton width. The quantity IY (0, t )  1 
grows and becomes greater than unity, i.e., the peak shifts to 
the right of the hump of the graph representing the potential 
energy of the field. The rate of rise of Iq(0, t )  ( then rises 
strongly although the width of the peak does not change. In 
other words, a singularity of the &function type forms in the 
field. 

The values of v,, depend on the frequency o. In the case 
of the S-S interaction an instability occurs at frequencies 
w > ma:' = 0.935, which follows from an estimate given by 
Eq. (9).  For example, ifw = 0.95, then u,, = 0.240. At high 
values of o = 0.96, an estimate2' gives v,, < 0.05. On the oth- 
er hand, in the case of the S-A collisions the critical velocity 
is reached only for w < w::' = 0.935. For example, u,, = 0.4 
for o = 0.85, whereas u,, < 0.05 for w = 0.95. 

These differences in the critical velocity v,, are clearly 
associated also with the difference between the expressions 
for the source Q(x, t )  in the cases of the S-S and S-A colli- 
sions. 

7. LARGE ANHARMONIC OSCILLATIONS NEAR v,, 

Calculations reveal a new nonlinear effect near the criti- 
cal velocity u,, in the S-S collision case. For example, if 

FIG. 5. Behavior of the function (Y ( x ,  t , ) l  in the range of oscillations 
whenw, =w2 =0.95andu, = - v ,  =0.2=0.250. 
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FIG. 6. Energy flux from the region of pulsations 
across the boundary ( x  = 40) calculated for w ,  = o, 

0.1 '[ 
, 1- = 0.95 and u, = - u2 = 0.250. 

0 100 200 300 t 

o = 0.95, the critical values ~ ~ 0 . 2 4 0 .  Collisions at a veloc- 
ity v = 0.255 are characterized by the usual passage of soli- 
tons. When the velocity is v = 0.250, solitons do not pass 
through one another but coalesce. Then, near the point 
x = 0 a strong perturbation of the type described in Sec. 6 is 
observed. This solution is shown in Fig. 5. Figure 6 demon- 
strates the energy flux across the boundary at x = 40; the 
values of the flux are given in absolute units and they should 
be compared with the energy of the system amounting to 
2.4122 (on the semiaxis x>O); we can see that - 12% of the 
energy is lost after four oscillations. Our computer calcula- 
tions were stopped at t = 360. 

Our analysis thus revealed a long-lived pulsating solu- 
tion. The modulus of the field amplitude at x = 0 is shown in 
Fig. 7. Clearly, the solution should be regarded as a strong 
excitation of a discrete mode above a soliton. The presence of 
a discrete mode in a spectrum of small oscillations, relative 
to the soliton solution, is discussed in Ref. 5 in connection 
with the soliton stability. The spectra of the eigenvalues of 
small oscillations around the soliton of Eq. ( 5 )  are discussed 
in Ref. 5. In this soliton stability region there is a frequency 
fi which modulates the amplitude and profile of a soliton. It 
follows from Ref. 5 that in the case of small oscillations and 
values of w close to unity, we have 

B z i -  o. (17)  

Therefore, when a given mode is excited, a solition is con- 
verted into a breather with a period To = 2 n / 6 .  For 
w = 0.95 we find3' that To =: 125. The average value of the 
period T i s  95 for a nonlinear oscillation shown in Fig. 5. A 
high value ofTis close to To. We must bear in mind that the 
solution obtained here is far from a harmonic oscillation, 
because the oscillation amplitude is not small. Consequent- 
ly, anharmonicity is important in the theory, particularly 
the interaction of the investigated mode with other modes. 

The existence of such a nontrivial interaction between differ- 
ent modes is manifested clearly in the case of S-S collisions 
characterized by u = 0.95 when the velocity is a = 0.245, 
lying half-way between v,, = 0.240 and the value v = 0.250 
corresponding to a breather-type solution. In this case the 
solution "explodes," but this is not an instantaneous pro- 
cess. It is preceded by one large oscillation. Therefore, a re- 
distribution of the energy between various modes plays here 
a role. Some of the energy of the collision excites other 
modes. After a period Tsome fraction of the energy returns 
to the singular mode and the energy of this mode is sufficient 
for an explosion. Figure 8 shows, in terms of the variables v 
and w, a curve separating the region where solitons fly apart 
from a region of a breather and an explosion. 

Our hypothesis on the nature of the breather is support- 
ed by the fact that solutions of this type have not been ob- 
tained for theS-A collisions. In fact, in this case the classical 
object from which deviations should be studied is uncharged 
vacuum. It has no discrete frequencies and all the excitations 
belong to the continuum. In our case a breather solution is 
obtained for nonrelativistic velocities v and frequencies o 
close to the nonrelativistic limit lo - ml &m. Under these 
conditions it would seem that the solution with the S-Scolli- 
sions should reproduce the behavior of two-soliton solutions 
of the nonlinear Schrodinger equation (8), which corre- 
sponds to elastic soliton scattering. However, in the case of 
the nonlinear Schrodinger equation there are also solutions7 
corresponding to bound soliton states. The discrete level 
found5 in the spectrum of excitations above a soliton of Eq. 
(5)  [which is the solution of Eq. ( 4 ) ]  is identical in the 
nonrelativistic limit with a two-soliton bound state obtained 
in Ref. 5 for the case when the relationship between the pa- 
rameters4' is given by T,I: )T,I: Then the two-soliton bound 
state obtained from the nonlinear Schrodinger equation rep- 
resents an excitation of small amplitude - 7, above a soliton 

FIG. 7. Function IY (0, t )  I in the oscillation case: w , = w ,  
= 0.95; u, = - u, = 0.250. 
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text the stopping of colliding solitons near v,, discovered by 

FIG. 8. Boundary between the region where solitons fly apart and the 
region where they coalesce, plotted using variables o and u. 

of amplitude -7, and its frequency a= 47: is identical 
with the frequency 6 = 1 - w calculated in Ref. 5. 

This bound state of solitons obtained from the nonlin- 
ear Schrodinger equation is absolutely unstable against any 
small perturbations8 and in the presence of such perturba- 
tions it should split into two solitons. In our case such a 
perturbation is in the form of a small difference between the 
initial and nonrelativistic conditions, as well as a difference 
of Eq. (4)  from the nonlinear Schrodinger equation, so that 
the bound state mentioned above appears as a resonance re- 
sulting from coalescence of two solitons, i.e., due to the pro- 
cess 

CONCLUSIONS 

The reported results represent an initial investigation of 
the interaction of solitons described by Eq. (4).  Undoubted- 
ly, a more detailed discussion is needed of the range near v,, 
for different frequencies, a more detailed study should be 
made of the soliton delay times, etc. However, the pattern of 
the interaction of solitons has now been investigated in the 
first approximation. 

We demonstrated that in the case of charged solitons of 
the Q-ball type there is a range of parameters (frequencies w 
and velocities u )  in which these classical objects interact 
weakly (almost elastic scattering). Although our attention 
was concentrated mainly on the one-dimensional equation 
(4) ,  this conclusion applies to other equations of the ( 1 ) 
type which predict Q-ball solitons. In fact, the basis for the 
theoretical approach is the proximity of each of the interact- 
ing objects to the nonrelativistic limit. Therefore, our con- 
clusion of the existence of a characteristic time t,,,, applies 
also in the multidimensional case. Numerical values of the 
critical velocity and of other parameters can naturally de- 
pend on the adopted model. 

An important result is also the discovery of a large- 
amplitude breather-type solution. The existence of such a 
solution is related to the existence of a discrete excitation 
mode of a soliton. The large period of the oscillations in 
question can be regarded as a characteristic feature suitable 
for identification of the object when the theory based on Eq. 
( 1 ) is compared with concrete physical objects. 

By way of physical applications, we must mention pri- 
marily an interesting possibility that collisions of tiny drop- 
lets of liquid helium can be described in terms of the soliton 
interaction. Another example is an attempt to describe colli- 
sions of nuclei in the soliton collision l a n g ~ a g e . ~  In this con- 

us may indicate feasibility of energy transfer from transla- 
tional motion to internal degrees of freedom, which is of 
importance in the search for a quark-gluon plasma in colli- 
sions of nuclei. Finally a suitable physical object can be cold 
boson entities in outer space.'' 

We shall now consider the relationship between our re- 
sults and those reported by other authors. The role of the 
nonrelativistic limit in the stability conditions of some non- 
topological soliton solutions of the field equations was point- 
ed out in Ref. 1 1. In Ref. 12 the problems of the interaction of 
Q-ball solitons were investigated numerically for certain 
types of the U( IY I ) potentials. The authors of Ref. 12 dis- 
covered a strong perturbation of vacuum at the point x = 0 
after the passage of solitons, when such a perturbation be- 
haves as a localized breather. The existence of a breather is 
not related to threshold phenomena, but appears in a wider 
range of relative velocities. It is quite likely that the occur- 
rence of breathers in Ref. 12 is also related to the presence of 
a discrete mode in the soliton excitation spectrum, although 
the problem of the possible origin of the breather solution is 
not considered from this point ofview in Ref. 12. It should be 
noted that, in contrast to our calculations, in Ref. 12 a 
breather is predicted for the S-S and S-A collisions and it is 
pointed out that the period of an S-S breather is consider- 
ably greater than that of an S-A breather. One should men- 
tion also the results of Ref. 13, where a report was given of 
numerical calculations supplemented by the results of Ref. 
12. In particular, the problem of the interaction of breathers 
was considered in Ref. 13. It should be mentioned moreover 
that some problems investigated by us are discussed in Refs. 
14 and 15. Our preliminary results were published in Ref. 16. 

The authors are grateful to M. B. Voloshin, N. A. Vor- 
onov, A. D. Dolgov, I. Yu. Kobzarev, V. G. Ksenzov, and L. 
B. Okun' for valuable discussions. 

" The initial phases of solitons in collisions are fixed by the condition (5) .  
An additional constant phase, permitted by the equation of motion, is 
not introduced. 

2' Studies of soliton collisions in the case of a low relative velocity are 
difficult because of the large computation time which is needed. " It is understood here that the frequency o does not change in the course 
of a soliton coalescence process. In fact, the interaction conserves the 
charge Q but not the frequency o. Allowance for this fact ensures a 
better agreement between To and the numerical value of T. 

4 '  The parameters 7, are described in terms of the notation of Ref. 7. 
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