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The topological and geometrical properties of a self-created universe with cosmological constant 
are considered in the framework of Hawking's quantum cosmology. The probabilities for creation 
of the universe with different topologies (including a torus, sphere, hyperbolic space) are 
calculated; for an inflationary universe these topologies are found to be equally probable. The 
probability of a quantum change of the topology during the evolution of the universe is calculated 
for a concrete model. 

1. INTRODUCTION 

The possibility of a nontrivial topology of the universe 
became particularly acute at the beginning of the sixties after 
Wheeler's work on geometrodynmics, including the idea of 
a foamliks: structure of space-time. ' The recent development 
of ideas about the quantum creation of the universe (see, for 
example, Refs. 2-4) have put this question into a somewhat 
different form, namely, that of the topology with which the 
universe can be created, and with what probability.5 How- 
ever, as was already noted by Zel'dovich and Starobinski;, 
difficulties arise already in the very formulation of this prob- 
lem, in particular, "it is not clear what is the meaning of the 
probability of creation of a closed universe and how this 
probability is to be normalized." 

The framework of quantum cosmology developed by 
Hawking and his  collaborator^^^ appears very promising 
for discussing the topology of a created universe. This ap- 
proach to the determination and interpretation of the wave 
function of the universe has already been used to consider 
many very important problems relating to the cosmological 
constant, initial perturbations, the inflationary stage, the 
CPT theorem, etc9-13 In the framework of the Euclidean 
formulation of the path integral given by the authors of these 
studies it has been possible not only to define the concept of 
probability but also to find a natural condition of normaliza- 
tion of the wave function. Another important advantage 
(particularly in the context of the present paper and empha- 
sized by Hartle and Hawking7) is the possibility of direct 
calculations of 3-geometries with nontrivial topology. In 
Ref. 7 Hartle and Hawking also discussed topological prob- 
lems of the creation of the universe, including the properties 
of a 4-manifold whose edge is a given topologically trivial 3- 
manifold. These questions were considered in more detail by 
Mkr t~hyan , ' ~ . ' ~  who for a number of special cases succeeded 
in obtaining restrictions on the properties of a created uni- 
verse with matter. In this connection it should be noted that 
in accordance with cobordism theory and two closed 3-man- 
ifolds are cobordant (Rokhlin's theorem), i.e., there do not 
exist restrictions on the topology of a trivial 3-manif~ld.'~" 

In this paper, using the framework of the approach of 
Hawking and his collaborators, we attempt to investigate 
both the topological and geometrical properties of a created 
universe. In the semiclassical approximation we estimate the 
probabilities for creation of a universe with different topolo- 
gies in superspace. We shall see that the study of this prob- 
lem requires the finding, for a given value of the cosmologi- 
cal constant A, of solutions of the Einstein equations for 

spaces without matter, 

with homogeneous isotropic metric. 
Among these solutions there are both compact gravita- 

tional instantons"~'%nd complex solutions, which, as we 
shall show, contribute to the required wave function. We 
shall call the latter pseudoinstantons. 

Having the necessary solutions, we then calculate the 
Euclidean gravitational action, which occurs in the path in- 
tegral for the wave function. The method of steepest descent 
is used then to calculate the integrals of the wave functions 
for spaces with different topologies and thus determine their 
relative probabilities of creation. For spaces capable of un- 
dergoing an inflationary stage after creation these topologies 
are found to be equally probable. 

Taking into account the possibility of a quantum 
change of the topology of the universe after creation, we 
calculate for a concrete example (with A = 0) the probabili- 
ty amplitudes for some transitions. We find that the transi- 
tion of a sphere into a torus is an event that is extremely 
improbable compared with the transition of a sphere into a 
sphere, i.e., without change of topology. 

2. CANONICAL QUANTUM COSMOLOGY 

In accordance with the quantum-geometrodynamic 
formalism, a certain quantum state of the universe is de- 
scribed by a wave function $(hU ) that satisfies the Wheeler- 
DeWitt equation on superspace, i.e, the infinite-dimensional 
space of all Riemannian metrices hq (for a discussion of the 
properties of superspace, see Ref. 19). The square of the 
wave function determines the probability of creation of the 
universe on the 3-manifold S metric hi (in the absence of 
matter). 

Hawking and his collaborators assume that the quan- 
tum state of the real universe is determined by a wave func- 
tion of the form 

where the intergration is over all Cdimensional compact 
manifolds M with Euclidean metric g,, that induces the 
metric hU on the boundary dM = S. 

The Euclidean quantum action has the form 
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where 

g s d e t  g*, h=det hu, 

and K is the trace of the second fundamental form of the 
embedding of S in M. 

If near S the metric gob can be represented in the form 

i d ~ ~ = N ~ d t ~ + h i ~ d ~ ~ d d ,  (3) 

then the second fundamental form Ku is 

1 dhij K --- 
" - 2 ~  at ' 

In what follows we shall consider isotropic and homo- 
geneous closed (compact without boundaries) cosmological 
models with A term and without matter. In this case the 
metric on the 3-manifold S, i.e., for t = const, depends on the 
single parameter a: 

where 

The curvature for the induced metric iij isz0 

fork = + 1, whenSis the 3-spheres3 or the 3-sphere factor- 
ized with respect to a discrete group (S topology); for 
k = 0,'' when Sis  the 3-torus T3 = S I X S  I X S  ' or another 
flat space ( T topology 1; and for k = - 1, when S is the 3- 
hyperbolic space H3 factorized with respect to a discrete 
group (H topology ) . 

The space of the metrics (3 ) - ( 5 )  determines a minisu- 
perspace. For the metric (5) the action (2) has the form 

where 

In the integral 

for the wave function the integration is over all a ( t )  that take 
the value a, on S. 

Using these expressions, we can estimate in the semi- 
classical approximation the probability of creation of a uni- 
verse with k = 0, * 1. But it is first of all necessary to deter- 
mine the solutions of the Einstein equations that can 
contribute to the wave function. 

3. ISOTROPIC PSEUDOINSTANTONS 

To estimate the wave function tC,K (a,), it would appear 
at the first glance that one can proceed as follows. For given 
value of A we find compact gravitational instantons with 
metricgab in the form (3). It is known, for example, that for 
A > 0 an instanton solution with metric ( 3  ) is S with radius 
(A/3)-'I2 (Ref. 18). Further, if it is found that the metric 
(3)-(5) cannot be ascribed to the instanton that is found 
then one could expect that the corresponding wave function 
must be zero in the semiclassical approximation. 

In fact this procedure is not always correct, since when 
we are calculating the integral in (7)  we must take into ac- - - 
count not only real, i.e., Euclidean, but also complex solu- 
tions, (cf. the calculations of integrals by the method of 
steepest descent, when all complex saddle points are taken 
into account). Although the physical meaning of such solu- 
tions is obscure, they nevertheless contribute to the wave 
function. 

The saddle points for (7)  are found from the Einstein 
equation written down for the metric (31, 

subject to the condition that there exist t, and t, such that 

a(t,)=O, t,<t,, a(t,)=a,. ( 9 )  

The results of the calculations can be represented in the fol- 
lowing form: 

for A = 0 

k=O k = + 1  k = - I  
a ( t )  = const a  ( t )  = & 5 ( t )  a  ( t )  = _f iS ( 1 )  

t 

R'" ( 1 )  = i (0 )  + 5 d t N  ( t )  H 3 x  R 
0 

R4/lr = T4 R4, R4/r H 3 / r  x R 
1 

N={  N = l  N = - i  - i 
dca + dS2,' dca + La dQla = - dC2 + dQ,2 
- dca + dQoa = d61+ dQo2 = dc2 + dQOa 

( r is some discrete group); 
forA>O 

const 1 i 
~ ( t ) = - e * ~ U ~ )  H a(t)=-+sin(H(~(t))} a ( t ) = r f F s i n { H ( c ( t ) ) )  

"Incomplete" S4 R+ x R3 
de Sitter R x S3 Noncompact with 

singularity 
N = - i  
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for A <O 

1 - dta + - Hz cha (Hz) dQ!, 

' 1  

The topologies given above are incomplete and correspond, Analogous solutions also exist for other values of k and 
strictly speaking, only to real solutions. A = H z .  

We discuss in more detail the topological and geometri- 
cal properties of some solutions, namely, for A > O,k = + 1 4-WAVEFUNCTlONSFORDlFFERENTTOPOLOGlES 

1 We now turn to the calculation of the wave functions for 
a( t )= +-sin{H(t(t))). 

H the solutions given above. We first of all calculate the action 
with the boundary conditions 

1 C 
U=Te*Ht a = - s h H ~  a = .  

H 

When N(t) = 1 and {(O) = 0 we have for the + sign a (t,) =0, a(&) =ao. ( 10) 

- sin Hz H 
1 - ch IIt 

1 
a (t) = -sin (Ht) , We consider the action for H z  > 0. Rewriting (6) in the 

H form 

and this is the Euclidean instanton solution S4 .  1; 

But when N(t) = - i, {(O) = r / 2 ,  we have 1 
~,[a]=-jdtNa[-($)' - k + t ~ o ' ]  (11) 

1 
,, 

a(t)= -ch(Ht), 
H and using (8), we obtain 

, H 
- 1 

N = l  N = 1  

the de Sitter solution, which does not, however, satisfy the 1, 00 

condition (9) .  1 
L [ a l = , j d t ~ a [ - 2 ( ~ ) 2 ] = -  jdaa(+) 

Very interesting is the solution with 1, o 
00 r-x.op* 

It can be seen from ( 10) and ( 11) that for k = 0 the action where 0 < E< 1 and the function N( t) is defined continuously 
I,[a] takes two values, in the interval4' 

from which it follows that the wave function is This solution actually describes creation of the universe 
from "nothing," making a transition from the Euclidean qO (aO) m e - ~ " ( ~ ) + e - r ~ ( ~ )  = cos[?$] . 
hemisphere to the de Sitter stage of expansion (for Ha, > 1 it 
in fact makes the main contribution to $+ , (a,) ). 

It is interesting to note that there are some exotic solu- To calculate $, (a,) fork #O we shall proceed from the 

tions among the ones that we have obtained. Thus, for representati0n (for more see ['I ) 

N(t) = - 1, {(O) = 0  ( k =  + 1) we have the same 4- 1 
sphere but with proper time $,(ao) m - 2 ~ l z  j dp exp (+pal3) @h (PI. 

where 
i.e., with opposite direction with respect to the coordinate 1 ci 
time. This means that a test particle for N = 1 is an antiparti- P=N>a '  
cle for N = - 1. In this connection we should recall the 
fundamental question, recently discussed by HawkingI3 and and Cis  a contour in the complex plane ofp parallel to the 
Page,21 of the arrow of time in cosmology. imaginary coordinate axis and to the right of all singularities 
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of the function 4, (p): Finally, we have 

We note a difference relating to the wave function 
$k (a )  and to the wave function in the momentum represen- 
tation, 4, (p). In the first case there is a description of cre- 
ation from "nothing," and a varies from a = 0 to a = a, for 
k = * 1, while in the second case the momentum of the 
universe arrives at the value p having being created "from 
different states": from p, = A cc, for k = 1 and from 
p,= kico f o r k =  - 1. 

From ( 13) we can obtain 

@r*(P)= j d t a l e x p ( - - ~ t a ~ ) ,  

where 

and the symbols + correspond to the sign of p,. Then the 
wave function can be rewritten in the form 

For each of the integrals in this expression we obtain, after 
integrating by the method of steepest descent (cf. Ref. 7),  

[ (H2a02+l)' + 21 " COS 
3H2 4 '  

from which we obtain for $+ ,(a,) 

+ a o  e x )  [ - 3 H 2  ] 

For Ha, > 1 we obtain similarly 

It is now clear why for A = H > 0 and k = 1 the proba- 
bility of creation of a universe with a, such that Ha, > 1 is not 
zero despite the fact that it is not possible to embed S3  of 
radius a, in S 4  with radius H - I .  The probability is nonzero 
because there exists a complex solution-a pseudoinstanton. 

For Ha,> 1 the wave functions take the form 

$0 (a,) = cos (F ) , 
1 Hao 

Q+* (a0) exp (=) cos( +) , (15) 

1 Ha,' 
(ao) = cos (=)cos (7), 

from which we find the probability ratios 

i.e., in this case the probability of creation of a sphere is 
greatest. This inequality is not changed for Ha, 4 1, H 2 >  1. 

One can also estimate the probability of creation of an 
inflationary ~niverse.~ '  As is well one of the neces- 
sary conditions for inflation is a large value of a massive 
scalar field: m 2 p 2 >  1. Since during this stage the field 
evolves slowly, e, /p 4 H ,  and, therefore, m2e, plays the role 
ofH2,  wecanobtain from (15) f o r H 2 > 1  

i.e., the creation of inflationary universes with the S, T, and 
H topologies is equally probable. 

5. PROBABILITY OF A CHANGE IN THE TOPOLOGY OF THE 
UNIVERSE 

Thus, we have determined the probability of quantum 
creation of a universe with different topologies from "noth- 
ing," i.e., transition from the state a = 0 to a,. Can we now 
draw unambiguous conclusions about the topology of the 
present universe? This is obviously not possible, since the 
topology of the universe could have changed during evolu- 
tion. The classical theory prohibits transitions with a change 
of the topology,22 but in the quantum theory there are no 
such limitations. 

Here, considering the example of a "toy" model, we 
find the probability of a quantum change of topology, for 
which it is necesary to extend the mini-superspace represen- 
tation used above. 

We consider the case when H = 0. Then in the semi- 
classical approximation the main contribution to the wave 
function (1)  will be made by the Euclidean Ctorus 
S ' X S ' X S ' X S '  = T 4  with metric 

where L is a dimensionless constant greater than unity. Into 
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this torus we can embed any 3-sphere of radius R < L /2 [in 
units of (8a) " 2 1 ] ,  near which the metric has the form 

Into the same Ctorus we can embed the 3-torus with metric 

Since we consider spaces without matter and for A = 0, 
only the last term $ T4 instanton for A = 0) will contribute to 
the action (2): ' 

where dM is, with allowance for the orientation of the torus 
and sphere, 

aM=Ts-S3. 

Then, using the relation 

1 d3z  hBLK=3,, 1 d3z  h1la, 
8 8 

where n is the unit normal vector to S, we can calculate the 
required action 

= - ~ a , [ x  .f aq a*, at+,] 
T. 

+pa+.[fla I d a ,  da2 da8 sin' u2 sin a3 = - (I-6n?12) L2. 
8 3  

I 
Therefore, the amplitude for transition of the sphere of radi- 
us Ro into a torus is 

and, as is readily seen, the amplitude for transition of the 
sphere of radius R , is 

Hence, for the ratio of the probabilities of these transitions 
we have 

Icp(S3-+TS) l a  : I$(SS+Sa) Ig=exp [2 (1-6n2RI2) L2] . 
If the radius of the sphere is chosen in such a way that 

the volume of the 3-sphere is equal to the volume of the 3- 
torus, 

then we find 

iIe., a change of the topology, of the sphere into a torus, is 
practically impossible in the considered problem. 

There is another possibility for transition of a sphere 
into a torus, namely, annihilation of the initial sphere and 
creation of a new torus or sphere (in a Ctorus). It is readily 

seen that the result (17) remains valid, since it does not 
depend on the radius of the initial sphere. 

6. CONCLUSIONS 

In this paper we have considered the topological and 
geometrical aspects of quantum creation of the universe. In 
our view, it would be valuable to restjict the general formu- 
lation of the problem of thegeometry of the 3-manifold7 in 
such a way as to permit some detailed mathematical study. 
This circumstance forced us to consider the problem of the 
origin of a homogeneous isotropic universe without matter 
but with cosmological constant (in particular, the presence 
of this term makes it possible to interpret some conclusions 
in the context of models of an inflationary universe). 

The basis of our investigation has been Hawking's ap- 
proach to determination of the wave function of the universe 
by a Euclidean integral over compact metrics. We have 
found that not only gravitational instantons, i.e., real com- 
pact solutions of the Einstein equations, but also complex 
solutions-pseudoinstantons-contribute to the wave func- 
tion. Among the pseudoinstantons there are solutions with 
interesting properties that describe a continuous transition 
from the Euclidean hemisphere to a stage of exponential ex- 
pansion with reversed direction of the proper time relative to 
the coordinate time, i.e., with transition of particles into an- 
tiparticles. 

Calculation of the functional integrals by a method of 
steepest descent analogous to the procedure used by Hartle 
and Hawking made it possible to find in the semiclassical 
approximation the probabilities of creation of a universe 
(transitions from the state a = 0 to the state a = a,) with the 
T, S, and H topologies (k  = 0, k = + 1, k = - 1, respec- 
tively). The results of the calculations have shown that for 
Ha& 1 the probability of creation of the S topology is great- 
est, while in the case of creation of an inflationary universe 
( H  2 >  1 ) these topologies are equally probable. 

In the final part of the paper we have considered a toy 
model and determined the probability of transitions with a 
change of topology, a possibility that is, as is well known, 
permitted by quantum theory. We have shown that for 
A = 0 transition of a 3-sphere into a 3-torus in a Cdimen- 
sional torus is strongly suppressed compared with the transi- 
tion of a sphere into a sphere (with different radius). 

We thank D. V. Anosov, B. DeWitt, A. D. Dolgov, Ya. 
B. Zel'dovich, A. D. Linde, S. G. Matinyan, R. L. 
Mkrtchyan, D. N. Page, and S. Hawking for valuable discus- 
sions. 

"As is well known, the geometry defined on the 3-manifold can be 
smoothly extended to a 4-manifold (if the condition of paracompact- 
ness is satisfied). 

i d - .  - 1. "For k = 0 we require fulfillment of the condition ' h 'Iz - 
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