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The formation of a soliton lattice of a spin density wave in a band antiferromagnet with a low 
concentration of a nonmagnetic impurity is analyzed. Phase diagrams are constructed for the 
system near the Lifshitz point, both with a variational solution for the envelope of the spin density 
wave and in an exactly solvable model with an electron reservoir of infinite strength M. A 
procedure is proposed for finding small corrections which distort the shape of the exact solution 
for the soliton lattice of the spin density wave in the limit of large values M% 1 with a weak 
electron-impurity scattering. 

1. INTRODUCTION 

In many systems in which electronic phase transitions 
occur, a modulated long-period structure of the order pa- 
rameter can be described in the model of an electron soliton 
lattice.' Among these systems are various physical entities, 
in particular, quasi-one-dimensional superconductors in a 
magnetic field (the Larkin-Ovchinnikov-Fulde-Ferrell 
model) and band antiferromagnets with slightly corrugated 
plane regions on the Fermi surface (the Overhauser-Lomer- 
Kotani model). In the absence of impurity scattering of elec- 
trons, an exact solution can be found for the nonuniform 
order parameter A (x)  on the basis of the mathematical anal- 
ogy between these models and the Peierls continuum mod- 
el., It is also possible to construct the thermodynamics ofthe 
system in a nonuniform state. Numerical calculations of dia- 
grams for these models, based on the approach of Ref. l ,  
were carried out in Refs. 3 and 4. Buzdin and Polonskii have 
recently examined the effect of impurity scattering on the 
phase diagram of a superconductor in a quasi-one-dimen- 
sional model. 

Impurities cause several changes in the (T, p)  phase 
diagram in the model of a band antiferromagnet ( T  is the 
temperature, and the parameter p is a measure of the extent 
to which the electron and hole Fermi surfaces are not con- 
gruent) from that in the "pure" case. Furthermore, the 
shape of the exact solution A(x) in the model of a spin den- 
sity wave may be disrupted to a greater or lesser extent, de- 
pending on the structure of the electron-impurity scattering 
matrix elements and the strength of the paramagnetic elec- 
tron "reservoir" (it is known quite well that this reservoir 
must be taken into consideration in order to reach an under- 
standing of the properties of real band antiferromagnets). 
The exact solution may retain its shape only in the limit of an 
infinitely strong reservoir (a fixed incongruity parameter 1, 
in which case the redistribution of the charge density in the 
modulated antiferromagnetic structure is s~ppressed.~ 

In the present paper we propose a method for calculat- 
ing corrections to the solution of Ref. 1 near the NCel point in 
situations in which the impurity scattering causes only a 
slight distortion of the structure of the "ideal" soliton lattice 
of the spin density wave. In addition, we analyze the changes 
caused in the ( T, p )  phase diagram by the impurity scatter- 
ing. These problems arise from the need to generalize the 
model of Ref. 1 for dilute alloys of chromium with nonmag- 

netic impurities7 and possibly also for quasi-one-dimension- 
a1 band antiferromagnets.' 

In pure chromium, a transition to an incommensurable 
transverse antiferromagnetic structure ( AF, ) of a linearly 
polarized type is known to occur below the NCel point 
TN z 3 12 K. This structure is modulated along one of the 
(100) directions of a bcc lattice [here and below, we are 
discussing only I-Q states with a wave vector Q = (2?r /a)  
( 1 - 8, 0, O), where a is the lattice constant]. This structure 
can be described in the model of a spin density wave with the 
help of a snoidal solution for the envelope: 

where A, and A, are parameters which depend on the tem- 
perature T and the incongruity parameter p. In the rigid- 
band approximation, which works fairly well for Cr-V and 
Cr-Mn alloys, the addition of an impurity leads to simply a 
change in p ( x ) ,  where x is the impurity concentration, so 
there is the hope that the model of a soliton lattice of a spin 
density wave' will apply to such alloys. The ~ p t i c a l , ~  neu- 
tron-diffraction,'' and x-ray ' ' data available agree well with 
the results of numerical calculations on the absorption spec- 
trum and scattering cross sections in the model of Ref. 1 (see 
Ref. 4).  

In most alloys of chromium, however, impurity scatter- 
ing plays an extremely important role, and the rigid-band 
approximation is not satisfactory. The situation can be seen 
particularly clearly in the properties of Cr-Mo and Cr-W 
alloys (Mo and W are isoelectronic with Cr), which pre- 
serve the AF, magnetic structure over a wide range of impu- 
rity concentrations. From the standpoint of the model which 
assumes that there are plane regions of the Fermi surface, the 
incongruity parameterp (x) remains essentially the same in 
these systems, and all the changes in the NCel point, the peri- 
od and amplitude of the envelope of the spin density wave, 
and other properties result exclusively from the impurity 
scattering. In alloys of chromium with nonisoelectronic im- 
purities the two factors (the change in the incongruity pa- 
rameter and the scattering) usually play comparable roles, 
so it is a fairly complicated matter to analyze their effect on 
the shape of the density wave and the shape of the phase 
diagram. In this regard the most convenient entities for a 
study of the properties of soliton lattices of spin density 
waves may be ternary Cr-Mo(W)-Me(V) alloys, in which 
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these factors can be separated. It is primarily to these alloys 
that we would apply the results derived below. 

2. PHASE DIAGRAM OF A BAND ANTIFERROMAGNETIC 
NEAR THE LlFSHlTZ POINT WITH IMPURITY SCATTERING 

In the model of a band antiferromagnet with a spin den- 
sity wave, electron-impurity scattering is known to lower the 
transition temperature TN (p) (Ref. 7 ) .  Generally speaking, 
the type of magnetic structure may also change as the impu- 
rity concentration x increases (for example, the long-period 
modulation of the spin density wave may disappear, if there 
is such a modulation in the pure system). Concentration 
related transitions to an AF, phase [a linearly polarized 
transverse commensurable spin density wave with a wave 
vector (277/a) ( 100) 1, accompanied by the disappearance of 
the incommensurable AF, structure, occur in many chromi- 
um alloys, for example.' 

In the present paper we are interested in that part of the 
(T ,p)  phase diagram in which the type of antiferromagnetic 
structure can change even at a low concentration of a non- 
magnetic impurity, X. In other words, we are interested in 
the neighborhood of the Lifshitz point ( T %, p* ), at which 
the lines of the transitions from the paramagnetic (P) phase 
to the uniform (C) and modulated (I) phases converge, 
along with the line of the I-C transition. The existence of 
such a point on the phase diagram is a general property of all 
exactly solvable models of electronic transitions to a soliton- 
lattice structure.' Here and below, the impurity concentra- 
tion is "low" in the sense that the electron-impurity scatter- 
ing rate satisfies v 4 ( TN , p )  near the point ( T g,p*) ,  so that 
in all the subsequent calculations it will be sufficient to con- 
sider only the terms which are linear in v. We state at the 
outset that we will understand vas the total rate of scattering 
of electrons of the plane regions of the Fermi surface by the 
impurity both with and without a transition to the reservoir: 

where Nn (0)  and N, (0) are the state densities of the plane 
regions and the reservoir, respectively, and Vnn and Vn, are 
the matrix elements of the electron-impurity scattering po- 
tential respectively without and with a transition to the res- 
ervoir. In addition to the rate v our problem has the rate 

which is less than or on the order of v. As we will see below, 
the parameter vl/v (O<vf/v< 1) has a strong effect on the 
shape of the soliton lattice of the spin density wave. 

Under these restrictions on the values of v, T, andp  we 
can treat the problem of the formation of a nonuniform 
structure of a spin density wave (a soliton lattice) by a func- 
tional approach. In the Ginzburg-Landau expansion for the 
thermodynamic potential a, the effect of impurity scatter- 
ing is seen in changes in the coefficients, which change the 
transition temperatures, shift the Lifshitz point, and, gener- 
ally speaking, distort the shape of A (x)  in the I phase from 
that in the case of a pure system, corresponding to 
v = v' = 0. 

Let us examine the effect of impurity scattering on the 
( T, p) phase diagram near the Lifshitz point in the case in 
which the order parameter A (x)  is a slow quantity ( (A1(x)/ 
A(x) I <p, T/uF) and also a small quantity ( IA(x) 1 4 T, p)  

( v ,  is the velocity at the Fermi surface). We write the ther- 
modynamic potential of the system in the form 

where a,, 6, and y ,  > 0, and a, P, and a ,  can change sign. 
These coefficients are given explicitly in the Appendix. 

In the absence of impurity scattering we would have 
Y = 0, and for an infinitely strong reservoir, M = N,  (O) /  
N, (0) -+ CO,  the coefficients of functional ( 1) are related by 

In the case of a reservoir of finite strength, M # CO,  correc- 
tions - ( 1 + M) - ' to the terms of fourth and sixth orders in 
A(x) ariseI2: 

AB C, AT, C', Ab C, -- = --- -- = - - 
2 1+M ' 3 1+M ' 7 1+M ' 

( 3 )  

In the part of phase diagram in which we are interested here, 
the coefficients C2 and C, cross zero and change sign, while 
we have C,, C,, C,, C, > 0. We do not need explicit expres- 
sions for C3-C, in this paper (they are given in Ref. 12); 
those for C,-C3 are given in the Appendix. 

A graphical technique is convenient for seeing the effect 
of impurity scattering on the coefficients of functional ( 1) 
and the change in relations (2)  among them. Figure 1, a and 
b, illustrates the situation with some terms of fourth order in 
A (x)  in functional ( 1 ). The solid lines are the temperature 
Green's functions in the paramagnetic phase (for the elec- 
trons of the plane regions, we use the index n; for the elec- 
trons of the reservoir we use r ) ;  the circles represent the 
order parameter A(x); and the dashed lines represent the 
electron-impurity scattering potential. 

In the standard diagram technique,I3 the scattering by a 
nonmagnetic impurity gives rise to corrections of two types. 
First, a damping appears in the Green's functions (Fig. la) ,  
which is seen in the shift in the imaginary frequencies: 

By itself, this procedure does not violate the relations (2) 
among the coefficients of functional ( 1 ) in the limit M-+ C,O , 
and in place of C,, C2, and C, in the corresponding equations 
we will simply have their renormalized values e l ,  e2,  (see 
the Appendix). Second, it is necessary to "dress" with impu- 

a 

FIG. 1. 
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rity lines the vertices which contain single circles and pairs 
of circles. It is not difficult to see that the contributions of 
such diagrams are proportional to Y' - Y( 1 + M )  - ' under 
the assumption that the matrix elements ( V i ,  ) and ( V i ,  ) 
are of the same order of magnitude. In this case we have v'/ 
Y - ( 1 + M) - ' - 0 at M)1. One could also imagine a situa- 
tion in which, because of some special factors (e.g., the par- 
ticular symmetry properties of the wave function), the scat- 
tering accompanied by a transition to the reservoir (i.e., 
actually to another band) is suppressed. In such a case we 
would have vl/v- 1 even in the case M) 1. 

Specific calculations will be carried out for two limiting 
cases: V'/Y = 0 and Y'/V = 1. In the limit v'/v = 0 the re- 
striction that Y be small in comparison with (T, p) is not 
fundamental in the sense that a soliton solution of the type in 
Ref. 1 does not change shape, even far from the Lifshitz 
point, where the expansion which was used, ( 1 ) is not appli- 
cable. Unfortunately, we cannot make a similar statement 
for the case v'/v- 1. 

We will show that functional ( 1 ) with the coefficient 

(i.e., with Y' = 0) allows an exact solution in the class of 
Jacobi elliptic functions which has the form of a single-peri- 
od soliton lattice. For this purpose we vary ( 1 ) with respect 
to A ( x ) ,  and we find an Euler-Lagrange equation of the fol- 
lowing type: 

-5vp2C3 [ A  (A') 2+A2A"] =O. (4) 

According to Ref. 1, a single-period solution of the modified 
Korteweg-de Vries equation 

with constants A and B and second integral C of Eq. (5)  all 
chosen appropriately, is also a solution of (4).  The first and 
second integrals of (5)  are of the known form 

The vanishing of the first integral in (6)  ensures that period- 
ic solutions will be chosen; we restrict the discussion below 
to periodic solutions. Now differentiating (5)  and then com- 
bining the resulting expression with (6), we find (4)  with 
the following conditions on the coefficients: 

where sn(y, y) is the elliptic sine with a modulus and period 
of 4K(y). 

The one equation which we still need in order to unam- 
biguously determine the coefficients A, and A, (or, equiv- 
alently, B and C), should be found from the condition that 
thermodynamic potential ( 1 ) reaches a minimum when ex- 
act solution (8)  is substituted into it: 

Q ( T ,  p) =Cl12Az2+C214Azl+C31eA26. (9)  

The quantities I,( y),  I,( y), and I,(y) are given explicitly in 
the Appendix. It is convenient to vary (9)  with respect to A, 
and find the other equation which we need: 

We would like to discuss the shape of the (T, p)  phase 
diagram near the Lifshitz point, which is specified by the 
system of equations 

a ( T * ,  p*) =C1 ( T I  p', v )  =O, al (T' ,  p') =C2 (T ,  p', v )  =O.  

The line of the second-order transition from the para- 
magnetic phase to the commensurable phase of the spin den- 
sity wave (the P-C transition) in the region p <p*  is deter- 
mined by the condition 

while that of the transition to the incommensurable phase of 
the spin density wave (the P-I transition) in the region 
p > p* is determined by the condition 

C, (T, ,  p, v )  - C t  (TI, PI Y )  /2C3 ( T I ,  P, V )  =O. (13) 

Relation ( 13) is found from ( 10) and (7)  in the limit y, 
A,-0. Analysis shows that both of the transitions (P-C and 
P-I) are indeed of second order and that the difference 
between the thermodynamic potentials of the P and C or P 
and I phases vanishes on lines ( 12) and ( 13 ), respectively. 

We can now discuss the question of the line of the I-C 
transition near the point ( T *,p* ). Expanding ( 1 ) in powers 
of A,, and using (8) and (2)  in the limit y - 1, we find, in 
leading order in the logarithm, L = (ln (4/y1) ) - ', 

Condition ( 7 )  and the vanishing of the coefficient of L deter- 
mine the line of the second-order I-C transition, 

and the value of A: = A: on this line 

Calculating the potential of the I and C phases on line ( IS), 
we find 

52 lCZl3 
AQI(T, p) =AQc ( T ,  p )=  ---- 

g3 CS2 

with respect to the paramagnetic phase. In other words, the 
I-C transition occurs as a second-order transition, as do the 
P-C and I-C transitions. 

Figure 2a shows the change in the ( T, p ) phase diagram 
during the Lifshitz point when the parameter Y varies. For 
all transition temperatures T(p, Y )  the condition 
AT = T(p, v) - T(p, 0) T(p, 0) holds, and we can use 
the approximations 
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FIG. 2. 

If v l / v -  1, relations ( 2 )  are violated even if contribution ( 3 )  
is ignored, and there is no exact solution ( 8 )  which mini- 
mizes functional ( 1 ). There is the hope, however, that this 
solution will remain applicable as a variational solution, at 
least under the condition v'& ( T * ,  p * ) ,  in which case the 
corrections to the coefficients {C,  } of the exactly solvable 
model without impurity scattering are small. An advantage 
of choosing a snoidal solution as the variational solution in- 
stead of the sinusoidal solution which is conventionally used 
(Ref. 14, for example) for the model of a spin density wave is 
that an infinite number of harmonics can be taken into ac- 
count in a compact way. This advantage is particularly im- 
portant near the line of the I-C transition. Calculations 
show that for any v (  (T, /u)  the thermodynamic potential 
R,, ( T ,  p ,  v )  in the class of snoidal solutions ( 8 )  is smaller 
than in the class of sinusoidal solutions A  ( x )  = A, sin( A  ,x/ 
v, ) . Figure 2b shows phase diagrams for the case v' = v .  As 
before, with v' = 0 ,  all of the transitions (P-I, P-C, and Z- 
C )  are of second order. This point was verified through a 
direct calculation of the thermodynamic potential R,, ( T, p ,  
v ) ,  found by substituting variational solution ( 8 )  into ( 1 ) 
and minimizing R,, with respect to the parameters A, and 
A, of the soliton lattice. 

3. CHANGE CAUSED IN THE SHAPE OF THE SOLITON 
LATTICEOFTHE SPIN DENSITY WAVE BY IMPURITY 
SCATTERING AND BY A FINITE RESERVOIR STRENGTH 

We turn now to a more correct derivation of the form of 
the function A ( x )  in the case in which relations ( 2 )  among 
the coefficients of functional ( 1 ) do not hold. An equation of 
the general form 

a,Arv-a,A"+aA+!3A3+yA5-b(A (A')2+A2A") = ( 18) 

has solutions in the class of two-period functions." We are 

interested in those solutions which satisfy the conditions of 
slowness and smallness which we used in constructing the 
functional ( 1 ) . 

We assume that the corrections to relations ( 2 )  are 
small, on the order of the parameter ( 1 + M )  -' ( 1 ;  corre- 
spondingly, the corrections of the type in ( 3 )  are small, and 
we have the relation v f / v -  ( 1 + M )  - I .  It is convenient to 
include all of the impurity contributions at once in the coeffi- 
cients a, a  ,, and a,  at low powers of A  ( x )  . The other correc- 
tions for impurity scattering and for a finite reservoir 
strength lead to a violation of relations ( 2 ) ,  and we now have 

The explicit expressions for y; , b ', and P ' are not important 
here. The only point which is of importance is that a11 of 
these corrections are - ( 1 + M )  - ' and are small in the limit 
of large reservoir strength M. The most serious restriction on 
this smallness comes from the requirement 10 ' 1  < 2  la, I ,  since 
a ,  may itself vanish at the Lifshitz point. Accordingly, in the 
immediate vicinity of this point, relation ( 2 )  between f l  and 
a ,  is markedly violated, and the method constructed below 
for calculating the corrections to solution ( 8 )  cannot be 
used. As M increases, the region in which the relation 
10 ' 1 ( 2  [ a  , 1 is violated becomes progressively narrower, 
while the region of applicability of the calculation method 
becomes wider. Introducing the dimensionless variables 
~ + ~ ( l a , l / a , ) " ~ ,  ~ + x ( a , / l a , l ) " ~ v ~ '  we can rewrite 
( 1 8 )  in the form 

A"-2 sign(aI)A " +zA+ [2 sign(a,) +B1/l a, I ]  A3+ (6+r'laz) A5 
- (10+b1la2) [A (A') 2+A2A"] =0, ( 2 0 )  

z=C,C3/1 CZ 12. 

In the region in which nonuniform solution ( 2 0 )  exists we 
havea, <0. 

We seek a correction to solution ( 8 )  which is linear in 
p', yi ,b 'in theform A ( x )  - A,(x) = @ ( x )  Ah(x). Thelin- 
earized equation for the function @ ( x )  

Ao'(91v+4Ao"cD"'+2[3Ao"'+Ao'(1-5A02)] 0 " (21 ) 

where A,(x)  is given by ( 8 ) ,  and 

is an odd periodic function with a period of 4K( y )  . The sub- 
stitution @ ' ( x )  = h(x) /Ah ( x )  lowers the order of the dif- 
ferential equation ( 2  1 ) : 

It is not difficult to see that under the condition f ( x )  = 0  the 
latter equation is satisfied by the solutions of the equation 
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A,,"' A/ C 
hf f  + [ 3 7 - 2 ( 7 )  AO +2-10A.']h=--; (24) 

A0 A0 

with an arbitrary constant C. We denote by h , ( x  ) and h, ( x )  
the solutions of the homogeneous version of Eq. (24) 
( C = O ) , a n d  wedenoteitswronskianby W =  h , h ;  - h ;  
h,. A particular solution of the inhomogeneous version of 
Eq. (24) with C = Wis then 

X 

The triad of functions h , ,  h,, h, is the basis for an arbitrary 
solution of Eq. (23) with f ( x )  = 0. A particular solution of 
the same equation with its right side is of the standard form 

1 ht (x') h.  ( x )  = [ h 2  5 

We can now write a general solution of the inhomogeneous 
version of equation (23), 

3 

h ( x )  = Aihi ( x )  +h, ( x )  

and we can find the functions h ,  and h, explicitly. We first 
use (6)  and (7 )  to rewrite the "potential" in (24): 

Using transformations of the elliptic functions, lX we see that 
we have 

Second, combining (28) and (29), and introducing the new 
variables 

we can rewrite (24) with C = 0 in the form of a Lam6 equa- 
tion of first degree: 

1-3B/2 
( I + k l ) 2 - k 2  s n 2 ( y + K  ( k )  

The two linearly independent solutions of this equation are 
expressed in terms of the Jacobi eta and theta functions1': 

h * ( ~ ) =  ei(r+yo' k, e x p [ T y Z ( y . ,  k ) ] .  
H1 ( Y ,  k )  

Here Z(y,,, k )  is the zeta function of argument y,,, which can 
be found from the equation 

Since we have @' = h /A&, we must impose the boundary 
conditions h ( x  = + K (  y)/A, ) = 0 on the solutions of Eq. 
(23). These boundary conditions are satisfied by linear com- 
binations of functions ( 3  1 ) : 

h1=h+-h-, (33) 

Herewehaveh,(x)  = h,( - x ) .  
Using the functions h ,,, ( x )  in (33) ,  we can write a so- 

lution of (26),  (27) which satisfies the specified boundary 
conditions: 

h t ( x )  h2(x1)  - -- IT[ A, + j A,' (x") ! ( x u )  dx"] d x f  ) , 
Ao' ( x )  A0 ( 2  

-so 

Through an appropriate choice of integration limits in (34),  
we can normalize with A,  = A, = 0. We also require that the 
unknown function 

and its derivative ( 34), satisfy the quasiperiodic boundary 
conditions 

where q is the wave number. The last equation can be rewrit- 
ten as follows with the help of (34) : 

Equation (38) thus determines the constant A,. The pertur- 
bation-theory algorithm formulated above is applicable un- 
der the condition I @ ( x )  A; ( x )  1 < I A,(x) 1, which is satisfied 
by the choice @(O) = 0. Condition (36), along with the rela- 
tion h , ( x )  = h , (  - x ) ,  yields thevalueq=.r rAI(2n+ I ) /  
2K(y),  where n is an integer. Using this circumstance and 
the fact that we have f ( x )  = - f ( - x ) ,  we immediately 
find A, = 0 from (38).  We thus finally find 

where h,(x) is given by (26). Figure 3 shows a sketch of the 
function (39) for one period of the soliton lattice [the origin 
of coordinates has been chosen in such a way that we have 
A1(x = 0 )  > 0; the dashed line shows the function A,(x)  1. 

We thus see that a finite reservoir strength M and impu- 
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FIG. 3. 

rity scattering give rise not only to changes in the amplitude 
and period ofthe soliton lattice of the spin density wave [this 
effect is incorporated in A,(x) through the change in the 
parameters A ,  and A,] but also to an asymmetric distortion 
of the shape of the spin density wave at the scale of the new 
period. 

4. CONCLUSION 

This analysis of the model of a soliton lattice of a spin 
density wave with electron scattering by nonmagnetic im- 
purities makes it possible to predict the shape of the phase 
diagram of a doped band antiferromagnet near the Lifshitz 
point. There are some qualitatively new effects which are not 
seen in the case of the rigid-band approximation. First, the 
Lifshitz point itself shifts when the impurity concentration 
changes. Second, the slopes of the temperatures T, (x) of 
the transitions from the P phase to the C and I phases 
change, as does the temperature TI, (x) of the transition 
between the I and C phases. The change in the temperature 
TI, ( x )  is particularly large; in fact, JT,, (x)/Jx may ac- 
quire the sign opposite that in the rigid-band case (Fig. 2, for 
example). The phase diagrams in terms of the temperature- 
(impurity concentration) variables may as a result acquire a 
rather unusual slope, depending on the particular relation 
between the parameters p ( x )  and v(x)  (e.g., of the type 
shown in Fig. 4, wherep = 0.63). We know quite well7 that 
this diversity cannot be explained, even qualitatively, by the 
simple model which incorporates only a change in p (x) . 
This deficiency is remedied in the method proposed here. 

Some serious restrictions, which rule out a direct appli- 
cation of the results of this study to other models with elec- 
tron soliton lattices, are the requirement that the reservoir 
strength M be large and that the impurity scattering of the 
electrons of singular regions of the Fermi surface be small, 
v' 4 v (in the model of a quasi-one-dimensional supercon- 
ductor, for example, we would have M =  co but v' = v, 
while in the Peierls model we would have M  = 0 and v' = v) . 
In this connection we note that Machida and Fujita's gener- 
alization4 of the model of a soliton lattice of a spin density 

wave to the case of a low reservoir strength can be regarded 
only as a variational model, since terms of the form (3) vio- 
late relations (2) and thus the exact integrability of the func- 
tional ( 1 ) . 

APPENDIX 

The coefficients of functional (1)  calculated by the 
standard technique13 are 

where $(z) is the digamma function, 7 = p/27~T, z = 1/ 
2 + iv, 

C2=cp2/2 (nT)', C3=cp4/4 ( n T )  ', 

The coefficient of functional (9)  are 

I,=J,, 14=ZJ,+y-"(I+y-')J2, (A131 

v 
FIG. 4. 
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