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We investigate analytically the stability of steady-state growth of two-dimensional needle 
dendrites in the limit of small anisotropy of the surface energy. We find a discrete spectrum of 
unstable modes which describe splitting at the tips of the dendrites. Out of the entire set of 
stationary solutions the only stable one is the one which corresponds to maximal growth velocity. 
The solutions with smaller growth velocity have unstable modes whose number grows as the 
velocity decreases. These analytical results are found to be in agreement with the results of 
numerical calculations. 

INTRODUCTION 

Needle dendrites, which grow from supercooled melts, 
constitute one of the simplest modes of crystal growth. The 
crystallization front of experimentally-observed dendrites is 
close to parabolic in shape; for this shape, the velocity of 
growth and the curvature of the dendrite tips are uniquely 
determined by the supercooling of the melt.'.* The funda- 
mental process which controls the growth of these crystals is 
the transfer of the latent heat of the phase transition from the 
crystallization front into the supercooled melt via thermal 
conductivity. Analysis ofthis process shows that the station- 
ary solutions of Stefan's problem for an isolated two-dimen- 
sional dendrite are given by a family of parabolas y = - x2/ 
2p; the growth velocity is v a l/p.' The value of p remains 
undetermined in this case by virtue of the absence of any 
parameter with the dimensions of length in the problem; the 
dimensionless parameter p = vp/2D (i.e., the Ptclet num- 
ber; D is the coefficient of thermal conductivity) is deter- 
mined by the dimensionless supercooling. This nonunique- 
ness ofp is in contradiction with experiments, in whichp and 
v are fully determined by the growth conditions. Further- 
more, it follows from the solution of the dynamic problem4 
that the entire family of parabolic solutions is unstable. The 
question then arises: what are the additional factors which 
select out the unique stable solution? As a result of previous 
work, it has become generally acceptable to assume that one 
of these factors is anisotropy of the surface energy at the 
interphase boundary. Based on n u m e r i ~ a l ~ - ~  and analyti- 
ca19-l2 calculations, the following assertions have been 
made: 

1. When anisotropy of the surface energy is taken into 
account, it is not possible to obtain a stationary solution to 

solutions has associated with it one unstable mode more than 
the previous member. 

In this article, we investigate the growth dynamics of 
needle dendrites in the limit of small surface energy anisotro- 
py, and find the spectrum of unstable modes which describe 
the splitting of the dendrite tip. Just as in the case of numeri- 
cal calculations, we find that only the solution with maxi- 
mum growth velocity is stable, and that the solutions with 
smaller velocities have unstable modes associated with them 
whose number grows as the velocity decreases. In this way, 
we have succeeded in clarifying the analytical structure of 
the problem; in particular, we find that the surface energy 
anisotropy, which emerges in the role of a singular perturba- 
tion, leads to the selection of a unique stable solution. 

The surface energy stabilizes the tip of the dendrite, i.e., 
the region with maximum curvature. As we depart from the 
tip, the crystallization front becomes more planar and the 
stabilizing action of the surface energy decreases. In this case 
another type of instability emerges, which is connected with 
the appearance of secondary bulk branches. The character of 
this instability can be understood by studying the evolution 
of a wave packet. It is found that in the course of time such a 
packet is carried away from the dendrite tip along the crys- 
tallization front; as it moves, it spreads and grows in ampli- 
tude. 

2. THE DYNAMICAL GROWTH EQUATION 

The temperature distribution T ( x , y )  in a supercooled 
melt containing a growing crystal is described by the equa- 
tion of thermal conduction: 

Stefan's problem in the form of a needle dendrite. 
At the crystallization front y = y(x,t) heat is released, and 

2. In the presence of an anisotropic surface energy, a 
the boundary condition has the form 

discrete set of stationary solutions can be selected from the 
continuous-spectrum solutions. The velocity spectrum has a 
point of accumulation at zero and is bounded by a certain 
maximum velocity. 

3. The crystal grows in the direction of maximum sur- 
face energy. ' 

4. According to numerical analysis of the dynamic 
p r ~ b l e m , ~  only the solution with maximum growth velocity 
is stable. The other solutions are unstable against splitting of 
the tip of the parabola; as the growth velocity decreases, each 
member of the sequence (spectrum) of discrete stationary 

where c, and D are the heat capacity and coefficient of ther- 
mal conductivity, which are the same in both phases, n is a 
unit vector normal to the interphase boundary, L is the la- 
tent heat of fusion, and v, is the velocity of the front along 
the normal; the subscripts I and c refer to the melt and the 
crystal, respectively. When we neglect kinetic effects at the 
crystallization front, the equilibrium boundary condition 
has the form 
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where T,,, is the melting temperature, x is the front curva- 
ture, 

The function y, depends on the angle 0 between the normal 
to the surface and the y-axis, and is related to the anisotropy 
of the surface energy y(0)  through 

From the condition of thermodynamic stability it follows 
that y, > 0. Far from the front, the melt is supercooled and 
has a temperature To < T, . 

According to the boundary condition (2) ,  the latent 
heat of the phase transition is released at the crystallization 
front y(x,t), i.e., the front is a line along which heat is re- 
leased at concentrated (point) sources. As this front moves, 
the thermal field can be found by using the Green's function 
of the equation of thermal conduction ( 1 ) . It then follows 
that the temperature distribution at the crystallization front, 
i.e., the left side of Eq. ( 3 ) ,  will be determined solely by 
y(x,t), i.e., the same function that describes the front. 
Hence, Eqs. ( 1 )-(3) allow us to obtain a single integro-dif- 
ferential equation which describes the dynamics of the crys- 
tallization front: 

It is our intent in what follows to investigate the crystalliza- 
tion front dynamics close to a parabolic dendrite undergoing 
steady-state growth with parabolic parameter p; therefore, 
in Eq. (4) we use the following dimensionless parameters: 
all lengths are measured in units of p, time in units of p/v, 
p = up/2D is the PCclet number, and A = ( Tm - T,,)cp L - ' 
is the dimensionless supercooling. The capillary length 
do(0) = yE (0) Tm C, L -'. 

In the absence of surface energy (do = 0),  a solution to 
Eq. (4)  was obtained by Ivantsov in the form of a parabola 
which moves with constant velocity3: 

while the PCclet number is determined by the equation 

In what follows we will be interested in the limit of small 
supercooling A< 1, which implies a small Pkclet number, 
i.e., p 4 1. In this case we find from (5)  that p-  A2/r. 

The presence of a finite surface energy significantly 
changes the problem, because it leads to the appearance in 
Eq. (4)  of a term with a higher derivative. For small values 
of the dimensionless parameter 

the correction to the parabolic shape is also small, and can be 
found explicitly to first order in a.I2.l3 In addition to the 
regular corrections there are also singular ones which de- 
pend exponentially on the parameter a-ll*. In the general 
case the amplitude of these corrections grows as we recede 
from the tip of the dendrite, so that for an isotropic surface 
energy there are in general no bounded stationary solutions. 
An escape from this situation was found by introducing into 
the investigation a finite anisotropy in the surface energy, for 
which the simplest model expression is usually used: 

do (0) =do( l -a  GOS 4e), t g  8 = a y / d ~ .  (7 )  

When we introduce a new parameter-the anisotropy 
a-we find that the problem has a bounded solution for a 
discrete set of velocities u (or the parameter a). In the limit 
a 4 1 the spectrum of a is given by the expression 

where 2 ,  is a numerical factor which increases with the in- 
dex n. Thus, solving the stationary problem with the surface 
energy anisotropy included reveals that a certain discrete 
spectrum of growth velocities is selected out from the initial- 
ly continuous spectrum; however, there is no apriori reason 
to prefer any particular one of these velocity values. In order 
to finally solve the problem of selecting the unique possible 
growth velocity it is necessary to analyze fully the dynamic 
stability of these stationary solutions. 

The purpose of this article is to investigate the local 
stability stationary solutions of Eq. (4).  To do this we as- 
sume that the steady-state problem has been solved and that 
the spectrum of parameters a is determined by Eq. (8) .  It is 
necessary to study the equation for small perturbations ob- 
tained from (4)  by substituting into the latter the shape of 
the front in the form 

y=t-x2/2+b ( x )  exp (Qt) 

and linearizing with respect to 9. The equation obtained in 
this way has a spectrum of eigenvalues a ;  stability corre- 
sponds to Re 0. Because a is assumed small, we will 
neglect corrections to the stationary shape of the front which 
are linear in 0. As we did in studying the stationary problem, 
we will use the approximation of small PCclet numbers, i.e., 
p( 1. In addition, we will use a generalized quasistatic ap- 
proximation, namely that the temperature field can adjust 
far more quickly than the crystallization front can change 
shape. If this is true, we can neglect the term 6'T/dt in the 
equation for thermal conduction (4); in keeping with this 
approximation, we replace exp [R ( t  - 7) ] by exp(Rt) in 
the right-hand side of Eq. (4),  i.e., we assume that in prac- 
tice the value R 7 4  1. The adequateness of this approxima- 
tion for analysis of dynamic problems of dendrite growth has 
been discussed beforeI4; we will justify it below as applied to 
investigation of our problem after we find the spectrum and 
eigenfunctions ( ( x ) .  In the framework of this approxima- 
tion, we obtain from (4)  the equation 
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OD 

d2E 3ux db ----- (i+x2)' I axp  (x+x') [ f ( 2 )  -f (2') ] 
dx2 l+xZ dx 2nA ( 5 )  -_ (x-x')  [1+ ( x i  x1) ' /4 ]  

A ( x )  =1+8m2/ (1+x2)'.  (9)  

This equation contains two small parameters a and a, which 
are related by Eq. (8).  In analogy with the time-independent 
problem of finding the spectrum of growth velocities, our 
procedure for solving Eq. (9 )  consists of the following: in 
order to find the function c ( x )  for a given value of R, we can 
in lowest order set a = a = 0. Then terms with derivatives 
drop out, and we obtain an integral equation which depends 
on the single parameter 0. We obtain an explicit solution to 
this equation; it will turn out that for any positive value of R 
there exists a bounded function c ( x ) .  This fact implies that 
the solutions found by Ivantsov are unstable in the absence 
of surface energy. This result was obtained previously for a 
one-sided model in which the thermal conductivity of the 
crystal was n e g l e ~ t e d . ~  When the terms with derivatives, 
which are proportional to a ,  are taken into account, the ei- 
genfunctions ((x) are changed very little; however, the 
spectrum of admissible values of R is radically altered. This 
is connected with the fact that in addition to the regular 
(power-law in a )  corrections there exist singular correc- 
tions which depend exponentially on the parameter 0 - ' I 2 .  

In  the general case, for arbitrary values of R these correc- 
tions diverge at large distances; it is the specific condition 
that they be bounded which determines the spectrum of ad- 
missible values of R. If we analyze Eq. (9 )  only for real 
values of x, then finding the spectrum of R would require 
that we know its exact solution. In view of the absence of 
such a solution, we follow earlier workI2 and make use of an 
approximate approach which comes from the theory of 
quantum-mechanical reflection over a barrier, which allows 
us to analyze equations near a singular point in the complex 
x plane. Actually, it is clear from Eq. (9 )  that for small uand  
a the effect of the derivatives becomes important only in a 
small region around the singular points x = +. i. In this re- 
gion Eq. (9 )  converts to a third-order differential equation. 
This differential equation and the integral equation obtained 
by neglecting the derivatives have a common region of appli- 
cability, and the condition that their solutions match in this 
region determines the spectrum of allowable values of R. 

3. EIGENFUNCTIONS 

For ag 1, by neglecting the derivatives in Eq. (9 )  we 
obtain the equation 

m 

l+x2 (x+xt ) t, (x')  dx' 
c(')+ F -OD ( x - x ~ ~  [ i+  ( X + X ~ ) ~ / * I  

where P denotes an integral in the principal-value sense. 
After we go over to a Fourier representation 

OD 

6 ( x )  = J f ( k )  exp ( - ikx)  dkl2n 
- OI 

this equation becomes a differential equation: 

Equation ( 11) has two solutions, one of which is even: 

and the other odd: 

f ( k )  =k  exp (-kz/2Q+I k I ) .  

These solutions are bounded only for 0 > 0, which confirms 
the instability of the parabolic solutions in the absence of 
surface energy. We present as an example the even function 
f ( x )  obtained by inverting the Fourier transform: 

g ( x )  =Q+Q (2nQ)'"/4 

~ ( ( 1 - i s )  exp [ Q  ( I - ix ) ' /2 )  erfc [ (Q/2)"' (1- ix ) ]  

+ ( I + i x )  exp [ Q ( l + i ~ ) ~ / 2 ]  erfc [ - ( Q / 2 ) ' h ( l + i x ) ]  ). 

(12) 

Near the tip of the parabola, i.e., for 1x1 < 1, we obtain 
from (12) 

% ( x )  =2Q (2nQ)  '" exp (Ql2-Qx2/2) cos Qx. (13) 

For R, 1 this function is localized at the tip of the parabola 
and has a number of oscillations of order R. This type of 
instability describes the splitting of the tip of the dendrite. A 
form analogous to ( 13 ) was obtained in Ref. 4 for the eigen- 
function f ( x )  in the course of investigating the one-sided 
model. 

Far from the tip we have for 1x1 $1 that 

In what follows the behavior of the function c ( x )  in the 
complex plane will be important. The first term in the curly 
brackets of ( 12) is a function which is analytic in the lower 
half of the complex x-plane, while in the upper half-plane it 
grows as exp[lRIm2(x)]; the second term, conversely, is 
analytic in the upper half-plane and grows in the lower half- 
plane. 

4. DISCRETE SPECTRUM OF INCREMENTS 0 

In the previous section the function f ( x )  was found by 
neglecting the surface energy, i.e., terms which contain de- 
rivatives, in Eq. (9) .  For finite but still small a and a, there 
arises the necessity of investigating the full equation (9 )  
near the points x = + i. In this region the integro-differen- 
tial equation reduces to a differential equation. In this case, 
as in the earlier Ref. 12, we cast the function f ( x )  in the form 

where the functions (+ ( x )  and (- ( x )  are analytic in the 
upper and lower halves of the complex x-plane: 

In this representation the first of the integrals in (9 )  is 

2576 Sov. Phys. JETP 67 (1 2), December 1988 Brener et aL 2576 



calculated by the method of residues. The second integral in 
(9) is calculated analogously, if we first do an integration by 
parts and introduce the function 

8 

In summary, from Eq. (9)  we obtain a differential-differ- 
ences equation for the functions p , ( x )  : 

OA ( x )  [ q + " ' ( x ) + q - " ' ( x ) ]  

-3oA ( x ) x  ( l+x2) . - '  [q+" ( x )  -I- q-" ( x )  ] 

-i(l+~~)'~{[(~+i)q+'(x)+(~-i)(P-)(-~-2i) ] 

- [ (x+i)q+'(-x+2ij+(x-.i)cp-'(x)]) 

+iQ ( l + ~ ~ ) ~ ~ [ ~ - ( x ) - r p +  ( x )  +(p-( -x-2i )  

-q+ ( -x+2 i )  ] =O.  
( 1 4 )  

Let us investigate this equation near the point x  = i, at which 
the coefficients of the equation are singular. As earlier in 
Ref. 12, the important x  are those for which 

I X  - il -all2& 1. It is possible tosimplify Eq. ( 1 4 )  in view of 
the fact that the scales of the functions p+ ( x )  and p- ( x )  
near the point x  = i are quite different. Actually, if we retain 
in the equation only terms which contain p- ( x ) ,  then in 
making the resulting equation dimensionless we find a char- 
acteristic scale R-a-'I2) 1. The relative scale of the func- 
tions p+ and p- can be explicitly seen if we investigate 
expression ( 1 2 ) ,  in which the first term in curly brackets 
corresponds to 5- ( x )  , the second to f +  ( x )  . At x  = i  we 
have f - a exp(2R) while 5, reduces to zero linearly in 

I X  - il. In agreement with this, for R )  1 the magnitude of 
p- ( i )  is exponentially large in comparison to p+ ( i ) ,  and 
also in comparison to p- ( - 3i)  cc p+ ( 3 i ) .  In this way, Eq. 
( 14) becomes a differential equation for p ( x )  = p- ( x ) .  
Making the substitution . 

x=i( l -cc '"z) ,  Q=oa-'" 

and assuming that the small parameters a and a are connect- 
ed by Eq. (8) ,  which follows from the condition that the 
stationary problem is solvable, we obtain from Eq. ( 14) the 
equation 

For Izl ) 1 this equation has the particular solution 

which agrees with the solution to ( 12) in the region of their 
common applicability all2 & ( x  - i l g  1 .  Hence, the com- 
plete solution of the problem will be found if we succeed in 
obtaining a solution to Eq. ( 15) with the asymptotic form 
( 16).  This condition selects out the discrete spectrum of o. 
The situation here is completely analogous to finding the 
discrete spectrum A, for the solution to the stationary prob- 
lem. The point is that the general solution to Eq. ( 1 5 )  for 

I z I  1 grows as 

q o: exp [ (4/7)2'14/2 !,'2z714], 

if arg z  = 0, and as 

q a exp [ - (4/7) 2"hLh ~ " 4 1 ,  

if arg z = + 4?r/7. In order to suppress this growth along 
the three rays mentioned above and arrive at the asymptotic 
form ( 16) ,  we must have available three free parameters. In 
keeping with the fact that ( 1 5 )  is a linear homogeneous 
third-order equation, it is possible to suppress growth along 
two of the above rays by using two constants of integration; 
then the condition on the third ray determines the spectrum. 
The eigenvalues w are denoted by w, ( n ) .  the value of n  indi- 
cates the number of the stationary solution, u 1e the sub- 
script j is the index number of the unstable mode for a given 
n. The number n  determines the value of A,; therefore, 
w, ( n  ) constitutes a set of numbers of order unity. The results 
of numerical solution of Eq. ( 15) for the conditions given 
above, together with the spectrum A, calculated earlier,I2 
are listed in the table. 

The important qualitative features of the spectrum so 
obtained consist of the following: the unique stable solution 
corresponds to the minimum value A,, i.e., the maximum of 
the possible growth velocities. The number of unstable 
modes which correspond to splitting of the dendrite tip 
equals the index number of the stationary solutions. These 
results are obtained in the limit of small surface energy ani- 
sotropy (a & 1 ) by reducing the original integro-differenital 
equation (9)  to the differential equation ( 15) ,  which does 
not contain the parameters. The qualitative outlines of the 
spectrum found this way coincide with those of the spectrum 
obtained by direct numerical solution of the original prob- 
lem.6 

To conclude this section, we point out the conditions of 
applicability for the quasistatic approximation. The time de- 
rivative in the equation for heat conduction can be neglected 
for pR & k ', where k is a characteristic wave vector of the 
inhomogeneity. From Eq. ( 6 )  it is clear that k-R. The 
growth rates R we have found are of order a-'I2. Hence, the 
quasistatic condition takes the form pa l t2  & 1 .  Let us note 
that the spectrum (8 )  for a, in the stationary case was ob- 
tained using these very  condition^.'^ 

5. SPECTRUM OF GROWTH RATES w FOR LARGE A, 

In the table we present the spectrum wj ( n )  for the first 
four values of n. For large n  (A ,  $ 1  ) Eq.  ( 15) can be investi- 
gated analytically. In this case we are able to solve the prob- 
lem completely near the upper bound of the spectrum, when 
w -A, 'I2. In order to simplify Eq. ( 15) for w) 1, we rewrite 
it in the form 

TABLE I. Table of values of A, and w, ( n ) .  
I 
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where 

If we assume that d p  /dz- up ,  then the first two terms are of 
order w3q,, while the last is of order w2p, so that to first 
approximation the latter need not be included. Assuming 
now that in the region of interest for z the inequality 
127w2 - f(z) 1 (a2 is fulfilled, we obtain a solution for q, in 
the form 

The solution p, must be rejected, since it flows along the ray 
arg z = 0. This allows us to lower the order of Eq. ( 17) if, 
after substituting 

we neglect terms in d$/dz compared to a$. Omission of the 
term d ,$/dz3 compared to wd$/dz2 corresponds to omitting 
solutions of the type p,. In sum, we obtain from Eq. ( 17) the 
equation 

Equation ( 18) has the form of a Schroedinger equation; the 
function $(z) is localized near the minimum of the function 
f(z), i.e., near z = zo = ( 14/3) 'I2. Expanding f(z) near 
z = zo up to quadratic terms, we obtain the equation 

where 

Previously, the selection of w was accomplished by in- 
voking the boundary conditions on the rays argz = 0, 
+ 47~/7. In the case under discussion, this is equivalent to 

the condition that $ decay along the rays 
arg(z - zo) = + ~ / 2 .  In keeping with the harmonic-oscil- 
lator character of Eq. ( 19), we obtain the equidistant spec- 
trum 

oj (n) =on (n) -3'" (n-j)/4, (20) 

where 

( ) ' h ( ) ' " r  .+- 
a n -  - :i) 

3 2 l? (3/8) 

is the maximum value of the growth rate for a given n. In the 
spectrum (2) we have included a shift in the limiting fre- 
quency w, (n )  because of the last term in Eq. ( 19), and have 
substituted in the value ofw,,, ; we have also used the asymp- 
totic form of the expression for A, (see Ref. 12). We remark 
that Eq. ( 10) describes the distant region of the spectrum, 
because it was also obtained under the assumption that 
w,,, - w(o,,,, i.e., n - j(n. 

Let us illustrate briefly the method of finding the spec- 
trum wj (n )  in regions where it is not equally spaced, ie., for 
n - j-n. Investigating Eq. (17) by the WKB method, we 
replace d /dz by k and obtain a cubic for k(z). For w <we,, , 

the function k(z) has two complex-conjugate branch points 
in the z-plane, i.e., two turning points. In the limit n - j(n 
investigated previously, these were two oscillatory turning 
points located close to z = z,: 

The spectrum of w is obtained from the quantization 
condition on the integral of the difference of the two roots of 
k(z) between the turning points. We note that the contour of 
integration should not intersect the cut ( - oo ,GI. Forj) 1 
and n - j 4 n ,  when we apply the oscillatory equation and 
the WKB approximation at the same time, both approaches 
give the spectrum (20). 

6. INVESTIGATION OF STABILITY BASED ON THE LOCAL 
SPECTRUM n(k,x) 

Let us investigate a perturbation of the crystallization 
front {(x) with characteristic wave vector k, tangent to the 
front which is much larger than the curvature of the unper- 
turbed front. Then from Eq. (9)  we can obtain the local 
spectrum Cl (k,x) by taking the Fourier transform in x and 
assuming the coefficients of the equation are constant: 

Q ( k ,  x)= lk,1[ (1+x2)-"'-oA(x) ksZ (21) 
+3oA (x) ik,x(l+x2)-%] +ik.x(l+xZ)-'", 

in which 

The first two terms in (21) describe the unstable Mullins- 
Sekerka spectrum for the original planar front, taking into 
account the surface energy. The third term includes the dis- 
tortion of the originally parabolic front. The last term in- 
cludes the tangential component of the velocity of the liquid 
relative to the unperturbed front in a system of coordinates 
moving with the dendrite tip. 

In Ref. 15, a theory was developed for stability of inho- 
mogeneous states based on the local spectrum. This ap- 
proach makes use of a representation of the Green's function 
of the equation under study in the form of a functional inte- 
gral 

~ ( x , x ' , t ) = j  e r p [ j  ~ ( k , z ) d r - i j  kdx D(k(r))D{x(~)) ,  
0 I' 

where the integration is carried out over all paths k ( ~ ) ,  x ( r )  
subject to the condition x(0)  = x', x ( t )  = x. In the case of 
perturbations with short wavelengths, the functional inte- 
gral can be computed by the method of steepest descent, and 
the behavior of the Green's function will be determined by 
the extremal paths, which satisfy Hamilton's equation: 

These equations are useful for finding the discrete spectrum 
of the original equation and for studying the evolution of 
wave packets. 

The discrete spectrum of the equation is determined by 
the asymptotic form of the Green's function G(x,xf,t) as 
t + cc . Therefore, we must investigate the paths which return 
to the original point after a long time.I5 The simplest of these 
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paths is the fixed point k,, x, determined by the equations 

( k ,  x)/dk=O, aQ ( k ,  z)/dz=O. (24) 

For small values of a ,  c there are two fixed points lying 
close tox = t i. After investigating (24) nearx = i, by sub- 
s t i tut ing~ = i(l - a112z), fl = ma-'", k = & a - ' I 2  we ob- 
tain for A, > 1 

which is found to be in full agreement with the results pre- 
sented in the previous section. In order to find the points of 
the discrete spectrum which are close we,, , it is necessary to 
carry out an expansion in the exponent along paths which 
are close to the points k,, x,, which gives the usual Gaussian 
integral for the harmonic-oscillator Green's function. The 
eigenfrequency v, of this oscillator can easily be found from 
the equation of motion (23) linearized in the vicinity of k,, 
x,: 

y0=3"/4. 

Using the asymptotic expression for the oscillator Green's 
function,16 we obtain the equidistant spectrum (20). As be- 
fore, this answer is valid for large values ofA, and w close to 
w e x t .  

In order to investigate the evolution of a wave packet, 
we must find that solution of Eq. (23) in the complex plane 
which proceeds from the real point x' to the real point x in a 
finite time. In this case, the amplitude of a packet [(x,t) will 
be proportional to the exponent in (22) calculated on this 
extremal path. Because of the drift term in the spectrum 

(21), the packet will be localized at large times near 
x = (2t) 'I2.  As the packet drifts, its amplitude grows expon- 
entially: 

and the packet itself spreads. The detailed development of 
this type of drifting instability, and its possible connection 
with the appearance of bulk branches of the dendrite, were 
studied previously by somewhat different methods.I4 
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