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The complete solution of the lifting of the degeneracy of a Landau level by a two-dimensional 
periodic potential of general form is given in the limit of a strong magnetic field for rational values 
of the magnetic flux @ (@/$, = r/p, where @,, is the quantum of magnetic flux) passing through 
a rectangular unit cell of a two-dimensional crystal. The Landau level is split into rsub-bands, and 
the numberp determines the multiplicity of the energy degeneracy in the sub-bands. It is shown 
that for r)2 the wavefunction of an electron in the magnetic sub-band, as a function of the wave 
vector k, has characteristic singularities-branch points of the phase of the wavefunction, and the 
quantized value of the Hall conductivity of the sub-band is determined by the number and type of 
such singularities lying in the (r/p) th part of the magnetic Brillouin zone of the crystal, this 
quantized value being always an integer multiple of the conductivity quantum e 2 / 2 d .  A formula 
is obtained that makes it possible to determine the quantized value of the Hall conductivity of a 
magnetic sub-band from the given Fourier components of the potential that lifts the degeneracy of 
the Landau level. The general results are illustrated for a simple model with r = 2. It is shown that 
when sub-bands come into contact the quantized value of the Hall conductivity of a sub-band 
changes discontinuously. The Hall mobility of the electron states in the sub-bands can be 
anomalously large, owing to the presence of small (in comparison with the magnitude of the 
cyclotron quantum) gaps between the sub-bands of the Landau levels. 

1. INTRODUCTION 

The motion of an electron in a crystal lattice in the pres- 
ence of an external uniform magnetic field is one of the clas- 
sic problems of solid-state physics. ' The overwhelming ma- 
jority of papers in this field pertain to the case of rational 
values of the magnetic flux passing through the projection of 
the unit cell on to the plane perpendicular to the magnetic 
field, when the magnetic translations form a group and the 
classification of the electron states that leads to the magnetic 
band structure can be performed relatively Al- 
though the existence of a magnetic band structure in the case 
of rational fluxes has been proved rigorously, the magnetic 
band structure has, in fact, been derived only in a number of 
more or less simplified models. Usual formulations are the 
tight-binding approximation,"-" when the amplitude U,, of 
the lattice potential is large in comparison with the cyclotron 
quantum h, ( Uo$ h, ), and the almost-free-electron ap- 
proximation, when U O < h ,  (Refs. 6, 9-16). A number of 
results not connected with approximations of this kind have 
also been obtained. In papers by Zak"' and Wannier and co- 
w o r k e r ~ ~ ~ ' ' - ' ~  it has been shown that the abstract problem of 
a two-dimensional electron in a strong magnetic field and 
the field of a weak two-dimensional periodic potential is of 
interest as a very simple (but quite rich in content) model 
permitting the direct construction of a magnetic band struc- 
ture. At the present time the interest in this formulation of 
the problem has become especially keen in connection with 
the discovery of the quantum Hall effect (see the review Ref. 
20) and the prediction, made in Refs. 21 and 22, of nontrivial 
quantization of the Hall conductivity of a two-dimensional 
electron gas in magnetic sub-bands that are filled and sepa- 
rated from each other by gaps. Such sub-bands arise from the 
Landau levels of a two-dimensional electron in a quantizing 
magnetic field B on account of a weak two-dimensional peri- 
odic potential U(r),  when the magnetic flux passing through 
a unit cell is rational: 

where @,, = 27rA 
A = (cfi /eB) ' I 2  is 
primitive vectors 

'B is the quantum of magnetic flux, 
the magnetiilength, and a,  and a, are the 
of the two-dimensional crystal lattice, 

which is assumed to be rectangular. 
Novikov and c o - w o r k e r ~ ~ ~ - ~ ~  (see also the review Ref. 

18) were the first to study in detail the general topological 
properties of the two-dimensional Schrodinger operator in a 
uniform (or periodic) magnetic field and a periodic electric 
field in the case of rational values of rl ( 1.1 ) . They showed 
that the formation of r magnetic sub-bands at a Landau level 
must be interpreted as a vector bundle of magnetic Bloch 
functions over a torus T2-the magnetic Brillouin zone 
(MBZ). This vector bundle is a direct sum of one-dimen- 
sional-complex bundles 6, (1 = 0, 1, ..., r - 1 ), with a single 
condition on the first Chern number C ,  (6, ) characterizing 
the bundle: 

7-3  

In addition, it was shown that for perturbations of general 
type the different sub-bands do not touch each other any- 
where in the MBZ. 

Kohmoto showed2' that the first Chern number C ,  (6,) 
of a sub-band 1 is the negative of the quantized Hall conduc- 
tivity e; of the sub-band in units of e 2 / 2 d .  

In the present paper we pose the problem of calculating 
explicitly the quantized value of the Hall conductivity of a 
sub-band from the given perturbation potential satisfying 
the condition ( 1.1 ) .  It is shown that, in the weak-binding 
approximation, for calculations of this quantity it is suffi- 
cient to determine the wavefunction of the magnetic sub- 
band in lowest order of perturbation theory in the parameter 
U,,/&, < 1. The existence of singularities-branch points of 
the phase of the sub-band wavefunction was considered as a 
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function of the wave vector k-was discovered. It was 
proved that the presence of the singularities is necessary for 
quantization of the sub-band conductivity a:,". In the ab- 
sence of these singularities of the sub-band wavefunction, 
the Hall conductivity of the sub-band would (in lowest order 
of perturbation theory) be equal to the corresponding ideal 
value. It is entirely natural, therefore, that, as shown in the 
present paper, the quantized value of the Hall conductivity 
of a sub-band is determined by the number and type of these 
singularities, which are contained in a certain k-space region 
of fixed area. 

In the final analysis, the type of the singularities and 
their arrangement in k-space are determined by the relative 
values of the Fourier components of the potential that lifts 
the degeneracy of the Landau level. Therefore, the quantized 
value of the Hall conductivity of a sub-band is determined 
not only by the numbers r andp from ( 1.1 1; it also, generally 
speaking, depends implicitly and nontrivially on the relative 
values of the indicated Fourier components. 

Earlier, Kohmoto2' noted that the existence of singu- 
larities of the wavefunction of the magnetic sub-band is nec- 
essary for quantization of a,. However, he did not give ex- 
plicit formulas to calculate this quantity. From an analysis 
of magnetic translations of the sub-band wavefunction, the 
authors of Ref. 28 obtained a formula for a:,", in which, how- 
ever, an unknown integer appears. In Sec. 3 of the present 
paper it is shown that this integer is determined precisely by 
the contribution of the singularities, and a method of calcu- 
lating this contribution is given. 

In the theory of the quantum Hall effect at the present 
time, the approach ofThouless et aL2' is the most popular. It 
has been generalized to the case when impurities are present 
in the system,29 and has also been applied to the description 
of the quantization of the Hall conductivity under the condi- 
tions of the fractional quantum Hall effe~t , '~-~ '  when the 
Coulomb electron-electron interaction is dominant in the 
system. This approach is also closely connected with the well 
known arguments of L a ~ g h l i n , ~ ~  based on gauge invariance. 
The existence, noted in the present paper, of singularities of 
the electron wavefunction as a function of the wave vector k 
in the MBZ leads in the present case to important changes of 
the specific calculations carried out in the scheme of Ref. 21. 
It is possible that this remark is also significant in a more 
general situation.29-" 

Finally, in this problem it becomes possible to under- 
stand the nature of the anomalously large Hall mobility of 
the band states, which turns out to be connected with the 
presence of a small (in comparison with fiw, ) gap between 
the sub-bands of the Landau level. The properties of these 
states are interesting in connection with a possible analogy 
with the so-called delocalized states in the integer quantum 
Hall effect, which also possess an anomalously large mobil- 
ity.20 

2. PROPERTIES OF THE EIGENVECTORS OF THE MAGNETIC 
SUB-BANDS OF A LANDAU LEVEL 

We shall consider the problem of a two-dimensional 
electron in a quantizing magnetic field and in the field of a 
weak two-dimensional periodic potential: 

A= [nr] B/2, U(r+niaiSnzaz)=U(r), a=O, f 1, . . . 

In the present paper all vectors are two-dimensional, 
with the exception of the vector n of the unit normal to the 
plane of motion of the electrons, which points along the ex- 
ternal magnetic field. The primitive lattice vectors are or- 
thogonal (a ,  .a, = 0);  in other respects the potential U(r) is 
arbitrary, and will be specified by its Fourier expansion in 
the reciprocal-lattice vectors of the crystal: 

where b, and b2 are the primitive vectors of the reciprocal 
lattice: ai .b, = 2 7 ~ 6 ~  (i, j = 1, 2).  The potential U(r) is as- 
sumed to be weak: 

so that the parameter U,/h,  is small and the problem (2.1 ) 
can be solved in perturbation theory (PT), while the quan- 
tum number ?[characterizing the levels of the unperturbed 
Hamiltonian H, remains a good quantum number. With ne- 
glect of the perturbation U(r) a Landau level is macroscopi- 
cally degenerate, with m~ltiplicity'~ 

where L, and Ly are the dimensions of the fundamental re- 
gion of periodicity of the two-dimensional crystal. The main 
problem of the theory is the removal of this degeneracy, i.e., 
the construction of the set of correct linear combinations of 
unperturbed states of the Landau level N that diagonalize 
the Hamiltonian (2.1 ) in the lowest approximation of PT. In 
this section we shall perform the formal diagonalization of 
the Landau level for an arbitrary rational g = r/p [Eq. 
( 1.1 ) 1. We note that the complexity of specific calculations 
increases with r, since this number determines the order of 
the corresponding secular equation. 

Because of the tegeneracy of the states of the unper- 
turbed Hamilto2ian Ho, a magnetic translation of some ei- 
genfunction of H,, through an arbitrary vector R 

'1' (r) -+ Y (r+R) exp {ir[nR]/2i12), 
h 

is also an eigenfunction of H,, (Ref. 2).  Therefore, the peri- 
odic boundary conditions for the problem (2. l ) have the 
form 

Y (xS.LZ, y) =exp {-iyL,/2h2) Y (x, y) , (2.5a) 

Y (x, y+L,) =exp{ixL,/2ilZ) Y (x, y) . (2.5b) 

The physical meaning of the rationality condition ( 1.1 ) is 
that for rational values of g the magnetic "periodicity" [i.e., 
the condition that there is a quantized area 21i-A per quan- 
tum state in a Landau level; see (2.4) ] is found to be com- 
mensurate with the periodicity of the two-dimensional crys- 
tal. To be precise, if in place of a unit cell of the crystal we 
take a so-called magnetic cell, whose primitive vectors we 
shall always choose in the form pa,  and a2, then in each 
magnetic cell, in accordance with ( 1.1 ), there will be exactly 
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r states of the Landau level. As is well known,2 the choice of a 
magnetic cell is not unique, but this nonuniqueness mani- 
fests itself only in the fact that the magnetic Brillouin zone of 
a two-dimensional crystal can be chosen in different equiva- 
lent ways in the space of the reciprocal-lattice vectors. I t  is 
convenient to choose the dimensions of the fundamental re- 
gion of periodicity of the two-dimensional crystal as follows: 

in order that an integer number M, My of magnetic cells lie 
in the fundamental region. Then the total number of states 
contained in the fundamental region is equal to 
N, = rMx My. 

We shall construct the following linear combinations 
from the states of the Nth  Landau level2': 

I t, N, k,, x.)=M;"' exp (ik.pa, (s+t/r) } (hL,) -"' 

where X ,  ( x )  is the normalized harmonic-oscillator eigen- 
function of level N. The projection Xo of the center of the 
cyclotron motion labels the initial unperturbed states of the 
Landau level. We shall restrict the variation of the quantum 
number X, in (2.7) to the range O<Xo < pa,/r. From the 
boundary condition (2.5b) it follows that 

where the boundary value iy is found from the condition 
21rA *TY /L,  = p a  ,/r, which gives iy = My. 

For fixed XO and t the wavefunction (2.7) is a linear 
combination of states lying at distances that are multiples of 
pa ,  from the given Xo in the range (2.8). Performing the 
infinite summation overs in (2.7), we extend the wavefunc- 
tion to the entire two-dimensional plane, this being conven- 
ient for application of the boundary conditions (2.5). At the 
same time, the scalar product of the wavefunctions (2.7), 
and all possible matrix elements constructed using these 
functions, will, as usual, be specified in the fundamental re- 
gion of periodicity (2.6). 

The quantum number k, labels the superpositions 
(2.7) for fixed Xo and t. The possible values of k, are found 
from the boundary condition (2.5a), which is satisfied by 
the functions (2.7) with 

exp{ik,L,)=l, k,=2nl,/L,, L=O, I , .  . . , is-I. (2.9) 

It follows from the form of the phase factor in (2.7) that, to 
within an unimportant constant phase, when k, is varied we 
obtain, in all, 7, = L,/pa, = M, different superpositions 
(2.7). Therefore, k Fax = 27~/pa, = b,/p. This is the size of 
the MBZ along k, . It depends on the numberp, but not on r. 

As follows from (2.7), the quantum number t is, in fact, 
defined only modulo r, and takes the values 0, 1, ..., r - 1. It 
is not difficult to check that the set of functions (2.7) is 
orthonormal: 

( t ,  N ,  kz, Xo( t ' ,  N',  k,', Xo'>=6rt.6xx.6,x,~6x,.y,r. (2.10) 

It follows from (2.8) and (2.9) that the number of different 
pairs (k, , X, )  is equal to M, My, and since there are r differ- 
ent values o f t  the basis (2.7) constructed is complete. 

The wavefunctions (2.7) are magnetic Bloch functions, 
but specified in the mixed representation (k, , XO) . Below we 
shall use mainly the momentum representation (k-represen- 
tation), the transformation to which is effected using the 
rule 

Our chosen standard MBZ O<k, <b,/p, - b, < k,, 90 con- 
tains exactly Mx My vectors k, i.e., the number of states in the 
MBZ is equal to the number of magnetic cells in the funda- 
mental region of periodicity of the crystal. The area of the 
MBZ is smaller by a factor ofp than the area of the Brillouin 
zone of the two-dimensional crystal in the absence of a mag- 
netic field. Taking (2.11 ) into account, henceforth we shall 
denote the wavefunctions ( 2.7) by 1 tN k)  . These wavefunc- 
tions are defined, of course, for all values of the wave vectors 
k, but, by virtue of the completeness of the basis (2.7), for 
values of k lying outside the limits of the chosen MBZ they 
should be linear combinations of the basis vectors. In fact, 
from (2.7) we have 

It, N ,  kx+ b,lp, kU)=esp{i2nt/r) It, A;, k,, k,), (2.12a) 

It, N, k., k,+b2)=esp{ik,pa,lr) It-1, N ,  kx, k,). (2.12b) 

In (2.12b) and everywhere below we must keep in mind 
the cyclic property of the number t: It + r, N, k )  = It, N, k).  

The significance of the introduction of the basis ItNk) 
lies in the fact that in this basis the potential-energy operator 
U is diagonal in the quantum number k, as one can see by 
direct calculation, using the expansion (2.2) and calculating 
the matrix elements of the operator exp{iq.r) in the basis 
ItNk). 

We turn now to the construction of the perturbation 
theory on an arbitrary Landau level N. Since the basis ItN k)  
diagonalizes the operator U(r) in the quantum number k, 
the PT can be constructed for each k in the MBZ indepen- 
dently. When the perturbation U is neglected the vectors 

/ tN kX ( t = 0, 1 ,. . ., r - 1 ) are eigenfunctions of the Hamilto- 
nian Ho that belong to the eigenvalue h, ( N  + I) which is 
thus r-fold degenerate (for a fixed k) .  In the first approxima- 
tion of PT we arrive at the secular equation 

^ I U,,,  UOl? . . ., U0.I.-1 

A -  . . . . . . . . . . . . . . . . 
Ur-l,o> U9.-l,l~ . . . , L7,.-1,r-1 (2.13) 

h 

where I is the unit matrix. The dispersion equation (2.13) 
has r real solutions (magnetic sub-bands) E, ( k )  ( t  = 0, 
1, ..., r - 1 ), and the corresponding eigenvectors are linear 
combinations of the basis vectors (2.7): 

14 

By virtue of (2.12a) the matrix elements of the operator U 
possess the following property: 
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From this it iŝ  not difficult to derive that 
A( k, + b,/p,ky = A( k, ,ky ), and, consequently, the 
eigenvalues El are periodic in k, with period equal to the size 
of the MBZ in this direction: 

Et (kx+bt/p, k , )  =E,  (k,, k,) . (2.16a) 

We now note that for the basis vectors we can choose, instead 
of the vectors (2.7), the analogous linear combinations of 
functions belonging to the N t h  Landau level, the oscillator 
factors of which depend on the coordinate y. In this way the 
initial symmetry of the problem is restored and it is verified 
that the energy eigenvalues possess period bz/p in the k, 
direction: 

El (k,, k,+ b d p )  =El (k,, k,) . (2.16b) 

By virtue of the fact that the size of the MBZ along ky is 
equal to b,, we see that the energy eigenvalues are p-fold 
degenerate in the MBZ. This fact is closely connected with 
the nonuniqueness of the choice of magnetic cell and, corre- 
spondingly, with the nonuniqueness ofthe shape of the MBZ 
in k-space. 

We proceed to the analysis of the eigenvectors (2.14). It 
follows from basic properties of  determinant^'^ that the co- 
efficients d, (El ) in (2.14) for the eigenvector correspond- 
ing to the eigenvalue El can be chosen to be proportional to 
the cofactors Dl, of any (e.g., the j th) row of the secular 
determinant D ( E )  for E = El : 

We next consider the situation when the different magnetic 
sub-bands do not intersect, and, in particular, for each k the 
values of El ( k )  for all the branches r are different. Conse- 
quently, to each t and each k from the MBZ there corre- 
sponds a single eigenvector of the problem. On the other 
hand, this eigenvector can be specified by the relations 
(2.17) for arbitrary j = 0, 1, ..., r - 1. It follows from this 
that under these conditions different representations (2.17) 
lead to one and the same eigenvector, i.e., 

Dio (El) Dfl (Et) -- -- =... = Di,,-i (E*) 
Djo (Et) Djt (El)  Dj,v-i (Et)  (2.18) 

for arbitrary iand j.̂ We note also that, by virtue ofthe hermi- 
ticity ofthe matrix A in (2.13), we have D :(El ) = D (E l  ) 

11  ' 

Then from (2.18 1, in particular, it follows that 

Thus, for a given branch all the principal cofactors have a 
fixed sign throughout the MBZ. 

For the normalization of the eigenvector specified by 
the relations (2.17), taking (2.19) into account we find 

As is well known, the sum of the principal cofactors is an 
invariant of the matrix under similarity transformations. It 
is easily calculated in the diagonal representation of the ma- 
trix A; namely, 

r- l  r-t 

Since we have assumed that for each k in the MBZ all 
the eigenvalues E, (k )  are different, the above sum is non- 
zero everywhere. On the other hand, as shown by the exam- 
ples given below (see Sec. 4),  the quantities D, ( E l )  them- 
selves can vanish at certain points of the MBZ. By virtue of 
(2.19) this implies that at such a singular point all the cofac- 
tors D,, of the jth row of the secular determinant also vanish 
simultaneously." In such a case this simply means that at a 
singular point rows I # j  of the secular determinant are lin- 
early dependent. In this case the rank of the matrix A(E,) 
remains equal to r - 1, since, by virtue of (2.21), not all the 
Dl, (El  ) can vanish simultaneously. 

Suppose that, at a certain point k = k,, we have 
D,, (k,) = 0 and, e.g., Dl, (k,) #O. We shall assume that D,, 
near k, has the form 

where we have set D;, = ReD,, and D;; = ImD,,, and have 
assumed that at least one of the expansion coefficients in 
(2.22) is nonzero. We shall say that in such a case D,, has at 
the point k,, a first-order zero. Then, by virtue of (2.19) 
D, (El ) has at this point a second-order zero. It follows from 
this that at a singular point the eigenvector component satis- 
fies d, (E, ) = 0. In this case it turns out that the components 
d, (E, ) with I # j  do not have a definite limit a sk -  k,. These 
facts are also obvious from the following formulas for the 
coefficients d l ,  which follow from (2.19) and (2.20) : 

s 

Here the superscript indicates the representation that has 
originated from the jth row of the determinant A (El ). Thus, 
upon variation of k in the MBZ an eigenvector of the sub- 
band is rotated continuously with respect to the basis axes 
specified at each point in k-space. Singularities of the com- 
ponents of the normalized eigenvector (2.23) arise in those 
cases when, as a result of such a rotation, the eigenvector 
becomes orthogonal to one (or more) basis vectors. We 
stress that, for the subsequent applications in Sec. 3, we need 
to have a continuous and differentiable representation for 
the eigenvector. The representation (2.23) that we have con- 
structed is differentiable throughout the MBZ except at the 
singular points indicated. 

Of course, when the representation is changed the posi- 
tions and number of the singular points in the MBZ change. 
In particular, it is sometimes possible to choose for the eigen- 
vector a representation in which, for a certain branch El (k ) ,  
the corresponding minor satisfies Dl, (El ) #O throughout 
the MBZ. In this case, however, it turns out that the given 
minor necessarily has zeros at other points of k-space, out- 
side the MBZ. Moreover, the different representations for 
the eigenvector are closely related to each other. In fact, 
from (2.12b) it follows that 

whence, taking into account the cyclic character of the in- 

2568 Sov. Phys. JETP 67 (12), December 1988 N. A. Usov 2568 



dices t , , ,  and the periodicity (2.16b) of the energy, we find 
the rule for transformation of the cofactors of the secular 
determinant (2.13) for a shift along ky by the size of the 
MBZ: 

Therefore, apart from a relabeling of the basis vectors after 
such a shift, the representation {D,,)  goes over into the rep- 
resentation { D j _  ,,,) ( I  = 0, 1 ,..., r - 1). Furthermore, if a 
minor DJ (El ) has a zero at the point (k, ,k, ), the minor 
D ,  , - , (El ) necessarily vanishes at the point 
(k,,k, - 6,). This obviously gives a relationship between 
the singularities of different representations. 

3. CALCULATION OF THE QUANTIZED VALUE OF THE HALL 
CONDUCTIVITY OF A MAGNETIC SUB-BAND 

For the contribution of an individual filled magnetic 
sub-band of a Landau level to the Hall conductivity of a 
system the authors of Ref. 2 1 obtained the formula (see also 
Ref. 20) 

where S is the area of the region (2.6). The exact Bloch 
factors u,,, = exp{ - ik.r)Y,,, (where Y,,, is the exact 
electron wavefunction in sub-band t  of Landau level N) can 
be understood as the corresponding PT series in the small 
parameter U,/tio,. It is obvious that when such a series is 
substituted into (3.1) the quantized value 4; of the Hall 
conductivity should be obtained in zeroth order in this pa- 
rameter. Therefore, it is sufficient to substitute into (3. l ) the 
wavefunction (2.14) : 

f lk  ( r )  =exp{-ikr) I I ,  k). 

Substituting (3.2) into (3.1), we can transform the expres- 
sion for 0," into a form more convenient for calculations: 

C.C. I}  
k 1-0 dk, arc, . (3.3) 

In deriving (3.3) we used the relations 

and took into account that the vector d (2.23) is normalized. 
It is clear that the first term in the braces in (3.3) gives 

the ideal Hall current of the magnetic sub-band, since in the 
conditions ( 1.1 ) the number of points in the MBZ is equal to 
No/r:  

Following Ref. 2 1, we introduce vectors JI with components 

1 .adl  
= -{ " - - C.C.}  , a=" y, 2 dk, 

FIG. 1. 

and, going over to integration over the MBZ, write the sec- 
ond term in the braces in (3.3) in the form 

We note that, because the coefficients (2.23) may have sin- 
gularities in the MBZ, the components of the vectors J ,  do 
not have everywhere-continuous derivatives in the MBZ, 
and it is not admissible to use Green's theorem to transform 
(3.6) directly into a contour integral over the perimeter of 
the MBZ.35 On the other hand, the singularities of the inte- 
grand in (3.6) are integrable and the given integral exists. To 
calculate it we proceed as follows. We take as the MBZ the 
rectangle klx<kx < k l x  +b,/p, kI,<ky <k,,  +b2  (see the 
figure), and place it in such a way that all the singularities of 
the coefficients d, lie inside it, at the points2' k, . We draw 
the contour C in the positive direction, enclosing all the sin- 
gularities k,, as shown in the figure. The region lying inside 
the contour C is simply-connected and no longer contains 
singularities of the vector d; therefore, for this region, 
Green's theorem is valid. The contribution to the integral 
(3.6) from the parts of the MBZ lying outside the contour C 
can, by virtue of the integrability of the singularities, be 
made negligibly small. Consequently, we have 

l.32;~ =-i - "' 9 r, J, dk. 
(2nI2ft c 1-0 

For the components of the vector d we use the representation 
(2.23) for a certain arbitrary j. We set 

and define the phase function q, jj' (k )  by the relations 

Djl' 
cos qJ" = - 4 1 "  sin q!j) = - 

IDill ' IDIII ' '*" (3.8b) 

We note that the coefficient d ,O' is real, so that the contribu- 
tion of the term with I = j to (3.6), (3.7) vanishes. In the 
region inside the contour C, for each I we can distinguish a 
unique continuous branch of the phase function, and, below, 
by (p,(k) we shall mean precisely such unique branches. 
Each of these functions is defined, of course, only to within 
27rn, but the corresponding vector J, is defined uniquely, 
since 
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Jla=iR,2d~, /dk , ,  a=x, y .  ( 3 . 9 )  maximum order of the zeros of D :, and D :; at the point k ,  is 

We now consider the contour integrals ( 3 . 7 ) .  From the 
continuity of the quantities D,, it is obvious that the values of 
the phase functions at points corresponding to each other on 
the upper and lower edges of the cuts in the figure can differ 
only by an integer multiple of 2 ~ .  Then it follows from ( 3 . 9 )  
that the contributions to ( 3 . 7 )  from the upper and lower 
edges of the cuts (contributions taken in opposite direc- 
tions) cancel each other, so that 

where the first term is the contour integral over the perim- 
eter of the MBZ and the second term is the sum of the inte- 
grals over the infinitesimal contours surrounding the singu- 
larities of the chosen representation for the eigenvector. In 
Sec. 2  it was noted that the quantities R ,  ( k , ,  ) exist, and, 
therefore, for the second term in ( 3 . 1 0 )  we have 

where the integers S, ( k ,  ) are determined by the advance of 
the phase functions q, p' in one circuit in the positive direc- 
tion around the singular point k ,  . A simple argument shows 
that for a given singular point k, ,  the numbers S, ( k ,  ) ( I  #j ,  
I = 0, 1 ,  ..., r - 1 )  that must be taken into account in ( 3 . 1 1 )  
are equal. In fact, as indicated in Sec. 2  there exists a j ,  such 
that DJJ, ( k , ,  ) # O .  Consequently, at the point k, ,  we can 
always choose a nonsingular representation for the eigenvec- 
tor by taking the coefficients d l ,  at this point, to be propor- 
tional to the row j ,  of the determinant ( 2 . 1 3 ) .  By virtue of 
the continuity of the quantities D,,, the vector d at points on 
the infinitesimal contour C, will be parallel to its value at 
the center of this contour. On the other hand, at points of the 
contour C,, the relations ( 2 . 1 8 )  are fulfilled, and, therefore, 
upon complete passage round the contour C,  , the quantities 
D,, can be multiplied only by a common phase, so that the 
numbers S, are the same for all I .  (Below, we omit the sub- 
script from these numbers.) Exceptions to this rule are pos- 
sible only for those components D,, for which R ,  ( k , ,  ) = 0. 
But such components certainly do not give a contribution to 
(3.11 ). Since the vector d is normalized, and, by definition, 
R y ' ( k , ,  ) = 0 ,  we find from (3.11 ) that the total contribu- 
tion of the singular points to ( 3 . 7 )  is 

The summation in ( 3 . 1 2 )  runs over all the singular points of 
the representation {D,,} that lie inside the MBZ (0, is the 
area of the MBZ). For the most frequently encountered case 
in which D,, has a first-order zero at a point k, ,  [see ( 2 . 2 2 )  1,  
the corresponding advance of the phase is given by the for- 
mula 

aDjtrld k., dDjtllak, s") (km)= sign 1 
aDjl1'/akX, aDjI"/ak, ( 3 . 1 3 )  

By virtue of what has been said above, to use this formula for 
calculation one must choose a quantity DJ, such that 
Dl, ( k , ,  ) # O .  In the general case it can be shown that if the 

I '  

equal to n, the absolute value of the advance of the phase at 
this point does not exceed 2an.  From ( 3 . 1 2 )  we see that the 
contribution of the singular points to the integral ( 3 . 7 )  in 
units of e 2 / 2 d  is quantized. 

We now consider the contribution to ( 3 . 7 )  from the 
outer contour C,. Expanding the determinant ( 2 . 1 3 )  on an 
arbitrary row j  and taking into account the properties ( 2 . 1 5 )  
of the matrix elements, we find the following transformation 
rule for the quantities Dl,: 

Djl (kx+btlp, k,) =Dj[(kz, k,) exp (i2n (i-1) Ir}. ( 3 . 1 4 )  

I t  follows from this that the quantities R, have period b , / p  in 
k,, while the difference of the phases q, :" between points 
corresponding to each other on vertical segments of the con- 
tour C, is constant: 

It follows from ( 3 . 9 )  and ( 3 . 1 5 )  that the contributions to 
the integral ( 3 . 7 )  from the vertical segments of the contour 
C,, cancel each other. Analogously, from ( 2 . 2 5 )  we find the 
rule for the transformation of the coefficients R ,  under dis- 
placements by the size of the MBZ along k, : 

Using ( 2 . 1 8 ) ,  we can represent the transformation law 
( 2 . 2 5 )  in the following form: 

Here we have used the hermiticity of the quantities D,,. We 
note also that on the contour Co we must have D,, #O. From 
( 3 . 1 7 )  there follows a relationship between values of the 
phase functions on the horizontal segments of the contour 
co: 

(0 
91 (kx, kiu+b,)= (1-61j+t)  ~ : ? t  (k,, ku)  -9:lr (k,, k , )  + const. 

(3 .16b)  

In  this relation it is understood that 9 ,  + -p,, and 6 ,  is the 
Kronecker symbol. Using the formulas ( 3 . 1 6 ) ,  we can de- 
rive the transformation rule for the sum of the components 
J ; ( a  = x,y) of the vectors: 

From this it is now easy to show that the integral ( 3 . 7 )  over 
the horizontal segments of the contour Co reduces to 

where in the right-hand side of this equality we have used the 
formula ( 3 . 1 5 b ) .  Thus, the integral ( 3 . 7 )  over the outer 
contour C, is equal to 
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We see that the first term in (3.20) exactly cancels the ideal 
contribution (3.4) to the Hall conductivity of the sub-band, 
while the remaining terms, i.e., the contribution of the singu- 
larities (3.12) and the second term in (3.20), are integer 
multiples of e2/27d, i.e., lead to quantization of the Hall 
conductivity of the sub-band. However, for practical appli- 
cation these results are useless, since the determination of 
the number n??, in (3.20) is a difficult problem. In addi- 
tion, it is not clear whether the result obtained for a:! is 
invariant under the choice of representation {D,,). We shall 
show how to circumvent these difficulties. We increase the 
size of the region of integration on the figure by a factor of r 
along ky and consider the corresponding contour C' ,  analo- 
gous to the contour C and enclosing all the singularities of 
the eigenvector that are contained in the expanded region of 
integration, of area rn,. It is clear that for the contribution 
of the singularities inside the contour C ' we obtain precisely 
the formula (3.12), which should now take into account the 
contributions of all the singularities (of the eigenvector tak- 
en in a certain fixed representation) contained in the region 
of area rn,. The contribution from the outer contour C; to 
the corresponding integral now vanishes. In fact, the contri- 
bution from the vertical segments of this contour is equal to 
zero as a consequence of the relations (3.15) extended to the 
area r a w  The contribution from the horizontal segments of 
the contour Ch vanishes because, by virtue of (2.25), upon 
displacement by rb, along ky each given representation of 
the eigenvector is transformed into itself, having passed 
through each of the intermediate representations once, so 
that 

rp?' (kz, ky+rbz) =qj" (kx,  k,) 4- const. 

From this, incidentally, follows the fact that the value of a:," 
calculated in this way is independent of the label j of the 
representation used. Finally, we note that it follows from 
(3.18) that the integrand of the original integral (3.6) is 
periodic in ky with period 6,. As a result, we obtain the fol- 
lowing formula for the expression of a:!: 

The result (3.21) can be strengthened. It follows from 
(2.15) that the period in k,  of the matrix elements U,,,: is the 
number rb, /p. Analogously, the period in ky of these ele- 
ments is the number rb,/p: 

In fact, a shift in k, by rb2/p corresponds to a shift of 
the quantum number X, in (2.7) by an amount 
- /1 rb2/p = - a ,  equal to the period of the potential Uin 

the coordinate x .  Such a transformation of the wavefunc- 
tions does not affect the magnitude of the matrix elements of 
the potential. From (3.22) and (2.16b) it then follows that 
the true period of the quantities D,, in ky is not the number 
rb, but the number rb,/p. In this case the expanded region of 
integration, of length rb, along k, , containsp periods of any 
representation, and, instead of (3.21), we obtain, finally, 

The summation in the second term of this formula is over the 
singularities of any of the representations lying in the (r/ 
p)th part of the area of the MBZ. 

First of all, we see that the (r/p) th part of the MBZ 
should contain at least one of the singularities of any of the 
representations of the eigenvector. Otherwise, the Hall con- 
ductivity of the sub-band would be given in the lowest ap- 
proximation of PT by its ideal value (3.4). As can be seen 
from (3.13), the contribution of the singularities to v:!, as a 
rule, depends implicitly and nontrivially on the relative val- 
ues of the bare Fourier components of the potential U(r).  
Above, we have shown that the entire expression in brackets 
in (3.23) is an integer. It is known from the work of Koh- 
moto2' that this integer is the first Chern number for the 
corresponding sub-band. Then the result ( 1.2) of Novikov 
implies that the sum of the contributions from the singulari- 
ties, summed itself over all sub-bands of the Landau level, is 
equal to zero. In other words, the Hall conductivity of a 
completely filled Landau level is equal to - e2/27d. This 
fact is well known in the theory of the ordinary integer quan- 
tum Hall effect." 

From (3.22) it also follows that the period in ky of the 
integrand in (3.6) is the number rb,/p. But earlier we 
showed that it has period b, in k,, . Since the numbers r andp 
are relatively prime, the true period in k,, of this integrand 
will be the number b,/p. This implies that we can write an 
expression of the type (3.23) in which the singularities of all 
r representations in the ( I/p)th part of the MBZ would be 
taken into account. 

We now give a prescription for calculating 02; by Eq. 
(3.23). Having chosen a certain representation {D,,} of the 
eigenvector (2.23) it is necessary to determine all its singu- 
lar points lying inside the (r/p) th part of an MBZ arbitrarily 
chosen in k-space. These singular points k ,  can be sought as 
the simultaneous solution of the equations Dj, (k )  = 0 for 
I = 0, 1, ..., r - 1 and fixed j. It is then necessary to deter- 
mine, for each singular point k,,, the numbers (Sk,,,,) 
which are proportional to the advance of the phase at this 
singular point for each of those quantities D,, for which 
Dl, (k, ) #O, and substitute the result into the formula 
(3.23). The formula (3.13) given above for the calculation 
of the advance of the phase at singularities of the simplest 
type (2.22) is applicable only in the case when the determi- 
nant in this formula is nonzero at the singular point; other- 
wise, it is necessary to take into account the next terms of the 
expansion (2.22). 

We shall make a further important comment concern- 
ing the PT that we are using. From the outset, we assumed 
the presence of gaps between all sub-bands of the Landau 
level, and also used the smallness of the parameter U,/h,. 
Let us suppose that all independent Fourier components of 
the potential (2.2) are proportional to the same amplitude 
U,, so that the ratio of different Fourier components to each 
other remains fixed. Then the matrix elements of the poten- 
tial in (2.13) and, consequently, the energy eigenvalues 
(2.16) will be proportional to U,. Upon variation of U,, with- 
in certain limits that preserve the smallness of the parameter 
U,/+~LO, the band structure will be determined by the lowest 
approximation of PT and will be expanded or compressed 
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along the energy axis essentially in proportion to Uo. If for 
certain relative values of the components U(q) there existed 
gaps between all sub-bands of the Landau level, it is clear 
that when Uo varies within the indicated limits none of these 
gaps can close. Furthermore, the quantities D,, contain U, 
only in the factor Uh- ', and, therefore, upon variation of U, 
neither the type nor the number of the singular points of 
these quantities in any region of k-space can change. Conse- 
quently, neither can the quantized value (3.23), of the Hall 
conductivity of the subband change upon variation of Uo. On 
the other hand, the terms of the next orders of PT, which 
were discarded in the expansion of the wavefunction (3.2), 
are proportional to nonzero powers of the parameter 
U 0 / ~ ,  , and are certainly not universal constants. Thus, if 
the sub-band conductivity is quantized, all these terms must 
necessarily vanish. 

These arguments become inapplicable if, at any point of 
the MBZ, two neighboring sub-bands of the Landau level 
come into contact. First of all, the eigenvector (2.14) ac- 
quires new singularities, associated with the vanishing, at a 
certain point, of the sum (2.21) of the principal cofactors. 
Still more important is the fact that at such a point, strictly 
speaking, the PT is inapplicable, since even in the second 
approximation of PT in the expression for the wavefunction 
of a degenerate level small denominators appear containing 
differences of the eigenvalues (2.16) (Ref. 33). 

From the physical point of view the cases of touching 
sub-bands are especially interesting because, as shown in 
Ref. 25, they change the "regime" of the quantization in the 
sub-band, i.e., discontinuously change the value of a:;. In 
Sec. 4 we shall analyze a simple example of such behavior of 
0"; 

4. A SIMPLE EXAMPLE 

We shall consider the case of two magnetic sub-bands of 
a Landau level, when r = 2,p is an odd number, and in (2.2) 
we retain, for simplicity, only three independent Fourier 
components: 

0 

U(r) =U, cos rb,+U2 cos rb2+U3 cos r (bl+b2). (4.1 ) 

Calculating the matrix elements of this operator in the corre- 
sponding basis (2.7), we arrive at the secular determinant 

g1 cos y-E, Uz cos x+i(-1) (P-')'"~ cos (x-y) 
D ( E ) =  1 -  

UZ cos x-i (-1)  (P-1)/2gJ cos (x-y) , -Dl cos y-E I 
where nj are the renormalized Fourier components, propor- 
tional to the bare values of U, ; x = n-pk,/b, and y 
= n-pk,, /b2. In the variables (x,y) the MBZ is specified by 

the conditions Ax = n- and Ay = n-p. In accordance with 
(2.15) and (3.22) the matrix elements in (4.2) have period 
2n- in both variables, and the energy eigenvalues are periodic 
in x and y with period T: 

closes at the points (n-n, n-/2 + n-m), and for a, = 0 it closes 
at the points (n-/2 + an, n-/2 + n-m). We note that the si- 
multaneous vanishing of any two quantities n; would con- 
tradict the condition ( 1.1 ) expressing the conservation of 
the magnetic flux through a cell. 

In accordance with the prescription of Sec. 3, we shall 
find the singularities of the eigenvector representation given, 
e.g., by the cofactors of the first row of (4.2) in the rectangle 
O(x < P, O(y < 2 ~ .  The cofactor Do, in this rectangle van- 
ishes only at the points (77/2,0) and (77/2, r). 1f Dl > 0, the 
first point corresponds to a singularity of this representation 
lying in the lower zone, while the second point leads to a 
singularity in the upper zone. For u, < 0 the singular points 
exchange positions. Taking this circumstance into account, 
with theaid of (3.13) and (3.23) weobtain for thequantized 
values of the Hall conductivities of the sub-bands 

Thus, the sum of the conductivities of the sub-bands is equal 
to - e2/27Tfi, and a change of the quantization "regime" 
occurs only when any of the quantities nj passes through its 
zero value. As we have seen, at this point the gap between the 
sub-bands closes. 

It follows from (4.4) that for large values ofp the abso- 
lute value of the second term in the brackets can be many 
times greater than the first term, corresponding to the ideal 
Hall conductivity of the sub-band. Thus, the states in the 
sub-bands, like the familiar delocalized states in the ordinary 
integer quantum Hall effect, possess an anomalously large 
Hall mobility. For the characteristic electron velocity in the 
sub-band we can obtain the estimate 

uo F - - - p e x p { - u p ) ;  a-l. 
Ala 

The proportionality of this quantity to the number p 
follows from the fact that the period of the oscillations of the 
energy eigenvalues in the MBZ is inversely proportional top. 
But for p )  1 the electron wavelength A is large in compari- 
son with the lattice constant a (A /a-p1I2), and, therefore, 
the width of the magnetic sub-band decreases exponentially 
with the number p. This gives the exponential factor in 
(4.5). Simultaneously with the decrease of the width of the 
magnetic sub-band there is also an exponential decrease of 
the characteristic magnitude of the gaps between the sub- 
bands, and it is this which leads, in the given case, to the 
anomalously large response of the system to an external elec- 
tric field. 

The author thanks F. R. Ulinich, Yu. B. Grebenshchi- 
kov, and A. V. Sheverev for useful discussions on this work. 
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