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Corrections to the quasiparticle component of the current in superconducting tunnel junctions of 
various types for fluctuations of the modulus and phase of the order parameter are calculated for 
temperatures below the critical temperature. The corresponding increments in the current- 
voltage characteristic are very nonlinear. They are manifested even in first order in the 
transparency of the barrier. They increase logarithmically toward T, and are seen particularly 
strongly if the fluctuating electrode is a thin amorphous film. 

1. INTRODUCTION 

Electron-electron coupling is known to have an impor- 
tant effect on the current-voltage characteristics of tunnel 
and Josephson structures with amorphous electrodes. For 
example, coupling in the diffusion channel gives rise to well- 
known anomalies at a zero voltage, which are manifested at 
the scale of T- (Ref. 1; T is the electron elastic relaxation 
time). If the electrodes of the junction (or at least one of 
them) are superconductors, superconducting fluctuations 
(the electron-electron coupling in the Cooper channel) in 
them at temperatures slightly above T, give rise to maxima 
and minima which alternate in an extremely peculiar way. 
These extrema are seen even at a far lower voltage scale, 
eV-T-  T,,  T, (Ref. 2).  

In analyzing the electron-electron coupling in the su- 
perconducting phase, we can no longer separate this cou- 
pling into independent diffusion and Cooper channels. In 
this case the interactions of quasiparticles above the conden- 
sate with large and small momentum transfers can no longer 
be analyzed without consideration of the condensate of Coo- 
per pairs in the system. As a result it turns out that fluctu- 
ation processes which do not conserve the number of quasi- 
particles above the condensate, and which have no analog 
above T, , can occur in such a system. All of these processes 
can ultimately be reduced to fluctuations of the module and 
phase of the order parameter and the scalar potential and an 
interference of the t ~ o . ~ - ~  

The influence of all these processes on the Josephson 
component of the current in a tunnel junction was studied in 
detail in Ref. 6. In the present paper we use the formalism 
developed in Ref. 6 to study the effect of the electron-elec- 
tron coupling on the quasiparticle current of an Sl-I-S, 
junction at temperatures below the critical temperature. We 
are primarily interested in fluctuations of the phase and 
modulus of the order parameter, which give rise to incre- 
ments in the tunneling current which are singular near T,.  
As we will show below, incorporating fluctuation effects of 
this type even in first order in the barrier transparency (rath- 
er than in second order, as has been the approach in several 
studies7-") can significantly affect the shape of the current- 
voltage characteristics at the typical voltages, e V -  A,T, - I, 
where 7, is the time scale of the electron relaxation with spin 
flip. The nature and presence of singularities are determined 
to a large extent by the temperature and superconducting 
properties of the electrodes which make up the junction. We 
will discuss three types of film junctions: 1) a symmetric 
junction of two identical gapless superconductors; 2) a su- 

perconductor-(normal metal) junction; and 3 )  a junction 
between two different superconductors, one of which is gap- 
less, while the other has no magnetic impurities. In all cases 
the fluctuation correction to the tunneling current has a tem- 
perature dependence which is logarithmic in T - T, This 
behavior is analogous to that which has been seen previous- 
ly2 for temperatures above the critical temperature. In addi- 
tion to that temperature dependence, the corrections to the 
tunneling current at T < T, depend nontrivially on the linear 
dimensions of the superconducting film which forms the 
junction. This dependence stems from the fluctuations of the 
phase of the order parameter in the superconducting elec- 
trode along the tunneling barrier.6 

2. FEYNMAN DIAGRAMS FOR THE TUNNELING CURRENT 

As was shown in Ref. 6, the quasiparticle current which 
flows through a tunnel junction can be written as follows in 
the formalism of a temperature Feynman-diagram tech- 
nique: 

I,, ( V )  =-2e Im [KOR( V)+K3R( V)] , (1)  

where Vis the voltage applied to the junction, and the quan- 
tities K, ( V )  are the correlation functions of the one-elec- 
tron Green's functions of the electrodes continued analyti- 
cally into the upper half-plane of the complex frequency 
(o, - io) ,  

with the subsequent replacement o = e V. 
The quantity T,, in (2) is the matrix element of the 

tunneling Hamiltonian; E ,  and w, are the fermion and boson 
frequencies; the subscripts I and I1 distinguish between the 
"left-hand" and "right-hand" electrodes; and 6 ( k ,  E,  ) is 
the one-electron Green's function of a superconductor con- 
taining impurities in the Nambu matrix formalism: 

Here 
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A  is the order parameter, ck = E(k) - E;. is the electron 
energy, measured from the Fermi level, and bi are the Pauli 
matrices, given by 

0 1 0 -i 1 0  
0 -1 

Here and below, a repeated index means a summation [ex- 
cept in (2), where no summation is made over the index i] , 
and I = 0, 1, 2, 3. The relaxation times r, and 7, are defined 
by 

where u,, ,  are the amplitudes for scattering without and 
with a flipping of the electron spin, n is the impurity concen- 
tration, s is the spin of the impurity atom, and p, is the Fermi 
momentum. 

The Feynman diagram corresponding to the correla- 
tion functions Ki ( w , )  is shown in Fig. 1. Since the matrix 
elements T,, depend only weakly on the energy near the 
Fermi surface, expression (2)  can be rewritten with the help 
of the Green's functions of each of the electrodes, integrated 
over the energy6 

where 

R ,  is the resistance of the junction in the normal state, and 
N(0) is the density of electron states at the Fermi level. 

To first order in the electron-electron coupling, the cor- 
rection to the tunneling current is represented by the two 
diagrams in Fig. 2a. Of the second-order corrections, only 
the first is of interest. The corresponding diagram is shown 
in Fig. 2b. As was found in Ref. 2, at T >  T, it leads to a 
nonlinearity of the current-voltage characteristic at low vol- 
tages ( e  V- T  - T, ),and the corresponding contribution 
may turn out to be on the order of (or even greater than) the 
contributions from the diagrams in Fig. 2a. 

The question of averaging diagrams of this sort for the 
tunneling current over the impurity positions was examined 
in detail in Refs. 6 and 11. Here we need to carry out an 
average in the gapless superconductor; i.e., we need to con- 
sider the electron scattering with spin flip. The matrix impu- 
rity vertex function found in Refs. 6 and 11 takes the follow- 
ing form in this case: 

'6; 

k,T" 

FIG. 1. Feynman diagram for the correlation function of the exact one- 
electron Green's functions. This diagram determines the total current 
which flow through the tunnel junction. The circles represent the matrix 
elements of the tunneling Hamiltonian, which sends an electron from one 
electrode to the other. 

FIG. 2. Corrections of ( a )  first and (b)  second orders in the electron- 
electron coupling in the electrodes. 

where 

and S(q, w , ,  w , )  was calculated in Refs. 11 and 6. It is a loop 
of two Green's functions with a matrices at the vertices: 

The vertices in the diagrams in Fig. 2 which contain 
matrix elements of the tunneling Hamiltonian, on the other 
hand, are not renormalized by the impurities, since such a 
renormalization would correspond to a scattering of elec- 
trons from different electrodes by the same scattering center. 

3. SYMMETRIC JUNCTION 

In this section of the paper we examine the effect of 
electron-electron coupling on the quasiparticle current 
which flows through a symmetric film tunnel junction 
between two gapless ( A  4 r5 - ' ( T) superconductors at 
T  < T, ( T, - T <  T, ). We assume that the films are quite 
dirty ( Tr< 1 ) and that the film thickness d is small in com- 
parison with the correlation length P(T),  so that the fluctu- 
ations in the system are two-dimensional. 

We begin with the first-order correction, which is deter- 
mined by the sum of the two diagrams in Fig. 2a (their con- 
tributions are obviously equal in this case): 

2 (K:" (o,) +K:" (o,) ) 

1 .. .. .. .. 
=- ~p T Z[L (e.+u,.) +03gI (e.+w.) o316gxI (en). 

4ne2Hn 
en 

( 6 )  
The function 2, ( E ,  + w,  ) in this expression is 

and Sg,, (E, ,  ) is the correction to the Green's function of first 
order in the electron-electron coupling. Using the expansion 
(which is valid at AT, < 1 ) 
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and also introducing the notation 

we can rewrite (6) as 

2[&" ( o , ) + ~ , ' "  (o,) ] 

The following expression was found for P 'O' ( E ,  ) in 
Ref. 6: 

P(O'(&.) =-in? Sgn e.T J ( d q )  (T,.'(q, E., en-9.)  

Q, is the boson frequency, and L, (q,n, ) are the compo- 
nents of the matrix fluctuation propagator (the vertex part 
of the electron-electron c o ~ p l i n g ) . ~  The terms with 
L,,  (q,Qk and L2,(q,nk ) describe fluctuations of the mod- 
ulus and phase, respectively, of the order parameter; the 
term with L,,(q,Q, ) corresponds to fluctuations of the sca- 
lar potential. We will not consider the last term in (8)  below 
since its temperature dependence is not singular near the 
critical temperature. Substituting in the explicit expressions 
for TI ,  (qlw,,w2) and T2,(q,o1,w2) (within AT, < 11, 

where D = (4 )vF27  is the electron diffusion coefficient, and 
r = 2 ~ ,  - I ,  we find the following result for the correction to 
the current in first order in the electron-electron coupling: 

61::' (v)  = *1m{ TZ .f ( d q )  Sgn en Sgn (e.+o.) 
eRn 

C. 

x [ l -  

@ [ e n  (en-%) 1 
C(q* E n ) = T  

( E n  1 + ( ~ ~ - 9 .  I +Dqz+I')z 
R." 

We transform the sum over E, in (9) into a contour integral 
in the complex plane, using the customary rule 

(the integration contour is shown in Fig. 3) .  
As a result we find, for e V <  T, 

FIG. 3. Integration contour for Eq. (9) 

( I )  v 1 61qp ( V ) = - - -  
1 

R, 2T 

X Re CA ( q ,  E )  (1-26'  Re 

The quantities CR'A' ( q , ~ )  are the analytic continuations of 
the function C(Q,E, ) into the upper and lower, respectively, 
half-planes of the complex frequency. The function 
C R(A' ( q , ~ )  is calculated in the Appendix. Integrating over 
the energy and momentum, we find, to logarithmic accura- 
cy, 

Here L is a characteristic dimension of the electrode along 
the barrier,L. - ( D  /T) ' I2  is the thermal length, and [ ( x )  is 
the Riemann <-function. The question of a cutoff of the di- 
vergence of the integral over momentum in (10) was dis- 
cussed in detail in Ref. 6. 

The first-order correction can thus be split into two 
terms: linear and nonlinear in the voltage. The nature of the 
correction will be discussed in detail below; here we would 
simply like to point out that the first term is analogous to the 
contribution from the corresponding diagrams calculated 
for the case T >  T,. The important difference is the appear- 
ance of the logarithm of the disruption of long-range order in 
the lowered-dimensionality system because of fluctuations 
in the phase of the order parameter. The second term in ( 11 ) 
has no analog above T, . 

We turn now to the calculation of the second-order cor- 
rection (the corresponding diagram is in Fig. 2b). After 
some straightforward manipulations, the analytic expres- 
sion corresponding to this diagram can be written 

Carrying out an analytic continuation, and again retaining 
only the leading term in e V / T ,  we find 
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Integrating over the energy in ( 13), we find 

a2 
@ . = R e  J dz, 5 dz, - 

1 1 

d(eV)2a  a (z,+bi) (z2+bj) z,+z2+r-ieV ' 

Using the relations a g b < r, we find the following re- 
sult for the second-order correction: 

x (2s'-3) 
cpz(x) =2qi (x)ln(l+ x2) + arctgx. (16) 

( I  +x2) 

The fluctuation correction to the tunneling current in 
the case of a symmetric junction is thus 

In analyzing the contribution of SR,, as a function of 
the differential resistance of the junction as a function of the 
voltage, R, ( V ) ,  we also need to consider another correc- 
tion, SR,, , which stems from the presence of paramagnetic 
impurities in the electrodes of this junction": 

The behavior of SRp and that of SR,, are extremely 
similar in the two-dimensional case [see Fig. 4, which shows 
both contributions for the case p,21d = 1000, (T, - T)/ 
Tc = 0.061. It can be seen from Fig. 4 that for sufficiently 
thin films the fluctuation contribution is predominant near 
T,. With distance from the critical temperature, and with 
increasing thickness of the films, the role of the fluctuations 
is weakened, the contributions initially becomes comparable 
in magnitude, and then the contribution from SR,, becomes 
the leading contribution. 

4. JUNCTION BETWEEN A SUPERCONDUCTOR AND A 
NORMAL METAL 

We now consider an asymmetric tunnel junction, one of 
whose electrodes is a normal metal, while the other is a su- 

FIG. 4. Corrections to the differential resistance of a symmetric junction 
versus the voltage applied to the junction. Solid line-The fluctuation 
correction; dashed line-the component which stems from the presence of 
paramagnetic impurities in the fluctuating electrode p,zld = 1000, 
r =  ( T ,  - T ) / T ,  = 0.06. 

perconductor, at a temperature slightly below the critical 
temperature. (The opposite situation, of a junction between 
a deeply cooled superconductor, with T,, >) T, and a fluctu- 
ating superconductor, with T - Tc2 4 T,, , was analyzed by 
Baramidze and Cheishvili. l 3  ) The electron-electron cou- 
pling in the normal electrode is assumed here to be inconse- 
quential. The correction to the tunneling current of such a 
junction will in this case be represented by the single dia- 
gram in Fig. 2a. The corresponding analytic expression is 
given by (6), whereg, (E, + w, ) is now to be understood as 
the Green's function of the normal metal 

After analytic continuation we find 

The function - n-- ' Imp (E)  is the normalized correc- 
tion to the electron state density, SN(E)/N(O). Since the 
total number of states in the band is determined exclusively 
by the number of unit cells in the sample, we clearly have 

Electron-electron coupling in the Cooper channel gives 
rise to a correction to the state density. As a measure of the 
energy dependence of this correction we can use either the 
gap in the spectrum of elementary excitations (in the ab- 
sence of a pair-rupture mechanism) or the reciprocal of the 
time scale for electron relaxation with spin flip, rS - '  (in a 
gapless superconductor). When we consider magnetic-im- 
purity concentrations which are not too high (7,-' 4 T), we 
find that the integral (19) is determined by energies which 
are low in comparison with the temperature. Returning to 
the integral on the right side of ( 18), we see that the integra- 
tion over the region E <  T [where cosh2 ( ~ / 2 T z  l ] gives us 
zero, and values E- Tare important. We can thus return to 
expression (8 )  for the calculation of PR(&), and assuming 
that the frequencies are Matsubara frequencies, and retain- 
ing only the term with k = 0 in the sum over R, , as the term 
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which is most singular in terms of the proximity to T,, we 
can then carry out the analytic continuation directly. Al- 
though this procedure is in principle incorrect, and at E ( Tit 
may lead to an incorrect functional dependence P ( E ) ,  the 
function PR(&) calculated in this method agrees at E-. T 
with the exact function, so it can be used in place of the latter 
in evaluating the integral in (18). As a result we find an 
expression for the correction to the tunneling current which 
is the same, to within a factor of 1/2 (since only one of the 
two diagrams in Fig. 2 is being taken into consideration), as 
the term which is linear in the voltage on the right side of 
(17): 

We wish to emphasize that this result [in contrast with 
(17)] applies to both gapless superconductors and super- 
conductors which do have a gap in the excitation spectrum. 
The only condition involved here is that the typical energies 
of the electron-electron interaction in the Cooper channel be 
small in comparison with the temperature. " 

5. ASYMMETRIC JUNCTION 

In this section of the paper we consider a junction 
between two superconductors, one of which is gapless and 
near its critical temperature, while the other has a gap in its 
excitation spectrum, and fluctuations in it are suppressed 
either by the three-dimensional nature of the electrode or 
because the temperature is sufficiently far from the critical 
temperature. The correction to the tunneling current is 
again represented by the single diagram in Fig. 2a. In the 
corresponding analytic expression, ( 6 ) ,  g, (E, + w ,  ) is now 
the Green's function of a superconductor which does not 
contain magnetic impurities: 

where A, is the gap in the excitation spectrum. In place of 
(9) we now find 

n 
61,, ( V )  = - Im 15 (dq) T 

eRn 

(21) 

Carrying out the analytic continuation, we find the expres- 
sion 

81qp (v )  = - - I R~ s (dq) j E de 
4eRn 

*I 
( 9  - A ~ Z  jia 

FIG. 5. Corrections to the differential resistance of an asymmetric junc- 
tion between two superconductors versus the voltage applied to the junc- 
tion. Solid line-Fluctuation correction; dashed line-component stem- 
ming from the presence of paramagnetic impurities in the fluctuating 
electrode. a)~,'ld = 500, ( T, - T)/T, = 0.04, r/A, = 0.05; 
b)pF21d = 7500, (T, - T)/T, = 0.08, T/A, = 0.1 

From this point on the calculations are carried out for two 
limiting cases: 1) The critical temperature of electrode I, 
T,, , is approximately equal to T,,, , so that under the condi- 
tion T,,, - T( T,,, the relation A, /T(  1 holds simulta- 
neously; 2) T,, ) T,,, and thus A, /T$- 1. 

In the first case, low voltages, eV( T,  al, of interest. 
The hyperbolic tangents in the integrand in (22) can then be 
approximated by their arguments. As a result, (22) becomes 

The integral in (23 can be expressed in terms of elementary 
functions, but we will not reproduce the entire result here 
because of its length. Figure 5 shows corresponding dia- 
grams for various relations among the parameters DL -2, 

T, - T, r, and A. We can also write a few asymptotic ex- 
pressions for the most interesting case, A, /r $- 1 : 

(24) 
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In the opposite limit, A, % T, we use the approximation tanh(x/TzSgn x. After some lengthy but elementary calcula- 
tions we find the following asymptotic expressions [the current-voltage characteristic begins with eV = A, if we ignore the 
terms which contain a factor of exp( - A, /T) ] : 

a) For (eV)2 - A12<TeV, 

' 
, ( e v ) ,  - A,. g r e v .  

T i  2 

61qp ( V )  = - - 2T2eV (eV)2 - Ar2 r [(eV)' - A12] L2 
r e  V 

1 n 
[(eV)2 - ~ ~ ~ ] i "  D ( T ,  - T ) e V  ' 

(eV)2 - A12 > I'e17. 

b) For TeV<(eV)* - A12<A12, 

6. DISCUSSION OF RESULTS 

These results show that superconducting fluctuations 
give rise, even in first order in the barrier transparency, to 
corrections to the tunneling current which are very nonlin- 
ear functions of the voltage applied to the junction. In ana- 
lyzing these corrections one should note that in the absence 
of electron-electron coupling the current-voltage character- 
istic of a tunnel junction would have deviations from Ohm's 
law. 

The origin of all these nonlinearities can be explained in 
the following way. The representation which we used for the 
tunneling current [see ( 1 ), (2)  1 is equivalent to a represen- 
tation of this current through a convolution of the state den- 
sities of the two electrodes of the junction and a Fermi distri- 
bution function": 

Condition ( 19), imposed on possible corrections to the 
state density, means that these corrections reduce to the for- 
mation of regions of relatively close spacing and regions of 
relatively wide spacing in the equidistant ladder of levels of a 
normal metal [corresponding to N ( E )  = const], at a fixed 
total number of levels. The correction to Ohm's law in the 
case of the junction between a superconductor and a normal 
metal stems from the circumstance that when there is a 
slight shift of the levels, on the average, up the energy scale 
the population of the levels (which is determined by a Fermi 
distribution function) decreases, so the total current also 
decreases. The scale value for the manifestation of this effect 
is evidently eV- T. When, on the other hand, the state den- 
sity is not constant in either of the electrodes, the tunneling 
current is influenced by an "interference" effect in addition 
to the effect described above. If the region of relatively close 
spacing of levels in one of the electrodes corresponds to a 
region of relatively wide spacing in the other when the origin 
of the energy scale is shifted by eV, the effective number of 
quasiparticles participating in the charge transport de- 
creases, with the result that the total current decreases. 
When the voltage is changed, the picture may reverse. This 
effect is responsible for the nonlinearity of the current-vol- 
tage characteristic on voltage scales much smaller than T. 

As usual, fluctuation effects can be observed only in 

thin and dirty electrodes, at temperatures close to the critical 
temperature for at least one of them. 

We have been able to take account of how the fluctu- 
ations in the phase and modulus of the order parameter in- 
fluence the quasiparticle component of the current at tem- 
peratures below Tc for S,-N-S, junctions only in the case in 
which the fluctuations occur in an electrode which is in a 
gapless state. Accordingly, the positions of the extrema on 
its current-voltage characteristic are determined by the pa- 
rameters T,  - '  and A,, and they do not depend on the prox- 
imity ofthe temperature to Tc2. As we mentioned earlier, the 
fluctuation corrections which we have calculated should ac- 
tually be compared with the current-voltage characteristic 
corresponding to a superconducting tunnel junction 
"spoiled" by a sufficiently high concentration of paramag- 
netic impurities in this electrode. The deviation of this cur- 
rent-voltage characteristic from Ohm's law (we will call it 
the "paramagnetic contribution" to the tunneling current) 
turns out to be exceedingly similar to the deviation caused by 
fluctuation corrections. However, while the fluctuation 
component of the tunneling current increases in magnitude 
as Tc is approached, the paramagnetic component de- 
creases. The results of corresponding numerical calculations 
of both components, for several values of the parameters 
pF21d, r, and (T, - T)/Tc, for symmetric and asymmetric 
junctions, are shown in Figs. 4 and 5. 

It can be seen from these figures that near Tc the fluctu- 
ation component of the tunneling current dominates in suffi- 
ciently thin films. As the distance from the transition point 
increases, and also with increasing thickness of the elec- 
trode, the fluctuation component gradually fades away, to 
the point that it is indistinguishable against the background 
of the paramagnetic component. This striking similarity 
between the fluctuation and paramagnetic corrections of 
Ohm's law is of course not simply fortuitous. To explain it 
we can invoke the following arguments: In a superconductor 
with paramagnetic impurities, the Bose condensate of Coo- 
per pairs does not include all of the Cooper pairs; there is 
some distribution of these pairs with respect to binding ener- 
gy.14 The situation is exactly the same when we take fluctu- 
ations into account; near T, they smear out the energy distri- 
bution of Cooper pairs in the superconductor, as 
paramagnetic impurities do. 

The analogy between the effect of superconducting 
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fluctuations and that of paramagnetic impurities on the 
properties of a superconductor can be pursued. For example, 
it can be seen from the results of Refs. 4 and 6 that these two 
factors shift the critical temperature in the same way [for 
fluctuations, one should take the phase relaxation time to be 
rP -' - ( T/pF21d)ln pF21d, as is verified by self-consistent 
estimates of this quantity at temperatures below the critical 
temperature]. The superconducting fluctuations them- 
selves-again in a manner reminiscent of the effect of para- 
magnetic impurities-give rise to a finite phase relaxation 
time T,. This circumstance makes it unnecessary to artifi- 
cially introduce a pair rupture mechanism in order to cut off 
the divergence of the anomalous Maki-Thompson contribu- 
tion to the conductivity in the case of low-dimensionality 
systems. 

Finally, we can apparently assert that, as in the case 
with paramagnetic impurities and also when fluctuations of 
the electromagnetic field are taken into account,I5 there is 
always a gapless superconductivity slightly below the criti- 
cal temperature (but outside the critical region) due to the 
fluctuational spreading of the density of one-electron states 
along the energy scale. 

We are deeply indebted to A. A. Abrikosov, B. L. Al't- 
shuler, A. G.  Aronov, and M. Yu. ReYzer for numerous dis- 
cussions from which emerged ideas regarding the effect of 
superconducting fluctuations on a one-electron phase and 
the nature of the superconductivity itself near the critical 
temperature. 

APPENDIX 

To calculate the functions C R ' A '  (q, E )  , we transform 
the sum over fl, in (9) into a contour integral in accordance 
with the rule for boson frequencies: 

We find 

z  
cth - d z  

1 
{ 22' (-2~,,-iz+Dq~+l?)~ 

-m 

The second terms in braces are small in comparison with the 
first and can be ignored. Adopting the assumption (con- 
firmed below) that the integral over z is dominated by the 
region z <  T, and making use of the odd parity in z of the 
functions L I l R ( z )  - L l l A ( z )  and L,,R(z) - L 2 2 A ( ~ ) ,  we 
find the following results for the analytic continuations of 
CR(q,  E )  and CA(q,  E ) :  

where 

LR'A' (q, Z )  =L:'~' (q, Z )  +L::~) (q, Z )  . 

We need explicit expressions for the analytic continua- 
tions of L :, ( A )  ( q , ~ )  and L & 'A '  ( q j ) .  The results of Ref. 6 
cannot be applied directly here, since the matrix fluctuation 
propagator calculated there in terms of Matsubara frequen- 
cies contains a Kronecker delta ~5,~,~, and because of this the 
analytic continuation from imaginary frequencies is not sin- 
gle-valued. An analytic continuation of a matrix fluctuation 
operator was derived in Ref. 5, but the representation used 
for it was not the best. The correspondence between the rep- 
resentations used in Refs. 5 and 6 can be established with the 
help of the rotation matrix 

For the matrix components L f ' A ' ( q , ~ )  of interest here we 
find 

" { 7 W F 2  L:'~) (q, z )  = - - 
nN (0) 

Here we have introduced y = A2r,, p = 1 / 2 ~ T r , ,  and 
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$' ( x ) ;  the latter is the second logarithmic derivative of the r 
function. Since the integrand in (A2) falls off rapidly as 
z- CO, the integration contour can be closed by an infinitely 
remote semicircle in the upper half-plane, and we can make 
use of the theorem of residues: 

a 
PA' (q, E) = - -L1 2ni res [ -  LA (q, z )  

a (Dq2+r) 2ni z 

where the quantities zk are the poles of the integrand in the 
upper half-plane, and res Lf(z) ,zk ] is the residue of the func- 
tion f(z) at the point 2,. The quantity J, is the sum of the 
integrals along those boundaries of the region of analyticity 
of the integrand which are not part of the real axis. 

A calculation from (A4) yields 

"We would like to take this opportunity to correct an error in Ref. 2. The 
calculation method which was used there, in which the summation over 
a, was limited to the term with k = 0, yielded the correct form of the 
entire current-voltage characteristic, with its maxima and minima, and 
also the correct asymptotic behavior at eV> T - Tc, in accordance with 
the arguments presented above. For eVg T -  T,, however. a logarith- 
mic divergence arose and was cut off through the introduction of a pair 

rupture mechanism. Actually, the correct analytic continuation auto- 
matically leads toafinite valueof SR ):'(0), and the asymptotic behavior 
at small V is 
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