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The cross section for the Raman scattering of light in electron superlattices is calculated, 
including a finite probability for tunneling between layers. In the long-wavelength 
approximation, i.e., for the case in which the momentum transfer is much smaller than the 
reciprocal of the superlattice constant, it is shown that an unscreened component of single- 
particle scattering arises when there is a finite tunneling. This unscreened component may be 
substantially greater than the scattering cross section in a lattice without tunneling. Competing 
"unscreened-scattering" mechanisms, unrelated to tunneling, are analyzed. 

The Raman effect has recently been used to advantage 
in research on the electronic properties of multilayer super- 
lattices.' A theory for this effect has been the subject of sev- 
eral but they have ignored the tunneling of elec- 
trons between layers. Since recent technological advances 
make it possible to synthesize very thin layers (with thick- 
nesses as small as a few angstroms), the problem of how 
tunneling affects the Raman spectra in multilayer structures 
needs to be taken up. This is the subject of the present paper. 

We know quite well that two components can be distin- 
guished in the spectra of the Raman scattering by free carri- 
ers without spin flip: a collective component associated with 
plasma oscillations and a single-particle component in 
which the frequency transfer w at T = 0 is less than kv,, 
where k is the momentum transfer, and v, the Fermi veloc- 
ity. As we will show below, it is this component which under- 
goes the most important qualitative changes when tunneling 
is taken into account in the long-wavelength limit ka< 1, 
where a is the superlatttice constant). 

In the long-wavelength limit, screening effects suppress 
charge density fluctuations. When tunneling is taken into 
account, however, the electron gas in a superlattice is char- 
acterized by a very nonparabolic and isotropic dispersion 
law E ( p ) .  In such a situation, the density of the interaction 
Hamiltonian of the electrons with the light wave is not pro- 
portional to the density of particles, as it is in the case of a 
standard band s t r~c tu re .~  The result is the appearance of an 
unscreened component of the scattering cross section of the 
superlattice. 

NONRESONANT SCATTERING 

If the frequencies of the incident and scattered wave, w ,  
and a,, respectively, are far from the resonances corre- 
sponding to transitions between minibands within a single 
band, and if w,,, are furthermore much smaller than the 
band gap of the host crystal, the operator representing the 
interaction with the electromagnetic field, described by the 
vector potential A, is (see the Appendix) 

Here we have retained the first and second terms in the ex- 
pansion in A ; ,  since only these terms are important for spon- 
taneous Raman scattering. 

We choose the following, very simple dispersion law for 
an electron in the superlattice: 

p1l2 E ( p ) = - -  A cos (p,a) , fi= l ,  (2) 
2mll 

wherep, is the component of the quasimomentum along the 
normal to the layers. As in the case of free particles, the 
second-order component from the first term in (1)  can be 
ignored to the extent that the ratios v,/c and Aa/c are small, 
where c is the velocity of light. With the long-wavelength 
limit (ka< 1 ) in mind, we will calculate the matrix elements 
Hi,, in a basis of plane waves. In incorporating dynamic 
screening effects, we ignore flipping. We can then use the 
well-known procedure for calculating the scattering cross 

where 

Here e l  and e, are the polarizations of the incident and scat- 
tered waves, and E~ is the dielectric constant of the medium. 

In the expression for the form factor S, it is convenient 
to rearrange the terms in order to single out the component 
which is renormalized by the Coulomb interaction of the 
electrons: 

The unscreened component S, is nonzero if the electron dis- 
persion law is not parabolic. In the case of a degenerate gas, 
S, is proportional to the quantity 

- 
(Y (P) - Y  (P) ) 2 1 ~ = ~ g 7  

where the superior bar means the average in the sense 
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In multilayer superlattices an unscreened component is 
present only if tunneling occurs. 

We assume that the barrier transparency coefficient is 
small enough that the width of the miniband, A, is substan- 
tially smaller than the distance between levels in a separate 
layer. For the most typical electron densities, the Fermi level 
then lies above the top of a miniband; i.e., the Fermi surface 
is open in the direction away from z ( A  (rn,/mll,  where n, 
is the electron surface density). If electron scattering is ig- 
nored, the scattering cross section is nonzero in the interval 
0 <w <wm. Assuming kll vF %Akla and A&EF, (EF 
= mil u$/2 = m, /mil ), we find a simple expression for om : 

Wm = ki l  vF. 
In the same approximation, under the further assump- 

tions ka, ka, 4 1, we find 

Here S and N are the area and number of superlattice layers, 
a, = (mli e2)- '  is the first Bohr radius, and m, = l/Aa2. 
The two components of the cross section thus differ in terms 
of polarization dependents, and they behave in quite differ- 
ent ways as o approaches o m .  The ratio on the intergral 
intensities of the screened (S, ) and unscreened (S2) compo- 
nents of the scattering cross section is given in order of mag- 
nitude by 

It follows from this estimate that even when the tunneling 
probability is comparatively small the unscreened compo- 
nent which results from the tunneling, S,, may become 
dominant because the momentum transfer k is small. 

RESONANT SCATTERING 

Most experiments on the Raman effect in low-dimen- 
sionality systems are carried out under resonant conditions, 
under which the effect is intensified because the frequency of 
the incident light is approximately equal to the width of the 
band gap. In this case the approximation of an effective 
Hamiltonian ( 1 ) must be abandoned, and one should use 
expressions which explicitly incorporate the resonance in 
intermediate states in the second-order matrix element of the 
operator A *8 ( 8  = - iV/m,, where m, is the mass of a free 
electron; see Ref. 9).  As a result we find expressions ( 3 ) ,  in 
which now the quantity y(p) takes the following form when 
only the resonant component from the subband n' of band a' 
is taken into account: 

-(ei(a,  1x1 1 a', n ' ) )  ( ( a ' ,  n' I I a ,  n)e2) 
yan,arnr = cLln (p+k) -~a '~ '  (p)-~i-iO , (7)  

where E, , and E,. ,,. are the energies of the initial and inter- 
mediate states of the crystal, respectively. 

To illustrate the role played by tunneling, we consider a 
simple model. The wave functions between which the matrix 
elements are calculated in (7)  are written in the strong-cou- 

pling approximation for the envelopes in the form 

where u, (p, z )  is the Bloch amplitude corresponding to the 
extremum of band a at p = 0; x,, ( z  - la) is the envelope 
function of an electron localized in layer I; and p and z are the 
coordinates in the plane of the layers and in the direction 
perpendicular to the layers, respectively. 

It is assumed that only one miniband in the conduction 
band is populated in a superlattice of type n; i.e., we assume 
n = 0. We will first ignore the photon momenta in the de- 
nominator of expression (7),  but we will t&e the miniband 
energy, (2) ,  into account (we assume k , I  vF (A). Fora cubic 
crystal of the GaAs type, with a direct transition at the cen- 
ter of the Brillouin zone, we then find the following expres- 
sion in the case of a resonance due to a zone which has been 
split off in terms of the spin (a, - E, + A,) (Ref. 10) : 

I ( q c n p l I q v n l p L )  1' 
X 

EO + A0 + W c n  + W o n .  + Ecn ( p )  + Em/ (p) - O, ' 

where the subscripts c and u specify the conduction and va- 
lence bands, W,, and W,, are the energies of quantum levels 
for the c and v bands, and E,, and E,, are the kinetic ener- 
gies of electrons [see (2 )  1. Substituting y,, into expressions 
( 3 )  and (4),  we find, to leading order in the quantity A 
((E, -o , I%A) [cf. (511, 

Here E, = E, + A, + W,, =, + W,,, + EF;v 
= 1 + mil, /mil, ; and me and ml,, are the effective masses of 

the electrons and holes. The quantity Q,, (which is on the 
order of A )  is 

where A,, = (xa, (2) Ixu,, (z) ) , B a ~  = ( X ~ O  (z) I x ~ . ,  
x (Z + a )  ) , and A,, are the widths of the minibands for the 
electrons and holes. As in ( 5 ) ,  the unscreened component is 
thus proportional to A2, while the screened component con- 
tains the small parameter ( k  2a,a)2. In principle, tunneling 
in terms of either of the bands, the hole band or the electron 
band, would be sufficient for the existence of an unscreened 
component S,. We might add that in the resonant case the 
polarization dependnce corresponds to scattering by an iso- 
tropic system, in contrast with (5)  (Ref. 10). 
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The divergences in ( 5 )  and ( 10) as w - w, are actually 
cut off either when the finite width of the miniband is taken 
into account or by virtue of electron scattering. In other 
words, under the condition om - o 5 max(6,~- ' )  where T 

is the relaxation time, and S = A [ (k, a)' + k f /2m, ] 'I2, 
the factor w / ( w ~ ,  - w2) ' I2  assumes the value [w, /max(S, 
r-I)]  I l 2 .  

It has thus been shown that incorporating the finite 
transparency of the barriers leads to an unscreened contribu- 
tion to the Raman effect. There are, however, two competing 
contributions to the cross section S2, which are not a conse- 
quence of tunneling. The first stems from the photon mo- 
menta. The quantity y [see (7) 1 depends strongly on pll at 
E, - o, - k v, (a "strong" resonance" ) . In this case an 
exact integration must be carried out in order to find the 
quantities n, in (3 ); i.e., we do not use the expansion&, + , 
-&, ~lk(dE/dp)[dfO(E)/b'E] (Ref. 11). In the limit 
IE, -w,lBw, wefind 

The quantity S i2 ,  associated with the strong resonance, also 
has a square-root singularity in the limit a -+om . Let us com- 
pare expressions ( 10) and ( 12) for the case of a small reso- 
nance defect, with A/lE, -wlJ  >BaB (or )E, - wII < U, 
BaS - A/U, where U is the height of the barriers of the enve- 
lope potential of the superlattice), and the first term domi- 
nates in (1 1). It follows that the two contributions can be 
equally important, since in many experimental situations A 
is comparable to w, zkv,. In the opposite limit, 
IE, - w, 1 > U, the predominant mechanism at A -om is the 
Raman effect associated with the tunneling: S ;/S2 - U ,/ 
(Eg - wl)2,S;/S2 < 1. 

Another mechanism which makes an unscreened con- 
tribution to the Raman effect is corrugation of the valence 
band. The dependence of the hole energy E, (pII ) on the di- 
rection in the pll plane gives rise to an angular dependence of 
the quantity y(pll ) [see (7)] .  The corresponding contribu- 
tion to the cross section, S ", , vanishes in the limit o-w, . 
Specifically, the singular part of the quantities II, is related 
in the limit w -. om to the divergence of the integrals 

J am"' o-om cos cp+iO l" ('p)d(P. 
-il 

where we have w = kv, = w, at the point p = 0, at which 
there is a second-order pole (p  is the angle between kll and 
pll 1. Taking this circumstance into account in a calculation 
of S ", as w-w,, we expand y (p )  around p = 0. It is then 
simple to show that we have 

A band which has been split off by the spin-orbit cou- 
pling is known to be slightly corrugated; the degree of corru- 
gation is determined by the parameter pi /mil, A,. Under res- 
onant conditions, with w, -E, + A,, we find the following 
estimate for S ",: S ; - (p$/mllh A,). This estimate holds in 
the region (w, - w)/wm - 1). 

In the experiments which have been carried out, a reso- 
nance at the frequency w, - E, + A, has been used. In addi- 
tion, a resonance with heavy- and light-hole bands has been 

used: w, -E,. In this (less favorable) case, because of the 
pronounced deviation from a parabolic profile and because 
of the anisotropy of the hole bands, the quantity y(pll ) de- 
pends strongly on the angles in the pil plane and thus con- 
tributes to the unscreened cross section. At frequencies o 
which are not too close tow, , this contribution turns out to 
be greater than that from weak tunneling, but in the limit 
w -+ w, we again find an (w, - w) ' I2  law. The cross section 
reaches a maximum at 0 < w <a, .  For resonances of both 
types (Eo,E, + A,), the effect of the hole bands at the edge of 
the band, ozw, ,  thus becomes small in comparison with 
the tunneling component. 

Another unscreened process is scattering accompanied 
by a spin flip in the crossed-polarization geometry. In this 
case we can extract information about the one-particle spec- 
trum most directly; in particular, we can determine the pa- 
rameter A. The frequency of the scattering cross section is 
(k l l  = 0, k, #O)  

Sar O / ( O , ~ - O ~ )  %, o m = A  (k,a) . 

We note in conclusion that finite barrier transparency 
also influences the scattering accompanied by the excitation 
of collective degrees of freedom, e.g., plasmons. The greatest 
difference from the case without tunneling arises in the situ- 
ation with k = 0, k, #0, of course. The form factor S no 
longer vanishes m this case, and, as is easily shown, has the 
value 

k l Z  S(kll=O, k, )  = R Z - u p 6  ( o - o ~ ) .  
8e2 

(15) 

The frequency shift in this case is 

where w,, is the bulk plasma frequency (w; = 4re2n,/ 
a&,mll ) (Ref. 12). 

We wish to thank I. P. Ipatova and A. Maslov for useful 
comments and for a discussion of this study. 

APPENDIX 

The scattering of light by electrons of the conduction 
band is described in the approximation v,/c< 1 by the effec- 
tive Hamiltonian'.' 

where 

Here la) and E, are the wave functions and energies of the 
crystal, which incorporate the superlattice potential; 10) is 
the state of the electrons in the lower subband of the conduc- 
tion band (we are assuming that only it is populated); and 
m, is the mass of a free electron. The energy spectrum of the 
superlattice is characterized by two different scale values: 
E,, which is the band gap of the bulk crystal, and R,, which 
is distance between minibands. Under the conditions 
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wlSz  ( n o ,  the applicability of ( A l )  is obvious. We now con- 
sider the frequency R, 5 w,,, 4 E g .  In this case, there is 
change in the contribution of only those terms which belong 
to the conduction band. The corresponding matrix elements 
are, in order of magnitude, 

The expression used for the quantity y in the text proper 
is 

A1iA21 + A , , A , , A ~ ~  cns (p,n); y ( w , , ~ = O )  = - (A21 
"111 

i.e., it consists of an isotropic part and a part which depends 
on the momentum. Making use of the estimates above, we 
see that the corrections to each part of y are small quantities 
of the same order: (m,,  /mo)2. This entire discussion, of 
course, is valid far from resonances: le0 - E, - a, 1 / n o  - 1. 
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