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A class of solutions which can be represented in terms of self-similar variables is found for the 
collisional kinetic equation for electrons which describes energy transport. These solutions 
correspond to a constant value of the ratio of the electron mean free path to the length scale of the 
variation in the average electron energy, y. An analytic solution is derived for the self-similar 
kinetic equation in the case y < 1. In large systems in which the electron temperature varies 
comparatively rapidly with distance, ford  In T / d  In x > 2/7, most of the energy flux is carried at 
low temperatures by superthermal particles at  arbitrarily small values of y. 

1. INTRODUCTION 

Research on the electron thermal conductivity in a fully 
ionized plasma has shown that the theory of Ref. 1 fails at 
small values of the parameter y = R / L  2 l o ' ,  whereR is the 
mean free path, and L the length scale of the variations in the 
electron temperature.'-' Such values of y are extremely typi- 
cal in the plasma near the wall of a tokamak,'.' in space 
plasmas,' in plasma produced in the interaction of intense 
energy fluxes with matter,' etc. 

One possible reason for the discrepancy between the 
results of Ref. 1 and experimental data is that the component 
of the heat flux carried by superthermal electrons,'-"hose 
mean free path increases with increasing energy, is not de- 
scribed adequately. The effect of superthermal electrons on 
the electron thermal conductivity has been studied numeri- 
cally'-"nd also by various approximate analytic methods 
(Refs. 10 and 11, for example). The primary complicating 
factor in the problem of determining the electron thermal 
conductivity is the multidimensional nature of the electrons. 
Even in the very simple case in which the electron tempera- 
ture varies only as a function of a single spatial coordinate, 
the number of independent variables is three: this spatial 
coordinate plus the longitudinal and transverse velocities. 

In the present paper we show that there exists a class of 
solutions of the collisional kinetic equation for electrons 
which can be represented in terms of self-similar variables 
(Sec. 2 ) ,  which reduce the dimensionality of the problem. In 
Sec. 3 we find a solution of the self-similar kinetic equation 
for small values of the parameter y. In Sec. 4 we calculate the 
heat fluxes carried by the superthermal particles, discuss the 
applicability of the results, and compare the results with the 
results of other studies. 

2. SELF-SIMILAR VARIABLES 

We assume that the ions are at rest, and we consider the 
steady-state kinetic equation for the electron distribution 
function, which varies as a function of x: 

wherep = cos 8, and 6' is the angle between the particle ve- 
locity vector V and thex  axis;f( V,p,x) is the electron distri- 
bution function; e, m, and n ( x )  are the charge, mass, and 
density of the electrons; Zi is the effective charge of the ions; 
A is the Coulomb loga~ithm; E ( x )  is the ambipolar electric 
field; and the operator C(VJ)  describes the Coulomb intera- 
tion between electrons. 

The sole dimensionless parameter which determines 
the solution of ( 1 ) is the ratio of the mean free path of the 
electrons with the average energy T ( x )  to the length scale of 
the variations in T(x )  : 

It is natural to assume that if the parameter y does not de- 
pend on x then Eq. ( 1 ) will have a solution in terms of self- 
similar variables. Setting y = const, and writing the distri- 
bution function f(V,x) in the form 

f (V, x) =NF(v)/ [T (x)]  ", v=V(m/2T (x) ) I h  (2 )  

where N is a normalization factor, $F(v)dv = 1, and a is an 
adjustable parameter, we find from ( 1 ) an integrodifferen- 
tial equation for F (v ) :  

Here the quantity y, = eET/(2n-e4An) is found from the 
condition that the particle flux is ambipolar; in the problem 
as formulated here, this condition reduces to the equation 
SP(v) U, dv = 0. 

The assumption that the parameter y - T 2  
X Id In T/dxlnP ' is constant, combined with the self-simi- 
lar nature of distribution function (2 ) ,  leads to the following 
functional dependences T(x )  and n (x) : 

( 1 ) We now consider the expression for the energy flux density 
mZ corresponding to (2) :  

2 
q (I) =T (x) (3-a)N ( m )  - Q, Q = J  F(v)uzvxdv. ( 5 )  

U a B = ( ~ z 6 a p - ~ a ~ B ) / ~ 3 ,  u,=V,-VB1, It is not difficult to see that the x dependence drops out 
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of ( 5 )  in the case a = 3. In other cases we have dq/dx#O; leads to a limitation on the linear approximation1 at a level 
i.e., the energy balance equation contains either time-depen- y 5 lo-?. 
dent terms or energy sources or sinks which were not consid- 

II.Theregion - , - I 1 3 S ~ S y - * / 2  
ered in ( 1 ) and (3).  In the case y < 1, however, the variation 
in T(x) has little effect on the distribution function at ther- We introduce the variable z = 6y'1', and we write the 
ma1 velocities, V S  (2T/m)'I2, and the function f is approxi- f~nc t ion  F ( v )  in the form F ( v )  = ~-"l 'exp(  - p(z ,p )  1. 
mately a local Maxwellian function. We can thus assume Expanding P ( ~ Y P )  in a power series in ?''I4, 
that Eq. (3 )  in the case a # 3, y < 1 describes the effect of cp=~+E+q~~+ rP ... , 
superthermal particles on q ( x )  either for a slow variation of ycb yii' (10) 
the functionf(Vs) in the thermal-velocity region or if there 

substituting ( into ( 7),  and carrying out the correspond- 
are energy sources or sinks in this region. The case a = 3, we 

ing calculations, we find 
might note, also corresponds to energy flux conservation in 
the case of a classical' temperature dependence of the elec- Q=Z-z3/3, 

tron thermal conductivity x, : x, a T 'I2 [see (4) 1. 1 

'b I+F dr+4[z3(I-z2) 1" [ I  - ( - i - - ) ' h ] ,  
3. SOLUTION OF THE SELF-SIMILAR KINETIC EQUATION IN 
THE CASE y g 1 

1 6z2 1 z2 (11) 
Structurally, the self-similar kinetic equation (3 )  is ap- q2 = ---(a -+) ln(1-z2)+---- 

proximately the same as the equation describing electron 2 4 (1-2) 

runaway in a static electric field." Accordingly, as in Refs. 1 z2 
12-14, we seek solutions of ( 3 )  in different characteristic - - ln[ 

regions of the variable v, which we will subsequently join. 
We set z, = 1 at this point. 2 

I. The low-energy region, g= v 2 S y 1 "  

In this case, a solution of ( 3 )  can be found' by expand- 
ing the function F(v)  in Legendre polynominals P, ( p ) :  

We find the asymptotic expression for Fi (6) at 
1 < { S  y-'I3 from (3 )  by using the well-known approxima- 
tion for the collision term C(v,F) at large values of v(v% 1 ): 

where the normalization constant C,  can be found by joining 
solutions (8 )  and ( 1 1 ) . 

Ill. The region -1 <yyl/#< 1, y=(g2y-l)/y1'8: 

We write the function p as a series in y"': 

Expanding pi in a Taylor series near p = 1, 
m 

where S = y,/y- 1. Writing F, (6) in the form (13) 
h=O 

F~ (E) =n-"e-' (2yE3)U+ia,r, (8 )  and substituting (12) and (13) into (7 ) ,  we find 
k=O g g4 

P o o = - - - -  , (plO=g, (14) 
where a: = 1, we find the following recurrence relation from 
(7) :  q o l = - ( a - $ ) l n g + Z - l n  1 (2:3+1)+ - g3(l-g3/2) 

6 '  

Substituting (6) ,  (8),  and ( 9 )  into (5 ) ,  we easily see 7 3 
+[a-T+z 

that the term in the integrand which is linear in y reaches a 
maximum at 6 = l,,, = 5. Noting that the expansion in (8 )  The function g ( y ) ,  as in Ref. 11, is a positive solution of the 
is carried out in yg 5 1, we see that the inequality ~6 A, 5 1 algebraic equation 

1 
g3+yg-1=O, (15) 
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The normalization constant C2, found by joining solutions 
(10) and (12) in the region - y-'I6 <y < - y'l12, where 
both expansions, ( 10) and ( 12), are valid, is 

where T ( x )  is the gamma function. 

IV.The r e g i ~ n z = t y l / ~ g  1 

Here we seek the function F(v)  in the form 

Substituting ( 18) into ( 7 ) ,  we find an equation for @,,: 

In contrast with the runaway-electron p r ~ b l e m , ' ~ - ' ~  
Eq. ( 19) does not lead to the formation of a beam of parti- 
cles, as can be seen without difficulty by going through the 
corresponding calculations. Since the higher-energy elec- 
trons are essentially insensitive to Coulomb collisions and 
thus to the values of T(x)  and n (x ) ,  we would expect that 
the distribution function f(v,x) would become independent 
of x at ~ $ 1 .  In view of the self-similar nature of (2) ,  we see 
that the only function @,, which satisfies this condition is 

where C, is a normalization constant, and the function +(,u) 
describes the angular dependence of F (v )  at z% 1. 

It is not difficult to show that (20) is the asymptotic 
solution of (19) for z& 1. It is not possible to determine the 
function G ( p )  without a numerical solution of ( 7 ) .  How- 
ever, since the angular asymmetry of F ( v )  in the region 
z2 - 1 5  1 [see (12) and (14)]  is approximately unity, we 

can assume that the estimate 6( ,u)pdp - 1 holds for z >  1. 

The constant C, is determined to O( 1 ) by joining solutions 
(13) and (20): 

4. ENERGY FLUXES 

The power-law dependence F ( v )  in (20) in the case 
a < 3  causes the integrand for the dimensionless energy flux 
density Q in ( 5 )  to diverge at an arbitrarily small value of y. 
However the appearance of superthermal particles is related 
to the transport of these particles out of hotter regions (the 
effect of the electric field, -dT/dx, is unimportant here). In 
real, bounded systems, in which the maximum temperature 
is limited, the divergence can thus be removed through a 
cutoff of the integral Q in (5 )  at large values v < v,,, . At 
a = 3, the logarithmic divergence of Q which arises can be 
eliminated by imposing the restriction v < c, where c is the 
velocity of light. A more detailed discussion of relativistic 
effects goes beyond the scope of this paper and will be taken 
up in a separate paper. 

However, even when we do  incorporate a cutoff of the 
integral Q at large values of v ,  we find that the power-law tail 
of the distribution function can make a dominant contribu- 
tion to the energy flu; AQ(1V) under the conditions a < 3 
and y <  1, since this contribution contains a large numerical 
factor - v?i;'; " I :  

For a > 3 we find a different situation. In this case the 
integral expression for Q converges as v - co : 

We can determine the energy flux which is transported 
in the energy region y- ' I3 5 { 5 y- ' I2 .  Assuming y 4 1 we 
find from (5) ,  ( l o ) ,  and ( l l ) ,  to 0 ( 1 ) ,  

where the numerical factor A is on the order of unity. 
Since we have AQ(1V) a C3 ocexp( - 2/3y1I2), in the 

case y <  1 we have AQ(1V) < AQ(I1). Consequently, in the 
case a > 3 the power-law tail on the self-similar distribution 
function can contribute substantially to the net energy flux 
only if y is sufficiently large. 

We should point out that the analytic solution of the 
self-similar kinetic equation (Sec. 3 )  is of limited applicabili- 
ty even at comparatively small values of y, since small terms 
of order yl'%ere taken into account in the derivation of that 
equation. The self-similar function itself, however, correctly 
describes the asymptotic behavior of the transition of the 
energy flux from a thermal-conductivity flux to a kinetic flux 
- n T W 2  as y increases from 0 to 1. Specifically, we find 
Q - +  O(  1) as y- 1 (for the values of a for which the integral 
expression for Q converges). Hence, using ( 4 ) ,  we find 
q ( x )  -nTW2.  

Let us compare the results derived in this paper with the 
semiempirical expression for the energy flux density which is 
most frequently used, and which was found by analyzing the 
results of numerical calculations5: 

where q, - T5I2dT/dx is the expression for the energy flux 
density which follows from the theory of Ref. 1. 

Substituting (4)  with 1 > y la  - 31 into (25),  we find 

It is not difficult to see that expressions (25) and (26) give 
only a poor description of the distribution of the energy flux 
density in the class of functions n ( x )  and T(x)  considered 
here. In particular, expressions (25 ) and (26) fail complete- 
ly to differentiate between the fundamental differences in 
q (x )  at a < 3 and a > 3, which we discussed at the beginning 
ofthis section of the paper. Expression (25) apparently gives 
a fairly good description only of power-law profiles T(x) ,  
which are the types ordinarily used in numerical calcula- 
tions. A final conclusion, however, will require further 
study. 
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