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The transition between an atomic gas and a metal near the critical point is described through a 
model of the intermediate state of the substance: a quasiatomic gas. The most characteristic 
electronic properties of this state-its electrical conductivity, dielectric polarization, screening, 
and plasma oscillations-are discussed. 

1. INTRODUCTION 

By compressing the vapor of a metal, e.g., cesium or 
mercury, at temperatures in the critical region ( -2000 K )  
one can observe a transition of an atomic gas into a metallic 
state. The latter is signalled by an increase in the electrical 
conductivity to - 102S/cm and a weak temperature depend- 
ence of this conductivity ( a  Mott transition). The nature of 
the different phases of metals near the critical point, at which 
the difference between phases disappears, has attracted in- 
terest for a long time.' According to recent data, the transi- 
tion of a vapor to a metallic state is continuous. It is never- 
theless generally assumed that a Mott transition coincides 
with the point at which the activation energy for the electri- 
cal conductivity, found from the temperature dependence, 
disappears. The density of mercury at this point is higher 
than the critical density, while that of cesium is slightly low- 
er.2,3 Mercury and cesium thus constitute examples of the 

two types of phase diagrams for metals which were discussed 
in Ref. 1 (reviewed in Refs. 4, 5) .  

In contrast with thermal ionization, which results from 
excitation of atoms, near a Mott transition valence electrons 
of ground-state atoms are delocalized. It is thus difficult to 
distinguish atoms and free electrons and ions as separate 
subsystems. The atoms are in quasistationary states in which 
the valence electrons can go off to infinity (quasiatoms). A 
quasiatomic state refers to a certain atom, and the propaga- 
tion of electrons is a random walk among neighboring 
atoms. Percolation theory is of fundamental importance for 
this problem. The model of a quasiatomic gas thus leads to a 
percolation theory of a Mott transition. The concept of qua- 
siatoms was introduced in our papers in order to describe the 
electronic properties of a metal vapor near a Mott transi- 
t i ~ n . ~  In the present paper we summarize the physical ideas 
underlying the model, and we examine the most characteris- 
tic properties of a quasiatomic gas: its electrical conductiv- 
ity, dielectric polarization, screening, and plasma oscilla- 
tions. Only the first of these properties (and the most 
important) was studied in Ref. 6. 

2. PERCOLATION CLUSTERS OF ATOMS 

In atomic gas, unlike a metal, the potential wells in 
which the valence electrons move are separated by barriers. 
A point of importance for conversion to a metallic state is the 
ability of metal atoms to form percolation clusters in which 
valence electrons move among atoms above potential bar- 
riers. A necessary condition here is that the atoms close on 
each other to within a distance of 2e2/I ( - e is the charge of 
an electron, and I the ionization potential of the atom) so 
there will be an overlap of the classically accessible regions 

for the motion of the valence electrons. Outside these re- 
gions, the fields of the ions are screened almost completely. 
For metals which have an ns valence shell with a large main 
quantum number one can use a semiclassical model for the 
screening of the atomic core by the valence electrons near the 
boundary of the classically accessible region. The potential 
produced by an atom outside this region is zero, while that 
inside the region (but outside the ion core) is e/r - I /e ,  
where r is the distance from the nucleus. In the zone in which 
the classically accessible regions overlap, the potential ener- 
gy of a valence electron of the atom has a saddle point, at 
which it reaches the value - 4e2/R + I, where R < 2e2/I is 
the distance between the overlapping atoms. The potential 
barrier between the overlapping atoms thus lies below the 
ground state of the atom. 

If the relative value of the classically accessible volume 
of the atoms, 

reaches a threshold <, --, 1/3 (this is the percolation thresh- 
old in the problem of overlapping spheres7), an infinite per- 
colation cluster forms. The percolation threshold is natural- 
ly identified with a Mott transition (in mercury, this 
threshold is 5, = 0.29). The idea that the conversion to a 
metallic state is linked with a percolation among atomic 
spheres "filled" by the wave function has been expressed in 
several places (e.g., Ref. 8).  

The clustering of atoms is important above the transi- 
tion point and also in a certain neighborhood below it. Ac- 
cording to the scaling theory,' the number of percolation 
clusters of s particles is described by the distribution 

Here s4sg where sg is a correlation parameter which di- 
verges at the point of the transition. The power-law distribu- 
tion reflects the fact that there are no characteristic values 
for the number of particles in a cluster at a scale much less 
than sg . The integral for the number of atoms in clusters, 

does converge at large s, but very slowly. Near the transition 
point, most of the atoms thus become part of large percola- 
tion clusters. Above the transition point, a finite fraction of 
the atoms is in an infinite cluster. 

The correlation parameter diverges at the transition 
point9 in accordance with 
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We thus see that the clustering condition sc % 1 holds below 
the transition point if 6, - 6, < 0.1. 

3. SCREENING OFTHE INTERACTION 

Above-barrier transitions of electrons in percolation 
clusters lead to a screening of the ions by the electrons of 
neighboring quasiatoms. There is a finite probability for a 
valence electron to be far (in comparison with e2/Z) from its 
ion. The screening charge is related to the potential which it 
creates by the Poisson equation, 

The distribution of the screening charge is normalized by the 
condition 

where R,  is the total-screening radius. Integrating (2),  we 
find 

R. 

If a valence electron is near its ion, there is no external 
screening charge. We will make use of that circumstance in 
choosing a normalization of the potential: p (0)  = 0. Adding 
to (3)  the potential of the ion, we find the asymptotic expres- 
sion for the screened potential as r+  cz : 

R* 

e 
- + cp ( r )  - -4n J pr dr. 
r  

0 

In a strongly interacting system, the screening will be 
nonlinear, so the distribution of the screening charge cannot 
be determined explicitly. It is natural to suggest, however, 
that this charge will be about the same as in the atom. As- 
suming 

we find the asymptotic value of the screened potential, Z/e; 
this value corresponds to - I as the potential energy of the 
electron. The potential energy of the electron close to the ion 
is - e2/r in this case. 

The sum of the screened potential of the electron's ion 
and of the potentials created by the atoms generates a muf- 
fin-tin potential-energy relief: a collection of Coulomb wells 
lying below a plateau of height - I. In this potential (which 
has no bound states) an electron moves far from its ion, 
nearly as a free electron would in the sense of the theory of 
metals.' 

4. QUASIATOMIC STATES 

As a result ofthe screening, there is a certain probability 
that the valence electrons will be in free states, while the 
atomic states are quasistationary. The interaction mixes 
these states. The internal-energy spectrum of an atom in 
mixed (quasiatomic) states corresponds to an asymptotical- 
ly free motion of an electron, and according to the variation- 
al principle it lies above the ground level of the free atom. 

Treating the change in the state of an atom in a percolation 
cluster as a small perturbation, we can minimize the corre- 
sponding change in internal energy. The internal-energy 
spectrum of a quasiatom is then 

where p is the momentum of the free motion, and m is the 
mass of the electron. 

We represent the quasiatomic states by the density ma- 
trix 

where Y, is the wave function of an electron in the ground 
state of the atom, @, is the wave function of the continuum, 
and a,, and a, are the diagonal elements of the energy rep- 
resentation of the density matrix (a,,, a, >O, 
a,, + a, = 1 ). Equating the internal energy 
E = a,,( - I) + a, ( p2/2m ) to expression (4),  and using 
the normalization of the matrix elements, we find 

It follows from (5 )  and ( 6 )  that weakly excited quasiatomic 
states with p2/2mZ< 1 differ little from the ground state 
(except in terms of asymptotic behavior). 

For finite percolation clusters one can speak in terms of 
an intermediate asymptotic behavior of the density matrix 
and of a free motion of electrons in a bounded region. The 
spectrum of a quasiatom is continuous if the uncertainty in 
the energy, Wr, where r is the mean free time of an electron, 
is greater than the exchange splitting of the terms of the 
quasimolecule at an interatomic distance -2e2/Z. 

We introduce the average velocity of the free motion of 
the electrons, v,, and the average time for a transition of a 
valence electron to another quasiatom, 7'. The typical radius 
of the quasiatomic states is then v, T', and the volume which 
corresponds to them is 

Here r = I /we, I = (417-ni/3) - ' I 3  is the average radius of an 
ion cell, and ni is the density of ions. Since the relation T' > r 
holds for quasistationary states, the volume which corre- 
sponds to them, a, is much greater than the volume of an ion 
cell. Over the greater part of fl an electron moves in a 
screened potential, i.e., nearly as a free electron. In the ap- 
proximation of free motion, the state density in the internal- 
energy spectrum of the quasiatom is described by 

where g, is the statistical weight of the ground level of the 
atom. 

The nature of the electron energy distribution depends 
on the relation between the temperature and the Fermi ener- 
gy E; = pk2/2m. The Fermi momentum in a quasiatomic gas 
is determined by the state density (8)  and is given by 
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In the case of ns valence shells we would have p; = pFr/rl ,  
wherep, = fi(3r2n, ) ' I 3  is the Fermi momentum ofa homo- 
geneous electron gas. Since the relation T' holds, the Fer- 
mi energy in a quasiatomic gas is much lower than that in a 
homogeneous electron gas of the same density. The range of 
applicability of Boltzmann statistics is significantly ex- 
tended. 

5. DIFFUSION AND MOBILITY OF ELECTRONS 

The center of the wave packet which corresponds to a 
valence electron undergoes a random walk between the over- 
lapping atoms. The electron diffusion coefficient is 

The difference between ( 10) and the expression from the 
kinetic theory of gases with a minimum range I, according to 
Ioffe and Regel',4 lies in the factor T/T', which is a measure of 
the partial localization of the electrons. 

Correspondingly, for the mobility we have 

Expressed in terms of the formulas from the kinetic theory of 
gases, the diffusion coefficient and the mobility obviously 
satisfy the Einstein relation. 

Expression ( 1 1 ) shows that the electrons drift in an 
electric field ?? as free electrons would drift in an effective 
field ~ T / T ' .  In other words, the effect of the external field on 
the propagating electrons is weakened by the localization 
factor. This point is of importance to the screening of the 
external field and the plasma oscillations (more on this be- 
low). 

In a degenerate quasiatomic gas we have T = I /vk. Sub- 
stituting this value of T into ( 11 ), and expressingpk in terms 
ofp,, we find 

The factor T/T' is thus cancelled out in ( 12). The mobility 
given by ( 12) corresponds to the so-called minimum metal- 
lic electrical conductivity.' In the Boltzmann case we have 
T = I /v, ; the average velocity v, = ( 8 T /n-m ) ' I 2  depends 
only on the temperature T. Under the condition T ~ T ' ,  the 
mobility given by (1  1)  is thus much lower than the kinetic- 
theory mobility. 

We now find an explicit expression for the localization 
factor T/T'. For this purpose we consider how the mobility 
pp of electrons with a free momentump depends on the exci- 
tation which results from the increase in the relative size of 
the classically accessible volume. For an electron which is 
undergoing a transition from one atom to another and which 
has an excitation energyp2/2m, the relative size of the classi- 
cally accessible volume is 

where fo  is given by ( 1 ) . We set 
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where the function f ( J P  ) is zero for & <Cr and one for 
f p  > f f  , and f f  is a scale value of the relative size of the 
classically accessible volume in the case of free propagation 
(e.g., the degree of spherical close packing, 0.74). We then 
have 

where the angle brackets denote the average over a Boltz- 
mann distribution. We formally expand f ( f p  ) in the small 
parameter p2/2mI. Introducing a percolation level A ,  and a 
free-propagation level A, (putting the origin for the energy 
scale at  - I), we write 

The parameters A ,  and A, are expressed in terms of the typi- 
cal values of the relative size of the accessible volume. From 
(13) we find 

and a corresponding expression for A,, in which c, is re- 
placed by cf . At the transition point, A ,  vanishes. 

Using ( 15), and taking an average over a Boltzmann 
distribution in ( 14) with state density (8 ) ,  we find%n expo- 
nential temperature dependence for go < <, : 

For 50 > cr we find a linear dependence: 

The change in the nature of the temperature depend- 
ence in (16) and (17) when the mobility threshold disap- 
pears coincides with the Mott transition. The volume of qua- 
siatomic states, (7) ,  is found with the help of (17) [below 
the transition point, the value of T/T' at this point itself, 
which corresponds to the local density in the region spanned 
by the percolation cluster, appears in (7 )  1. 

Expressions ( 1 1 ) , ( 16), and ( 17) give the solution of 
the electron-mobility problem. Note that the mobility is not 
the same as the mobility due exclusively to the finite proba- 
bility for a free motion of an electron above the transition 
point: 

ez 3T 
p - m (a, , ) ,  ( a p p ) =  - 21 

The electrical conductivity is 
e2n.z z o=-- 

m z' ' 

where n, is the density of valence electrons. Figure 1 shows 
results calculated for the electrical conductivity of cesium 
and mercury. 

The rf conductivity in the Drude approximation is 
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FIG. 1. Electrical conductivity of ( a )  cesium at T =  21 13 K and (b )  
mercury at T  = 1800 K .  I-E~perimental',~; dashed line--extrapolation 
over temperature; 2-calculated with an electron localization factor r / i .  

At optical frequencies, the localization factor T/T' depends 
on the frequency as a result of the excitation of a quasiatom 
when the virtual absorption of a photon fi/w occurs. For 
photon energies which are not too large, fiw & A,, this effect 
is described by the replacement A, -A, - tiw, 
A,- A, - fiw. Using this replacement, we find an exponen- 
tial frequency dependence for the dynamic localization fac- 
tor below the point of the Mott transition: 7/7' a e x p ( h /  
TI. Figure 2 shows results calculated for the optical conduc- 
tivity of mercury. 

6. DIELECTRIC POLARIZATION 

The polarization of metal atoms which have ns or ns2 
valence shells with large n reduces to a shift of the electron 
charge in the electric field along with the classically accessi- 
ble region of motion. The boundary ofthe classically accessi- 
ble region is described by the equation 

-ez / r -e8r  cos 0=-1 

(the axis of the spherical coordinate system runs opposite 
the external field Z? ) . A weak field %' & I  '/e%auses a shift of 
the points of the boundary sphere in the radial direction by 
an amount 6r = (e5/13) Z? cos 0, which corresponds to a 
shift of the entire sphere along the z axis by an amount (e5/ 
13) 8. Multiplying this shift (at a unit field) by e and by the 
number of valence electrons, z, we find the polarizability: 

This expression is an approximate description of the polariz- 
ability of both free atoms and quasiatoms in percolation 
clusters if the classically accessible regions have been deter- 
mined well. 

In addition to the quasiatoms themselves in percolation 
clusters, the bonds between overlapping quasiatoms have be- 
come polarized; i.e., a partial transition of an electron be- 
tween the quasiatoms may be induced by the electric field. In 
a weak field, the polarization of individual bonds can be 
treated independently. 

The energy of a quasimolecule goes through a maxi- 
mum as a function of the degree of polarization S at 6 = 0. 
The expansion of the excitation energy near the minimum 
begins with the term ma2. We find the coefficient from the 
condition that the value S = 1 corresponds to the excitation 
energy of the ion term, I - E - e2/R =I /2 (here E & I  is the 
electron affinity of the atom, and R =. 2e2/I is the interatomic 
distance). 

The change in the energy due to the polarization of the 
quasimolecule in the electric field is 

where 0 is the angle between the direction of the electron 
transition (the axis of the quasimolecule) and the polar axis, 
which is directed opposite the external electric field. Mini- 
mizing this expression, we find 

6=2 ( e 3 / ~ 2 ) ~  cos 8. 

Evaluating the projection of the dipole moment onto the 
field, and taking an average over angles with the help of the 
relation (cos2 0 ) = 1/3, we find the polarizability of the 
bond: 

The only difference between the polarizability of the 
bonds, ( 19), and that of the atoms, ( 18), is in the numerical 
coefficient. Combining the two, we introduce an effective 
polarizability of the quasiatom: 

FIG. 2. Optical-range electrical conductivity of mercury at T =  1800 K 
withp = 7 g/cm3. 1-Reflection experiment'" (the arrow shows the static 
conductivity ); 2-calculated with a dynamic localization factor. 

where c- 1 is the average number of bonds per atom. 
In calculating the electric susceptibility due to the po- 

larization of the quasiatoms (and bonds), we need to consid- 
er the local-field effect. This effect can be summarized by 
saying that the external field for a structural element of a 
medium is not the average field itself but the average field 
minus the depolarizing field inside this element. In the ap- 
proximation of a continuous medium, the latter field corre- 
sponds to the depolarizing field of a dielectric sphere, 
- 4~xZ?/3, wherex is the susceptibility of the medium. The 

field which determines the polarization of the quasiatom is 
( 1 + 4 ~ x / 3 )  Z?, so we arrive at the Clausius-Mosotti equa- 
tion for the dielectric constant. Using (20) and definition 
( I ) ,  we find 

The divergence in the Clausius-Mosotti equation corre- 
sponds to a spontaneous polarization, which is actually im- 
possible in a homogeneous and isotropic medium. This di- 
vergence stems from the mean-field approximation, which 
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overestimates the polarization of the atoms in one direction. 
Equation (21 ) is thus applicable not too close to a pole. 

Well above the transition point at T-T', the polariza- 
tion of the quasiatoms and the corresponding polarization 
evidently vanish. 

7. SCREENING AND PLASMA OSCILLATIONS 

In addition to the dielectric polarization at the atomic 
scale, the electrons in a quasiatomic gas are polarized at dis- 
tances much greater than the interatomic distances, screen- 
ing the external field. The electron density in a self-consis- 
tent field with a potential q, is described by a Boltzmann 
distribution n a exp(eq,.r/T.rl), which contains the effective 
potential ~,T/T'. The linearized Poisson equation Aq, = x2q, 
describes an exponential screening of a potential q, a e-  '". 
Here the reciprocal screening radius (the renormalized elec- 
tron Debye length) is 

where E is the dielectric constant which is associated with the 
polarization at the atomic scale. 

The presence of a factor T/T' in (22) means that the 
screening radius depends on the degree of localization and is 
determined by electrons with energies above the mobility 
threshold. On the dielectric side of the transition, the radius 
of the screening of the external field depends exponentially 
on the density and decreases to the interatomic distance near 
the transition point. 

If, for some reason, the electrical conductivity is negli- 
gible at the macroscopic scale, percolation clusters will be 
conducting inclusions which screen the external field from 
their interior. The correlation length 6 (the maximum size of 
a cluster), which determines the scale, diverges at the point 
of the transition9 in accordance with 

When an infinite cluster forms, the external field is 
screened completely from the medium. In this case the medi- 
um constitutes a dielectric whose dielectric constant di- 
verges at the point of the Mott transition. This effect, which 
is observed in extrinsic semiconductors at low temperatures, 
is known as the polarization catastrophe" (although it is not 
related to spontaneous polarization, as in the Clausius-Mo- 
sotti case). At high temperatures the effect is masked since 
the external field is again screened from the medium on the 
dielectric side of the transition. 

As usual, plasma oscillations with a wavelength much 
greater than interatomic distances are associated with the 
screening. The equation for the drift motion of an electron in 
the electric field is 

dv - e 8  T v 
dt m z '  a 

Combining (23) with the continuity equation dq/dt 
- en, Vv = 0 (q = - eSn, is the charge density) and the 
Poisson equation, V 8 = 4 7 ~ q / ~ ,  we find an equation for the 
plasma oscillations: 

where 

is the renormalized plasma frequency. The damping rate is 
1/2r. 

Formally, the usual relation w, -xu, holds between the 
screening radius (22) and the plasma frequency (25). The 
situation changes when the finite energy of a plasmon, +imp , 
is taken into account. As for the optical-range electrical con- 
ductivity, the factor T/T' itself depends on w, (because of the 
virtual absorption of plasmons by quasiatoms), so (25) is 
actually an equation for w,. Below the point of the Mott 
transition, Eq. (25) can have one or two stable roots. At the 
lower frequency, which corresponds approximately to the 
static value r/r ' ,  oscillations are not possible because of the 
strong damping. In reality, plasma oscillations with a fre- 
quency corresponding to r/rf- 1 can be excited [in this 
case, the dielectric constant in (25) is E - 1 1. 

8. CONCLUSION 

From the general point of view, a metal vapor near the 
critical point is a dense, strongly interacting plasma which 
converts into a metal upon compression, while an expansion 
converts it into an atomic or partially ionized gas. The 
ground state of the atoms in the intermediate region is a 
quasistationary state because of screening, so there is a finite 
probability for the delocalization of valence electrons. A ful- 
ly microscopic description of a dense plasma of this sort is 
not possible because of the strong interaction. A phenome- 
nological description is possible because a main interac- 
tion-that of the electron with its ion-can be distinguished. 
On this basis, the changes in the electronic properties at the 
transition are described with the help of percolation theory. 
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