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The hypothesis of "molecular chaos" fails when applied to the spatially inhomogeneous evolution 
of a low-density gas, because this hypothesis is incompatible with a "collisional" description of 
the interaction of the particles. The failure of molecular chaos means that there is a statistical 
correlation among colliding and closely spaced particles in configuration space. This 
circumstance is taken into account in the collisional approximation (in the kinetic stage of the 
evolution) and in the limit of an infinitely small gas parameter to derive an autonomous system of 
coupled kinetic equations for the many-particle distribution functions of closely spaced particles 
from the Bogolyubov-Born-Green-Kirkwood-Yvon equations. This system of equations reduces 
to the Boltzmann equation only in the homogeneous case. It is used to analyze the statistics of the 
Brownian motion of a test gas particle. It  is shown that there exist fluctuations with a l/f 
spectrum in the diffusion coefficient and the mobility. The physical cause of these fluctuations is 
the randomness of the spread of particle encounters in the value of the impact parameter. This 
randomness makes the rate and effectiveness of collisions random. 

1. INTRODUCTION 

The kinetic theory of slightly nonideal gases as it exists 
today rests on the antiquated hypothesis of "molecular cha- 
os," which asserts that the particles entering a collision are 
statistically independent and which makes it possible to re- 
duce the exact Bogolyubov-Born-Green-Kirkwood-Yvon 
(BBGKY) equations to the classical model Boltzmann 
equation. Molecular chaos has not been proved, and it can 
be justified essentially only for the special case of the spatial- 
ly homogeneous evolution of a gas.'+ In general, the molec- 
ular-chaos argument involves arbitrary assumptions. For 
example, it is sometimes identified with the circumstance 
that in a sufficiently low-density gas the colliding particles 
do not have an intersecting dynamic past. Generally speak- 
ing, however, as was emphasized many years ago,4 the ab- 
sence of a dynamic correlation by no means implies the ab- 
sence of a statistical correlation from the standpoint of the 
probability laws which pertain to an ensemble of systems. It 
is also unjustified to identify molecular chaos with the condi- 
tion that the statistical correlations decouple for particles 
which are infinitely far apart, since in actuality the particles 
arrive at a collision not from "infinity" but from a distance 
which is only on the order of or less than the mean free path 
A, (in practice, molecular chaos is postulated even for dis- 
tances on the order of the interaction radius ro(/2,). 

On the other hand, it is not terribly difficult to identify a 
factor which would cause molecular chaos to fail in the inho- 
mogeneous, nonequilibrium case. In an inhomogeneous gas 
the configuration dependence of the distribution function 
carries statistical information not only about the instanta- 
neous coordinates of the particles but also, indirectly, about 
their past diffusive displacements (since the size of the varia- 
tions in the gas constitutes a natural reference scale for dis- 
placements). The displacement of each particle, on the other 
hand, is closely correlated with fluctuations in the rate of 
collisions of this particle. To the extent that these fluctu- 
ations have a temporal dimension, the displacement of each 
particle is thus also correlated with the given collision. The 

binary distribution function for the particles going into a 
collision is thus actually a conditional probability distribu- 
tion under the condition that a mutual collision is realized in 
a fixed and small space-time region. Because of this circum- 
stance alone, a given distribution function cannot in general 
be factored into a product of one-particle distribution func- 
tions which would furnish unconditional information about 
displacements and coordinates. 

The question is thus the extent to which the fluctuations 
in the collision rate of an arbitrary particle of a gas are "long- 
lived." A natural source of such fluctuations is the random 
nature of the impact parameter in an encounter of particles 
(we will be using the work "encounter" to mean both an 
interaction event proper and simply the process in which 
particles come to a distance from each other comparable to 
the interaction radius r,). It is totally obvious that this 
source of ffuctuations does not reduce completely to ordi- 
nary fluctuations of the local gas density. Depending on the 
random distribution of encounters in the value of the impact 
parameter, the collision rate may vary from one time interval 
to another. The thermodynamic state of the gas, on the other 
hand, is indifferent to these variations since in any case they 
will not interfere with a local randomization of the gas over a 
finite time on the order of the mean free time T ~ .  Consequent- 
ly, there is no relaxation mechanism which would tend to 
establish a certain distribution (histogram) of values of the 
impact parameter, and in this sense the relaxation time (or 
smoothing time) of this distribution is infinitely long. Argu- 
ments of this sort show that fluctuations in the collision rate 
(and thus in the kinetic coefficients of the gas which are 
associated with this rate) are of a long-lived "flickering" 
nature.'-' 

In order to deal with these fluctuations we must aban- 
don the idea of starting off with molecular chaos; i.e., we 
must treat a binary distribution function of particles which 
are encountering each other (in the sense explained above) 
as an autonomous statistical characteristic of the gas which 
determines a local average over the ensemble of the rates of 
encounters and, in particular, collisions proper. According 
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to the BBGKY equations, the evolution of this distribution 
becomes coupled with the evolution of the higher-order dis- 
tribution functions for "clusters" of n > 2 particles which 
encounter each other and which are close together. One 
might sugest that, taken together, they reflect the statistics 
of the distribution of encounters in the impact parameter 
and thus the collision rate. 

In Sec. 2 we show that in the relatively crude kinetic 
"collisional" description of the interparticle interaction the 
BBGKY chain generates a separate system of evolution 
equations for these special distribution functions of particles 
which are encountering each other. The structure of these 
equations is such that it forbids Boltzmann molecular chaos 
in a spatially inhomogeneous gas. The only possibility is a 
weakened version of the molecular chaos hypothesis (exam- 
ined in Sec. 3) which incorporates a statistical correlation of 
particles in configuration space. 

Such a weakened hypothesis, however, is sufficient for 
deriving a closed (although infinite) system of kinetic equa- 
tions. As is shown in Sec. 4 in the example of self-diffusion, 
these equations predict flicker fluctuations in the transport 
coefficients of a gas. This result, discussed in Sec. 5, supports 
the fundamental conception of l/f noise which was pro- 
posed in Ref. 7 and 8. 

2. COLLlSlONAL APPROXIMATION 

Since the BBGKY equations cannot be solved rigorous- 
ly, we appeal to the idea of an asymptotic separation of the 
space-time scales into "collisional" and "kinetic"categories. 
This idea was proposed by Bogolyubovl and arises in a natu- 
ral way in the limit of a low-density gas (A, = const, p e r o /  
A,-pr; -0, where p is the average density of the gas). In 
other words, we assume, following Ref. 1, that in a sufficient- 
ly late stage of the evolution of the gas the many-particle 
distribution functions F,, are like F, in that they preserve 
only the slow time dependence which is characterized by the 
kinetic scales, 2 r0 = A,/v, [v, = ( T / m  ) ' I2  is the thermal 
velocity]. In order to implement this approach in practice 
we have to specify the approximate asymptotic form in 
which we are seeking a solution of the BBGKY equations. 
For this purpose, Bogolyubov' introduced the asumption 
that all of the F, are local (in terms of the time) functionals 
of the one-particle distribution function F,. That assumption 
makes the hypothesis of molecular chaos unavoidable, but 
that hypothesis is not imposed by the original equations. The 
"slowness" of Fn , however, gives us a longer list of possibili- 
ties. We will accordingly discuss a less rigid formulation of 
the separation of scales. 

To find the distribution function for clusters of closely 
spaced particles it is natural to express the interparticle dis- 
tances q,, = q, - q, (q, are coordinates) in units of r,, while 
the position of the center of mass of a cluster as a whole, 
q ( n )  = ( l /n)  Ejq,, is expressed in units of A,. Putting the par- 

ticle velocities in dimensionless form by dividing by the ther- 
mal scale value v,, and putting the time in dimensioniess 
form by dividing by the mean free time T, (in accordance 
with the presumed slowness of the variation of the distribu- 
tion function), we can write the following expression for the 
volume-normalized distribution functions: 

The separation of scales presupposes that in a certain asymp- 
totic sense the "reduced distribution functions of close-ly- 
ing particles Fn , do not depend on the gas density p, i.e., do 
not contain the gas parameter p as a special independent 
argument. Let us examine the consequences of this-still 
preliminary-suggestion by substituting ( 1 ) into the 
BBGKY equations. 

To exhibit the scale value r, explicitly it is convenient to 
specify the interparticle interaction force to be ( T/r,) f(qij / 
1,). We can always choose ro and A, in such a way that the 
relation A, = l / pO2  holds. We introduce z, = 9'"' /Ao, xu. 
= qu/rO, while we retain the earlier notation for the dimen- 

sionless time, t /r0, and the dimensionless velocity v, /vo. The 
BBGKY equations can then be put in the following form 
without difficulty: 

where L, ' (which acts on the functional dependence on xu 
and v, ) is the Liouville operator of the relative motion and 
the n-particle interaction, which is found from the complete 
n-particle Liouville operator by eliminating the center-of- 
mass motion. In addition, 

is the velocity of the center of mass of the cluster. 
It can be seen from (2)  that, at a formal level, a strict 

independence ofF, fromp would be expressed as the follow- 
ing requirement, which is a supplement to the original equa- 
tions, (2 ) :  

This requirement would eliminate the contribution of the 
"fast" relative motion. The physical meaning of this require- 
ment is easily understood: It asserts that the different dy- 
namic states of a set of n close-lying particles which can be 
observed in the course of the encounters and interactions of 
these particles are realized at identical probabilities in the 
statistical ensemble. In other words, the different dynamic 
phases or stages of a collision (in particular, the in-states and 
out-states) are represented in equal proportions in the en- 
semble. 

This statistical property is essentially a necessary 
expression of the "collisional" nature of the evolution of the 
gas and, correspondingly, of the possibility of a relatively 
crude description of this evolution in terms of collisions (a  
description in terms of collisions replaces a detailed descrip- 
tion of the interaction geometry and of the instantaneous 
dynamic states by the statistics of coupled collisions, which 
are characterized as a whole by only the initial and final 
states). We would thus expect that the exact solution of the 
BBGKY equations would go in the direction of the asympto- 
tic expression (3),  so that requirement ( 3 )  should be 
thought of as more appropriate than the collisional-approxi- 
mation basis which was proposed in Ref. 1 [an alternative to 
(3)  would render the concept of collisions in applicable in 
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general; this would contradict elementary physical consider- 
ations]. 
would contradict elementary physical considerations]. 

At the same time, we see that the equality in ( 3 )  does 
not hold in the strict sense, if only because the principle of 
separation of scales suggested above concerns only interpar- 
ticle distances which are not too large, at any rate, lqij 1 <A, 
(or, in dimensionless variables, Ix,. 1 9 p - I ) .  We will thus 
move on to a more correct treatment of this separation of 
scales. For this purpose it is quite sufficient to understand 
( 3 )  as the condition that the quantity pP'L,'F, (or the 
quantity L, 'F,, in terms of the original dimensional vari- 
ables) is small in comparison with the other terms of the n-th 
BBGKY equation. Furthermore, it is sufficient that (3 )  
hold only on the average over some range of interparticle 
distances with a linear scale a much larger than r, but much 
smaller than A,. A natural choice for a, and one which is 
unambiguous in order of magnitude, is the average distance 
between neighboring particles: a = p- ' I3  (or, in dimension- 
less form, a/r, = p - '/" ). 

In the limit p -0  this region (the "collision volume") 
becomes infinitely large on the scale of r,, but it shrinks to a 
point at the scale ofA,. In this case one can ignore the vanish- 
ingly small ( <a/A0-p213) difference between the centers 
of masses of the configurations which figure on the left and 
right sides of (2) ,  and we can replace the chain of variables 
z, by the single common variable z: the coordinate of a phy- 
sically small collision volume. Whether particles belong to 
the same such volume would then be taken as a measure of 
the closeness of the particles. 

We will use a superior bar to specify this averaging, and 
we will denote the result of the averaging of F,, by A, = p, . 
By virtue of the definition of a distribution function, 
A, = A, (t,z,v ,,..., v, ) depends on only t, z, and the velocities 
v,. It characterizes a local average density of the number of 
n-particle encounters. According to the discussion above, in - 
place of (3  ) we then have L, 'P, = 0 in terms of the original 
dimensional variables or, in terms of dimensionless vari- 
ables, 

p-fLn'P,=o. (4) 

Using (4),  we can put Eqs. (2)  in the form 

where V = d /dz, and where the limit ,u -0 is to be under- 
stood as in (4).  

It is thus clear that in the general inhomogeneous case, 
with VA, +O, the solution (5)  cannot be written as a prod- 
uct of one-particle distribution functions, 

I 

since the inertial terms u, VA, generate a statistical correla- 
tion of close-lying particles (because of their drift with re- 
spect to the density variation, together with the collision vol- 
ume). As a consequence, the circumstance that particles 
belong to the same collision event or encounter establishes a 
definite statistical relationship between them. From the 
probabilistic point of view, of course, there is no fundamen- 
tal difference between encounters and collisions proper. 

We thus arrive at the conclusion that in an inhomogen- 

eous situation the collisional approximation-by virtue of 
its very nature--contradicts the hypothesis of molecular 
chaos, since switching to a discussion in terms of collisions 
automatically supposes the elimination of the relative mo- 
tion from the equations for the distribution functions which 
characterize the collision number density. As a result, even 
in the hydrodynamic state, the evolution of the gas is de- 
scribed by the infinite system of equations (5).  

On the other hand, the collisional nature of the evolu- 
tion does not prevent factorization of the n-particle distribu- 
tion functions F, ( t ,  q ,... q, , v ,... v, ) if the particles are suffi- 
ciently far apart from each other. If, while taking the limit 
r,/A,-0 (A, = const ), we hold the interparticle distances 
q ,  fixed in units of A,, we find from the BBGKY equations 
some equations for F, which have the factorized solution 
F, = IIJ F, ( t,qJ ,v, ) . In the equation for F,, however, the bi- 
nary distribution function has a different type of limit: a lim- 
it taken while q,, is fixed in units of r,, i.e., F,I,, = ,, . As a 
result, we find the chain (5).  

The switch to a common spatial variable z in 
(5)  is of course possible only under the condition 
Iqcn) - + ') I < 1, where 1 is the length scale of the vari- 
ation. We also need to require that the average volume of a 
cluster of n close-lying particles, which has a value ,< na3, be 
smaller than 13. Each of these conditions is satisfied by an 
infinite margin in the limit under consideration here if the 
scale value 1 is specified in units of A, [since we have nu3/ 
l3 = n,u2(A0/1)3-0], and neither restricts the numbers of 
distribution functions A, which are "tied" to a given coordi- 
nate z. 

3. WEAKENED MOLECULAR CHAOS 

The relations (4) ,  which determine the collisional ap- 
proximation, double as a mechanism for reducing the right 
sides of (2)  and (5)  to collisional form. In particular, with 
n = 2, Eq. (4)  becomes 

P-~L;P,=~-~~- '  J L;& dq,,= j L;P* a%,=o, 
Iqs,lCa I=,,l<a/ r, 

or, after we take the limit ,u -+ 0, 

Hence we find from (2)  the right side 5, = J ,  of the first of 
equations (5)  in the form of the integral 

over an infinitely remote surface Ix,, 1 = m (with a normal 
vector ds), so that 5, is determined by the particle flux going 
into the collision volume < co from the surrounding 
gas. 

Depending on the sign of the scalar product 
(v, - vI )ds, the distribution function F2 describes either the 
in-state or out-state of particle 2 with respect to particle 1. 

We denote by A'", the values of limp2 on that part of the 
P-0  

boundary surface Iq,, 1 E a which corresponds to in-states. 
The boundary values for the out-states can then be expressed 
in terms of A with the help of the two-particle scattering 
matrix. The quantity 5 then acquires the standard form of a 
collision integral: 
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Here So is the ordinary ''Boltzmann" collision operator for 
the collision of particles i and j. The action of this operator is 
defined by 

where b is a two-dimensional impact-parameter vector, and 
u', and u', are the initial velocities which correspond to the 
final velocities u, and u, . 

Correspondingly, we can use (4)  to transform all of the 
3, which appear in (5) .  Since in the limitp -0 the functions 
A,  are determined by the average of Fn over an infinite 
[3(n - 1) - dimensional] region of dimensionless inter- 
particle distances, we are left as a result with the contribu- 
tion of only the collisionless n-particle configurations. Cor- 
respondingly, only binary collisions contribute to 2,: 
collisions between one of the n particles which figure on the 
left side of expression (5 )  and an "external" (n + 1 )st parti- 
cle, which represents the rest of the gas. We therefore find a 
result which we could have predicted earlier: 

where A  ',"+ , represents the boundary distribution function 
similar to A  5" which describes configurations in which the 
external particle is in an infinitely remote in-state with re- 
spect to the given n particles. 

In order to derive a closed system of equations from (6)  
we need to relate the boundary distribution functions A ',"+ , 
on the right side to the functions on the left side. In this 
step-after the switch to a collisional form of the equa- 
tions-we need to invoke the concept of molecular chaos. 
Specifically, we assume that, because of its particular role, 
the external (n + 1)st particle has no velocity correlation 
with the other particles: 

This velocity factorization does not mean an absolute statis- 
tical independence, however, since it still allows a spatial 
correlation, by virtue of which the function A  may differ 
from A,  (according to the definition, A  :, is the conditional 
n-particle distribution under the condition that a collision 
with an additional particle is realized). 

In its "pure" form the correlation of particles in config- 
uration space is described by a distribution function inte- 
grated over all velocities. Since the particles in all of the 
configurations under consideration are infinitely close to- 
gether from the standpoint of the kinetic scale value A,, the 
degree of spatial correlation must be the same in them. This 
assertion is expressed by the relation 

which makes it possible to relate A  ?+ to A,  + , . This equa- 
tion essentially expresses the conservation of the number of 
particles in the collision processes (since An + , is an indirect 
characteristic of an intermediate stage of the collision). It is 
easy to see that the simplest form of the realtionship is de- 

scribed by 

A,,' (t, z, V I  . . . vn) 

or, equivalently, 

This relationship does not touch on the correlation of closely 
spaced particles in a cluster. 

Expression (7)  is a weakened version of the hypothesis 
of molecular chaos. It incorporates the spatial statistical cor- 
relation of the colliding particles; i.e., it asserts that they are 
independent only in momentum space-not in configuration 
space. 

Along with (7),  Eqs. (6)  form a closed-we wish to 
stress this closure--chain of kinetic equations. In the uni- 
form limit this chain permits the completely factored solu- 
tion A,  ( t ,u ,... u, ) = n , A ,  (t,u, ) and is equivalent to the 
Boltzmann equation 

Incidentally, this solution follows simply from the first of 
Eqs. (7)  when we note that the condition for a mutually 
consistent normalization of the set of distribution functions, 

(S1 is the total, infinite volume of the system), 
can be reduced in the uniform case to the local 
form SFn + , dun + , = F, . We then find the equality 
J A n + , d u n + ,  = A ,  andfrom ( 7 )  wefind 

In the nonuniform case the latter relations no longer 
hold, since the exact global form of the mutual-consistency 
condition cannot be replaced by a spatially local form. The 
evolution of the one-particle distribution function is deter- 
mined by the entire infinite chain of Eqs. (6) ,  (7),  and it 
becomes definitely non-Markovian, in contrast with the evo- 
lution in the Boltzmann model. Understandably, the non- 
Markovian nature then leads to a low-frequency temporal 
dispersion of the spatially nonlocal kinetic transport coeffi- 
cients of the gas. In turn, this dispersion may serve as a 
source of information about the low-frequency fluctuations 
of the kinetic coefficients, as we will see below. The spatial 
nonuniformity of the gas is of course in no way the reason for 
these fluctuations (the fluctuations exist in both a uniform 
state and an equilibrium state)-only the means by which 
they are manifested in the simultaneous distribution func- 
tions of the gas because these distribution functions depend 
on the kinetic coefficients in a nonuniform, nonequilibrium 
state. 

4.1 / f  NOISE OF SELF-DIFFUSION 

To analyze self-diffusion we need to eliminate from the 
kinetic equation the hydrodynamic modes which are asso- 
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ciated with the five integrals of motion of the system as 
whole. This can be done easily by taking the formal approach 
of Ref. 2: replacing the probability distribution of the exter- 
nal particle in the collision integral by an equilibrium one- 
particle distribution function, i.e., in our notation, replacing 
( 7 )  by 

where A,(v) = ( 2 ~ ) - " ~ e x p (  - v2/2) is the equilibrium 
Maxwellian velocity distribution. 

Physically, this replacement describes a situation in 
which the gas is in an equilibrium state in the macroscopic 
thermodynamic sense. There is simply a deviation from the 
statistical equilibrium with regard to some specified "test" 
particle and its immediate surroundings. The statistical state 
of the surroundings will be described by the set of distribu- 
tion functions which stand on the left sides of ( 5 )  and (6).  
The rest of the gas serves as a heat reservoir. If the one- 
particle distribution function in this chain belongs to the test 
particle, the higher-order distribution functions will under- 
standably correspond to a cluster of the test particle and 
n - 1 other particles of the surroundings. We assign the in- 
dex 1 to our test particle. 

We also make use of the Green-Kubo theorem,?ccord- 
ing to whichh the generalized diffusion coefficient D(r ,  V) 
which figures in the general nonlocal form of the self-diffu- 
sion equation, l 2  

i 

(V = a/dR ), for the probability density W(t ,  R )  for a dis- 
placement of an R-particle gas (over a time t )  can be linked 
with the linear response of the distribution function of the 
test particle to an infinitely weak (potential) external force 
f, (9 , )  which acts on it (this force is "turned on" at an 
arbitrary time t = 0, before which the gas was in all respects 
at equilibrium). Specifically, it is a straightforward matter 
to show that the following relation holds (Sec. 1 of the Ap- 
pendix) : 

I dt e-pi j dqlc-'kr j v,F, ( t ,  q,, v,) do, 

--T-'D (p, ik) [ p f  kaD ( p ,  ik) ]-'fa (k), (10) 

where2, ( k )  is the Fourier transform off, (q, ) and 
ee 

D ( p ,  8 )  -I e-.a (7, a a. 
0 

To find the response we need to add terms 
m -  x, (q,)dF, /du, to the left side of the BBGKY equa- 
tions. After a transformation to the collisional asymptotic 
behavior, these terms take the form (in dimensionless nota- 
tionf, (z)dA, /dv, in (6).  The replacement of q, by z in the 
argument o f f ,  presupposes that the change in Lx over 
length scales 5 a is small and that the external force has only 
a slight effect on the dynamics of the collisions. These as- 
sumptions are legitimate in the limit (a /T)f ,  -0 and p + 0 

if, for example, the length scale of the inhomogeneity is 
I k I - ' 2 A,. After (8)  is substituted into ( 6 ) ,  the Boltzmann 
collision integral on the right sides transforms into a general- 
ized Fokker-Planck operator A (a "Boltzmann-Lorentz col- 
lision operatorM2) 

As a result we find the equations (in terms of dimensionless 
variables) 

with the equilibrium initial conditions 

In principle, D can be found by analyzing the evolution of an 
initial deviation from equilibrium (thermal perturbation) in 
the absence of an external force. That approach, however, is 
less convenient since it requires a special consideration of the 
initial stage of the evolution, preceding the collisional 
asymptotic region. 

Transforming to the linear response, we set 
A ,  = A + p, , pn -0, and we take a Fourier transform inz 
along with a Laplace transform in t .  Denoting the Fourier 
transform of p by @, , we find from ( 11 ) 

Since these equations cannot be solved in their general form, 
we will simplify the problem. First, we restrict the analysis to 
the first two terms in the expansion of D in the gradient in the 
inhomogeneity: 

Second, we choose the simplest possible model form for the 
operator A, i.e., the Einstein-Fokker-Planck diffusion oper- 
ator: 

[we have used A,A,(u, ) = 01. 
In reality, of course, an operator of this type could not 

be found from any interaction potential (since it corre- 
sponds formally to scattering through infinitely small an- 
gles). This circumstance, however, should not affect the 
qualitative side of the results, since all that is required of A is 
that it play the role of a "relaxer" which causes the velocity 
distribution to relax to equilibrium. This choice is conven- 
ient in that all the eigenfunctions A are products of A,(v) 
and polynomials. We know that the operator A correspond- 
ing to a Maxwellian interaction potential has the same prop- 
ertye2 Accordingly, the calculations below can be general- 
ized to this case. The Einstein-Fokker-Planck operator has a 
further advantage, however: It makes it possible to separate 
variables and to work with only the projections of all of the 
vector variables onto the wave vector of the variation, k, i.e., 
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to formally reduce the problem to a one-dimensional prob- 
lem (for a potential external force, the vectorf, is also par- 
allel to k). We will accordingly treat all the variables as sca- 
lars in the discussion below. 

We expand the response function in the gradient of the 
variation: - 

q. = (ik) " ~ : " ' ~ - ' f . ~ .  

Using ( 10) to relate this series to the expansion of the diffu- 
sion coefficient, we find 

Substituting the same series into ( 12), we find the system of 
equations 

n 

= A, j C$ 
,= 1 

n n 

The first group of equations can be solved easily with 
this choice of A: we find 

The solution of the second group for C!," should be sought 
in the form 

n 

where a, and p, are functions ofp alone. For them we find 
the equations 

and then 
.D 

We now consider the functions 

6 .  = 5 v1C:) dv.. . . dun. 

the first of which determines the unknown function D,. Mul- 
tiplying the chain of equations for C :  by v,, and integrating 
over all velocities, we find, after some straightforward calcu- 
lations, 

p6,=-~6n+1 -n-I[ (n+2)an+PnI DO. 

Substituting the expressions found above for a, andb, into 
this equation, we find 6, in the form of a repeating sum: 

m m 

where X =  y/p. Using the identity 

we can transform the series over n into a form which can 
easily be summed. We find as a result 

Do2 DO D , + - = -  jx ( - y ) " - l [ $ + n f l Z  ( - - 2 ~ ) j - ~ ] d y  
P p2X o n-i j-n 

TI. 

We have gone into the details of the calculations to dem- 
onstrate the general characteristic structure of thep depen- 
dence of the response; this structure would be the same for 
another choice of the operator A. Let us examine the behav- 
ior of the diffusion coefficient at low frequencies, i.e., the 
functional dependence at Jpl< y. From ( 13) and ( 14) we 
find Do = l /y  and 

where c is a numerical constant, in this limit. Switching to 
the dimensional notation, we must evidently set D,, 
= V , ~ T ~ / ~  = ( T/m ) T, and replace y by y/r0 = I/T, in the 
argument of the logarithm, where T, is a momentum relaxa- 
tion time. 

We turn now to the statistical characteristics of the dif- 
fusive ("Brownian") motion of the test particle, which is 
described by the diffusion equation (9) .  Knowing the first N 
terms of the expansion of the diffusion coefficient D(p, ik) in 
ik, we can in principle find the first N + 2 moments of the 
displacement: 

M .  ( t )  = J R"W ( I ,  R )  IR. 

From (9)  we have 

Now taking the inverse Laplace transform for long time 
intervals t ) ~ , ,  and using (14) and (15), we find 
M2(t)z2Dot ( D , T r , / m )  and 

where c' and c" are numerical constants [which are deter- 
mined by the inverse transform of D,  (p) ]. 

Let us compare this result with that which we would 
have derived under the canonical hypothesis of molecular 
chaos, i.e., from the inhomogeneous Boltzmann-Lorentz 
equation. In this case we would have had a single closed 
equation 

in place of ( 12). It then follows that for an arbitrary operator 
A we ultimately have the asymptotic behavior M2(t) =2D,t 
and 
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If A is chosen in the form of an Einstein-Fokker-Planck op- 
erator we find const = 0, and the value of Do [which can be 
defined as the limit of the ratio of M2(t)/2t at t 9 T, 1-i.e., 
the diffusion coefficient of the text particle-is the same as 
that found above. 

The second term on the right sides of (16) and 
(17) is the fourth cumulant of the displacement, 
~ , ( t )  =M4(t) - 3M22(t). It is, as we know, a measure of the 
"non Gaussianness" of the displacement. In particular, it 
shows how substantially the (random) diffusion coefficient 
i) measured from a single realization of the displacement can 
differ from Do, which characterizes the average over the en- 
semble of  realization^.'-^ The asymptotic expression ( 17), 
x,(t) a t ,  derived in the "Boltzmann" model of self-diffu- 
sion, means that the random walk of the test particle is de- 
scribed completely by the one statistical parameter Do. 

This is no longer the case, however, if we have 
tt,(t) a tY, where y > 1. An asymptotic expression of this 
type means that it is no longer possible to pack the time 
evolution of an arbitrary typical realization in a single pa- 
rameter Do. It is not difficult to verify that this asymptotic 
behavior is statistically equivalent to the existence of flicker 
fluctuations of the diffusion coefficient with an w - ' Y p  ') 

low-frequency spectrum (Refs. 7-1 1 ) . 
In the model under consideration here, in contrast with 

the Boltzmann model, we arrive at specifically this sort of 
situation, since we have x4(t)  a t 21n2(t /rm ) by virtue of 
( 16). It can be described [if we ignore the relatively small 
terms proportional to t in ?t4(t) ] over a fairly coarse time 
scale as a Gaussian random walk with a random diffusion 
coefficient i) = E( t ) .  Taking i) as referring to the intire in- 
terval over which the characteristic is observed, we find 

for the corresponding "doubly random" process and thus 

system under consideration here (an "Einstein relation for 
fluctuations" holds). 

From the standpoint of a fundamental experimental 
test of the theory it is interesting to extend the theory to a 
two-component or multicomponent gas, in particular, a 
weakly ionized gas. It can be shown that the spectrum of 
fluctuations in the diffusion coefficient for the particles of 
one of the components in a mixture as the generalized flicker 
form a w - " , where the exponent has a value in the interval 
1 ( a  < 2, depending on the ratio of the masses and momen- 
tum relaxation times. Consequently, and in contrast with the 
fluctuation mechanism, a spectrum of the type in ( 18) is not 
a universal spectrum and shares this status with the spec- 
trum a w - ' [ln( l/wro) ] -' found in the phenomenological 
theory1' (Refs. 7, 9, and 11 ). 

The spectrum (18), like the asymptotic expression 
( 16), provides evidence that the fluctuations in the diffusion 
coefficient and the mobility are of a statistically time-depen- 
dent and nonergodic nature. This statement means that in a 
determination of these quantities from a specific realization 
of the motion of a particle the mean square deviation (in the 
sense of an average over the ensemble of realizations) of the 
result does not decrease but instead increases with increas- 
ing length of the observation. The probabilistic aspects of 
such a behavior were studied in Refs. 9 and 11. It is impor- 
tant to emphasize here that this statistical time variation 
bears no relation to any thermodynamic time variation since 
relations ( 15) and ( 16) refer to a gas in thermodynamic 
equilibrium. The time variation is manifested only in the 
form of the dependence on the duration of the observation of 
the test particle-in absolutely no way in the dependence on 
the time at which the observation begins. It would be useful 
to keep in mind this possibility in principle of time-varying 
fluctuations in kinetic coefficients in a thermodynamically 
steady-state or equilibrium system while interpreting experi- 
ments. 

5. CONCLUSION 
where the angle brackets mean an average over the ensemble 
of realizations, and (3 ) =Do. Correspondingly, interpret- 
ing the asymptotic expression ( 16) in terms of the spectral 
density S, (w) of fluctuations of the diffusion coefficient, we 
find, for wr, 4 1 (see the Appendix), 

n 1 
D0-'SD ( a )  - ln - . 

a WT,  

The "diffusion rate" is thus a random process with a l/f 
spectrum. Let us discuss this result. 

A measurement of the spectrum of fluctuations in a dif- 
fusion coefficient is nothing but a measurement of the equi- 
librium average value of a certain fourth-degree power-law 
functional of the particle velocity. An experiment of this 
type is not merely a thought experiment; it has been carried 
out (see the bibliography in Refs. 7 and 8).  However, it is 
vastly simpler to represent a measurement of an ordinary 
quadratic spectrum of fluctuations in a drift velocity under 
the influence of an external force, i.e., fluctuations in mobil- 
ity. Natural considerations suggest that these fluctuations 
should, at least at sufficiently low frequencies, be a statistical 
copy of the fluctuations in the diffusion coefficient. In Sec. 3 
of the Appendix we prove that this is indeed the case for the 

The l/f self-diffusion noise found here is a property of 
an infinitely low-density gas. In other words, by virtue of its 
nature the noise mechanism is independent of the gas density 
and is not related to any dynamic multiparticle correlations 
(through repeated collisions, for example). Fluctuations in 
the rate and effectiveness of the collisions of any gas particle 
with other particles due to the random nature of the geomet- 
ric factors in the encounter of the particles is a unique source 
of noise of this type. If this source of randomness is to be 
converted into the mechanism for a specifically l/f noise, the 
system would have to forget the number and rate of various 
types of collisions of the given particle in the More 
rigorously, the loss of memory about the past implies the 
property of a mixing of the paths traced out by the system in 
the complete 6N-dimensional phase space. For a gas, this 
property has already been proved by Kry10v.~ In the same 
paper, Krylov essentially showed that in general it is specifi- 
cally because of mixing that the time-average frequency at 
which certain events are repeated on a specific phase path 
does not necessarily have to be the same as the average value 
over the ensemble of paths, no matter how long the averag- 
ing time. A paradoxical point is that although a random be- 
havior of this sort results from a loss of memory it can be 
described by just those statistical correlations which are infi- 
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nitely long-lived. 
In the derivation of kinetic equations, however, some 

assumption or other is always made in order to replace the 
actual random rate of elementary kinetic events by some 
value which is an average over the ensemble of paths. In 
particular, in the derivation of the Boltzmann equation this 
role was essentially assigned to molecular chaos (Refs. 9 and 
10; see also Ref. 4). This decisive hypothesis is thus incorpo- 
rated even in the "zeroth" approximation, of an infinitely 
low-density gas. When repeated collisions and various types 
of many-particle "ring" processes in a gas with a finitep are 
subsequently taken into account, the chaos will of course be 
disrupted. As a result, we know that fluctuations will appear 
in the kinetic coefficients with characteristic hydrodynamic 
scales and spectra. However, the source of low-frequency 
fluctuations pointed out above will be lost. 

In this paper we have attempted to analyze as rigorous- 
ly as possible specifically the zeroth approximation from the 
standpoint of the overall spatially inhomogeneous situation. 
A generalization of the classical Boltzmann equation to the 
inhomogeneous case through a mechanical assignment of a 
drift term has attracted critical comments several times in 
the past (see Ref. 5, for example). The infinite chain of ki- 
netic equations found is nothing but the inhomogeneous for- 
mulation of the Boltzmann equation which is rigorous in 
principle (formulated in accordance with the concept of 
collisions). 

We would also like to take note of the relationship 
between the kinetic model which has been constructed and 
the formally exact generalized, temporally nonlocal (non- 
Markovian) kinetic equation for the one-particle distribu- 
tion function which is derived by the method of projection 
operators.~alescuh has shown that the assumption of anal- 
yticity (that it is legitimate to expand a Laplace transform in 
a series) of the operator kernel of this equation reduces it to a 
Boltzmann equation in the limit of an infinitely low-density 
gas. Accordingly, if the latter is incorrect the problem must 
lie in a nonanalytic nature of the kernel. An asymptotic 
expression of the type in ( 15) indicates that this is indeed the 
state of affairs. Consequently, the model which has been con- 
structed agrees with the abstract theory of Ref. 6. 

I wish to thank A. I. Lomtev, G. H. Bochkov, and Yu. 
M. Ivanchenko and the participants of his seminar for useful 
discussions. 

APPENDIX 

1. The application at t = 0 of the force field f,, ( r )  
= - dU(r)/ar, which acts on the test particle, is described 

by the Hamiltonian 

where O(t) is the step function, H, is the Hamiltonian of the 
gas, and Qk e l k q '  and Xk ( t )  sz - [ikx, ( k ) ]k  -*WIO( t )  
play the standard roles of generalized macroscopic variables 
and the conjugate external dynamic forces. Let us consider 
the "fluxes" 

where u,  is the velocity of the text particle. According to the 
exact Green-Kubo equations (the fluctuation-dissipation 
relations), to first order in the forces we have 

where (...), means an average over the equilibrium ensemble 
of phase paths of the system (which corresponds to the origi- 
nal, equilibrium Gibbs ensemble of inital states), and (...) 
means a nonequilibrium average. In our case, taking account 
of the homogeneity and isotropy of the equilibrium state of 
the gas, we find, for t = 0. 

1 v , ~ - ~ ~ ~ ~ F ,  ( t ,  q , ,  v,) - dv, = (u, ( t )  e - i k a ( f l )  
Q 

The probability distribution of the displacement of a test 
particle which is undergoing a random walk in an equilibri- 
um gas is given by 

We apply the differential operator a 2/dtato to it; then seting 
to = 0, we take Laplace transforms in t and Fourier trans- 
forms in R. Using (v ,), = 0, we find 

where @@,ik) is the transform of probability density 
W(t,R). For it we find from (9) the identity 

pW(p, i k )  -I=-kD(p, ik)kW(p, i k ) ,  

which, combined with (A2), gives us 

D ( p ,  ik) [p+kD (p, ik) k ] - I  
m 

Now taking Laplace transforms in (A1 ) and comparing the 
result with (A3), we find Eq. ( 10). 

We thus see that by applying a spatially nonuniform 
force to a test particle of a gas we can in principle extract 
from the linear response not only the self-diffusion coeffi- 
cient D(p,O) but also the entire probability law for self-diffu- 
sion. 

2. The asymptotic expression found for x , ( t )  indicates 
a time-dependent behavior of the fluctuations in a diffusion 
coefficient which is measured from an observation of a single 
realization of the motion of a test particle. In other words, it 
indicates that the results of thezbservation cannot be aver- 
aged over time. Accordingly, D( t )  should be treated as a 
time-dependent random process. Since at t 5 r, we have 
M,, ( t )  a t *" , this process begins at a zero value, D(0)  = 0. 
The spectrum for a process of this sort is known to be deter- 
mined in terms of a structure function: 
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For t ) rm we find from this expression, ( 16), and the 
expression for M4(t),  after differentiating with respect to t, 

1 d t - J sin otwS. ( a )  do = - (MA (t)/12t2) aDozt-' In - . 
0 

dt 7, 

The spectrum ( 18) follows immediately. 
3. Let us assume that a constant force f is turned on at 

the time t = 0. This force acts on the test particle and does 
not depend on the spatial position of the particle, q,. We 
denote by W(t, R; f ) the distribution of the subsequent dis- 
placement R ( t )  -q, ( t )  - q, (0) .  According to the fluctu- 
ation-dissipation relations2' we have 

W(t, R; f )  exp (-fRIT)=W(t, -R; f ) .  (A41 

It is not difficult to rewrite this exact equality in the form 
(for brevity, we omit the arguments t and f ) 

Multiplying (A5) by R, and integrating over R, we find a 
corollary of (A4) : 

We now take the third derivative of (A6) with respect 
to the force at the point f = 0: 

a3 3 d2 1 
-(R(t))I,-o=-- 
af" 2T df2 

(R2 (t) ) I ,-i, - - 
4T3 (R4  (t) )o . 

(A7) 

Let us discuss this general relation as it pertains to our sys- 
tem. The average displacement 

under the influence of a coordinate-independent force 
f ex = f = const is determined by the homogeneous solution 
of Eqs. ( 11 ). In the homogeneous case, however, they evi- 
dently reduce to the ordinary Boltzmann-Lorentz equation. 
We can thus assert that the average drift velocity ( v ,  ( t ) )  
reaches saturation at t 2 7,. Consequently, the left side of 
(A7) increases linearly with the time. The last term in (A7), 
however, which contains the fourth moment of the equilibri- 
um displacement, (R ( t )  ),, = M4 ( t ) ,  increases far more 
rapidly according to ( 16). Accordingly, to within a relative- 
ly small increment this term is the same as the first term on 
the right. As a result we find from (A6) and (A7), in the 
lower orders in the force, 

On the other hand, we can write 

(R(t)>=t(p(t)>f,  (R2(t)>=M2(t)+t2(~'(t))f21 

wherep ( t )  is the mobility referred to the entire observation 
interval as a whole. 

A comparison with (A8) shows that the Einstein rela- 
tion between the diffusion coefficient and the mobility holds 
not only in the ordinary sense (for quantities averaged over 
the ensemble of realizations) but also for their fluctuations. 
Correspondingly, ( 18) simultaneously refers to relative 
fluctuations of the (linear) mobility. A similar circum- 
stance, concerning the spectral intensity of electrical noise 
and conductivity, has been confirmed experimentally in the 
Voss-Clark e~periment .~ 

' ' The model of Ref. 7 is based to a large extent on the restrictive assump- 
tion of an asymptotic "decay of correrlations," which presupposes that 
the spectrum S, (o) is a steady (intergrable) spectrum. This 
restriction is not physically necessary,9 in contradiction of the original 
assumption in Ref. 7. 

"See, for example, Ref. 13 and the corresponding use of the fluctuation- 
dissipation relations in Ref. 8. 
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