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The propagation and interaction of ultrashort two-frequency light pulses under the conditions of 
double resonance in an optically thick three-level medium are discussed. The effects of field 
polarization and level degeneracy are taken into account for the first time. It is shown that the 
Maxwell-Bloch equations, suitably generalized, can be integrated by the inverse scattering 
method for ( 1 ) triply degenerate and nondegenerate and ( 2 )  doubly degenerate levels. The 
former case is a new example of an exactly integrable set of nonlinear evolution equations. The 
Lax representation, the Backlund transformation, the one-soliton solutions, and an infinite set of 
integrals of motion are found. The latter case provides a new physical interpretation of two 
independent sets of nonlinear equations whose integrability was established earlier. The collisions 
of differently polarized solitons are investigated, and it is shown that the behavior of the 
polarization of optical pulses depends on the degeneracy of the energy levels. 

Exactly integrable models of the interaction of polar- 
ized waves in optically nonlinear media have been attracting 
increasing attention. The fact of exact integrability predeter- 
mines a number of remarkable properties of wave processes 
among which the most striking is the particle-like behavior 
of solitary waves. When such particles, now called solitons,' 
undergo an interaction with one another, they retain their 
shape and propagation velocity, and experience only a phase 
shift. A further degree of freedom is introduced into the the- 
ory when the polarization of these waves is taken into ac- 
count. This enables us to examine differently polarized soli- 
tary waves and their collisions, which opens up new avenues 
for experimental investigation. 

Studies of polarization properties have so far been con- 
fined to single-frequency solitary waves in nonre~onant~ .~  
and r e ~ o n a n t ~ - ~  optically nonlinear media. The interaction 
between two-frequency waves in a nonresonant Kerr medi- 
um was considered in recent publications.7~R The exact inte- 
grability of the corresponding evolution equations was es- 
tablished subject to certain restrictions on the parameters of 
the medium, but for arbitrary polarizations of the 
In resonant media, the interaction between waves with dif- 
ferent carrier frequencies w, and w2 can occur under the 
conditions of double resonance 

two-photon resonance 

and Raman resonance 

a,-02= (E,=E,)h-' 

inverse scattering method. This was demonstrated in Refs. 9 
and 10 for double resonances and, in Refs. 11-13, for two- 
photon and Raman resonances. Under the conditions de- 
fined by ( 1 )-(3), solitons are also ultrashort optical pulses 
with different carrier frequencies that propagate with equal 
velocities without change of shape or energy loss. In three- 
level media defined by ( 1 ), they are often referred to as si- 
multons. 

In this paper, we discuss the propagation and interac- 
tion of differently polarized two-frequency ultrashort opti- 
cal pulses in a resonant medium consisting of three-level par- 
ticles and defined by (1).  We take into account the 
degeneracy of the resonant levels in the different orienta- 
tions of the total angular momentum. This degeneracy is 
typical for real media, e.g., gases, and is necessary for the 
correct description of the interaction with arbitrarily polar- 
ized radiation. The integrability of the generalized Maxwell- 
Bloch equations (including arbitrary polarization) is dem- 
onstrated in the case of equal resonance absorption lengths 
at the two frequencies, the A ( E ,  > Ec > Ea ) and V 
( E ,  > E, > E, ) configurations of the resonant energy levels 
(Fig. 1 ), threefold degenerate level E, and nondegenerate 
levels Ea and Ec , and homogeneous broadening of the spec- 
tral lines. The demonstration is based on the inverse scatter- 
ing method, found to give rise to a new 4 X 4 spectral prob- 
lem [see ( 13a) 1 that had not previously been encountered in 
nonlinear optics. The Backlund transformation will be 
found for the generalized Maxwell-Bloch equations and the 
form of polarized simultons will be established for the V- 
configuration with an initially equilibrium population of the 
lower energy level E,, and for the A-configuration with the 

(3)  initially fully populated energy levels Ea and Ec.  The one- 

with energy levels Ea , E, , and Ec between which optically 
allowed E, - Ea , Eb - Ec and optically forbidden Ec - Ea 
quantum transitions take place. Polarization effects and ex- a b 

act integrability of the generalized evolution equations have Eb,&,p 
not been analyzed. When polarization is ignored, i.e., if we 
consider waves that are linearly polarized along a given fixed 
axis, nondegenerate energy levels, and other additional as- Fr,_,,, E,,J,, v J:: 
sumptions, the simplified Maxwell-Bloch equations describ- Fb7  ~ 6 . r  

ing the ( propagation FIG. 1. (a )  A- and ( b )  V-configurations of three-level systems. Vertical 
quency optical pulses are found to be integrable by the lines represent optically allowed transitions. 
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soliton simulton consists of identically polarized ultrashort 
optical pulses; the collision of differently polarized simul- 
tons gives rise to a change in their polarization in accordance 
with a particular law that differs from that prevailing in the 
nonresonant case.'v8 

The case of the A-configuration with a different popula- 
tion of the lower energy levels E, and E, has its own specific- 
ity that involves the transformation of the two-frequency 
ultrashort pulse into a one-frequency pulse. This effect was 
investigated in Ref. 14, but the polarization of the ultrashort 
optical pulses and the degeneracy of energy levels were ig- 
nored. The Lax representation ( 13 ) of our generalized Max- 
well-Bloch equations can be used as a basis for studying the 
polarization properties of this effect, but this is a separate 
problem that will not be examined here. 

1. EQUATIONS OFTHE POLARIZATION MODELOF DOUBLE 
RESONANCE AND THEIR LAX REPRESENTATION 

The collinear propagation of two-frequency ultrashort 
pulses with electric fields --. 

Ej=Ej  e s p  [ i ( k , z - - o , ~ )  ] + c.c., j = 1, 2 (4) 

under the conditions of the double resonance defined by ( 1 ), 
with energy levels E, , E, , E, , which are additionally char- 
acterized by total angular momenta j, , j, , and j, , and their 
components m, p, and Y along the quantization axis, will be 
described by the classical Maxwell equations for the slowly- 
varying amplitudes E, and E, 

and the quantum-mechanical equations for the density ma- 
trix p. The latter can be written in the following form: 

for the A-configuration: 

for the V-configuration: 

( ;t ) (cb) -  ifi - - i6 p,, - - ~ , d ~ , , ~ ~ ~ : + ~ , ? ~ , d , , , + ~ ~ ~ ~ )  E,d,,, 

The matrix elements p:,!,. , p g , ,  and p::! characterize 
the states of the atoms in the corresponding energy levels, 
and the optical coherence matrices p?,"' ), p:b," ( p z )  ) 
and&,"',"' describe transitions between the Zeeman sublevels 
of different levels and determine the polarization of the me- 
dium. The slowly varying amplitudes in the matrix describ- 
ing the optical coherence and the polarizaton of the medium 
are related as follows 

A-configuration: 
( b o )  ( b e )  ( '~a)  

Pi=p,m dm,, Pz=p,, d,,, p,m = p , m  e x p [ i ( k 4 z - - o i t )  1, 

(ob)- (ab)  ( c b )  --(a) 
Pmrt - pmp exp [ i ( k i z - ~ ' t )  I ,  pvp - P V S  exp  [ i  (k z z -w l t )  1, 

p:' =p:? e x p { i [  (k2 -k , ) z -  (mI-a i )  t l ) .  

Summation over repeated matrix indices is implied through- 
out. 

We shall adopt the following relationship between the 
matrix elements of the dipole moment operator d and the 
reduced dipole moment d,, , etc. of the corresponding opti- 
cally allowed transitions: 

where the q = 0 f 1 labels the spherical component of the 
vector. When the quantization axis lies along the z direction, 
we then have d O = d z ,  d f  1 = f 2-'l2(d, + idy) .  The 
formulas given by (8)  refer to the A-configuration; for the 
V-configuration, we must introduce the replacements a s  b 
and m s p  in (8 ) .  

Equations (5)-(7) ignore relaxation, the difference be- 
tween the velocities of weak ultrashort optical pulses, and 
the inhomogeneous broadening of spectral lines. 

Next, we assume equal oscillator strengths for the 
E, - E, and E, - E,, transitions, i.e., we demand that 

which is necessary for the existence of simultons. We shall 
confine our attention to low angular momenta, i.e., 

j = j  =O j -1 o e  b - .  (10) 

We then obtain the following dimensionless equations from 
(5)-(7): 
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which describe both the V-configuration 

~ t = E , t o d ~ / 3 ' " f i ,  ez=Eztodsb/3%fi, 

P I ~ = P ~ ( ; )  INo, pl-$2' INo, 

(b' mqql=pgg* /No, No=Nb/3, 

and the A-configuration 

8,-EitodsJ3"h, ~ ~ = E ~ t ~ d ~ , / 3 " ~ A  

q--6b'l ( b e )  Pi -p-,o /No, pzq=p-,o /No, 
( - 1  (a) (el 

' = - P o 0  /No, ni= -pa,  /No ,  n,=-poo / N o ,  

where to = (2mI ldab  12N0/3fi)-'12 is a constant with the 
dimensions of time, Nb (No ) are the densities of atoms po- 
pulating the lower level in the V(A)-configuration in ther- 
modynamic equilibrium, and the indices q and q' assume the 
values + 1 and label the spherical components of the vector 
perpendicular to the quantization axis f: 

When the medium to be excited is initially in thermody- 
namic equilibrium, the initial and boundary conditions for 
(11) are 

The point 5 = 0 corresponds to the entry of the two-frequen- 
cy pump pulse into the resonant medium. The amplitude 
profiles of the pulse are described by the functions E,, (T)  

and E~ , (T ) .  The constants no,, no,, and m, characterize the 
Boltzmann population of the resonance levels. 

When one of the fields E ,  or E, is absent and there is no 
coherence in the E, - Ea transition (i.e., r = 0), Eqs. ( 11 ) 
become identical with the Maxwell-Bloch equations for the 
two-level system with transitions involving the 1 SO change 
in the total angular m ~ m e n t u m . ~  When the polarization of 
all the fields is the same and is left-handed, e.g., E ;  = E: = 0, 
then ( 1 1 ) again becomes identical with the Maxwell-Bloch 

equations for the 1 s O  transition. This is also valid for the 
right-handed polarization or fixed and equal linear polariza- 
tion of the fields E ,  and E,. These properties enable us to find 
the Lax representation of ( 1 1 ) . Direct verification will show 
that the equations in ( 11) constitute the condition for the 
compatibility of the following sets of linear equations: 

We thus see that, when the arbitrariness in the polariza- 
tion of the two-frequency ultrashort pulses and the simple 
degeneracy ( 10) of the energy level are taken into account, 
this results in a new model of nonlinear optics, defined by 
( 1 I ) ,  that is integrable by the inverse scattering method. 
Existing  model^^.^*'^ are special cases of ( 1 1 ) . The spectral 
problem defined by ( 13a) can be looked upon as a nontrivial 
generalization of the 3 X 3 spectral problem of Manakov., 
Another view of ( l3a) is provided by the following version 
of (13): 

where Q, and Q2 are two-component column vectors and the 
other quantities are 2 X 2 matrices of the form 

The spectral problem defined by ( 13a) can therefore also be 
looked upon as a matrix generalization of the Zakharov-Sha- 
bat problem1 [in the sense of (13a) 1. This suggests a way 
toward a solution of the inverse scattering problem for 
( 13a). However, in this paper, we shall not perform a direct 
inverse scattering solution for ( 13a). 

2. BACKLUND TRANSFORMATION. POLARIZED SIMULTONS 

Let us write (13) in the Riccati form. We shall use the 
pseudopotentials 

and, for compactness, we shall introduce the following nota- 
tion: 
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We then obtain the following equations ( 13): 

au 2 - = - {P-'-U(P-U) +wP+'+~rn~-~U+ V), a t  2h+A 

+ (P+U) -w (P-U)). (16) 

We must now find a transformation for the quantities 

U-tU', w+wP, h+hl, E*-+E+' and so on, 

that appear in ( 15) and ( 16), which does not alter the form 
of ( 15) and ( 16). If E* + E' ' nonidentically, it is called 
the Backlund transformation (in the pseudopotential 

The simplest transformation of this type can be 
obtained by putting 

U'=U w'=w h'=h' 

and seeking E* ' in the form 

E*'=E*+ (h-hg) p ~ ' ,  (17) 

wherepk are unknown parameters. It is readily shown that 

Similar transformations can also be found for P* , m,,. , and 
V. Together with (17), these transformations define the re- 
quired Backlund transformation: we use the known solution 
of the initial equations ( 1 1 ) to find the pseudopotentials 
from ( 15) and ( 16), and then use ( 17) to find the potentials 
E * , etc., which become the new solutions of ( 11 ). 

To be specific, let us consider a three-level system in the 
V-configuration, with only the bottom energy level populat- 
ed in thermodynamic equilibrium. The trivial solution 

Ej*i=pl*'=nj=r=O, mppr=6sq. 

of ( 11) corresponds to the following pseudopotentials: 

i 
q=ci erp 2ihr + - 6) ( 2h+A ' 

where c,, c,, and c2 are the integration constants. Assuming, 
for simplicity, that il = io, a = a*, we find from ( 17) a new 
solution of ( 11), generated by the trivial solution 

iAg  
el=lO, exp(- --) 20 sech 2o(r 

402+A2 
To), j=l, 2, 

402+ A" 

(18) 

where the unit vector 1 has the spherical components 

l-'=i (it- (c0( ' )  -", l1=ic0 (1+ (c0(') -", 1°=0, 

and the other parameters are related to c,, c,, and c, by 

The formulas obtained above are also valid for the three- 
level system in the A-configuration with initially equally 
populated energy levels E, and E,. The corresponding tri- 
vial (seed) solution of ( 1 1 ) is 

The expression given by ( 18 ) is the one-soliton solution 
of ( 1 1 ) that describes the envelope of the two-frequency ul- 
trashort pulse (4). This pulse propagates resonantly in the 
three-level medium with velocity ( 4 4  + A2)/ 
( 4 d  + A2 + 1 ) (in units of c )  without change of shape or 
energy loss. An ultrashort pulse with this type of envelope is, 
in fact, a polarized simulton. It is important to emphasize 
that pulses constituting the one-soliton simulton ( 18) have 
the same polarization 1; their polarizations can differ only in 
the two-soliton case. The formula given by ( 18 ) describes a 
2n-pulse of single-frequency self-induced transparency4 if 
we assume that one of the fields, E, or E,, is absent. On the 
other hand, if we ignore the polarization 1 and the detuning 
A, the expressions given by ( 18) become identical with the 
results obtained in Refs. 9 and 10 for the nondegenerate 
three-level system. In the latter case, 8, and 8 2  appear as the 
"Cartesian" coordinates of some vector 0 = (6,,02) that 
formally plays the same role as the vector 1 of the solitons of 
self-induced transparency in two-level media in transitions 
with the 1 SO and 1 s 1 changes in total angular momentum 
(Refs. 4-6). The physical significance of 0 is different: it 
shows the distribution of energy over the pulses making up 
the simulton. 

The simultons and the conclusions associated with 
them can be naturally generalized to the inhomogeneous 
(but not Doppler) broadening of spectral lines by analogy 
with the procedure adopted for nondegenerate media in Ref. 
17. 

3. SCATTERING MATRTIX FOR SIMULTONS 

Let us now determine two linearly dependent sets of 
Jost functions p ' k )  (r,A) and $ ' k )  (T,A), k = 1,2,3,4, which 
are solutions of ( 13a) with realil and the following asympto- 
tic behavior: 

1 1 - 7  ( p ( 2 ) + g ( Z ) e - i i ~  g e ,  9 

(p(3) +g(3)erir, cp(')+g(4)eik~, ~ 4 - 0 0  

g(l'*gc"e-iif 9 g'"+g'2'e-'i7 9 

11(3)+g(3)e'k, g(4)+g(Oei).f, 

z++=, 
where g',' is a four-component column vector with ele- 
ments gjk' = S,, . Since d sech x/dx = - th x sech x and 
d th x/dx = sech2 x, it is natural to seek a solution of ( 13) 
that corresponds to the spectcal problems for the simulton 
(18) in the form 

q,= {ak sech 20( Z--Z~)  +pk th 2o(r-zo) +yk) e"", 

where each Jost function has its own constants 6, a,, fl ,  and 
Y k  . 

Forcp"): 6=-1, )1=r;-l=-ioll-1~2(h+io)-', 

for gp"': 6=-1 , fi ~ - ~ ~ = - i ~ l - ~ l ~ * ( h + i o )  - 
-I, 
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$a=yr-l=-iolllJz(h+ia)-l, as=oOl'll*(h+ia)-', 

~r=o0a*F'(h+i0)"; 

for q)('): 6=1, al=-oOll-'(h-io)-l, 

~ ~ = - a 0 ~ l ' ( h - i o ) - ~ ,  /33=ys-1=ia10, lz(h-io)-I, 

p4=y4=io0,0,'(h-io) -'; 
for 9"': 6=1, a1=-ol-102(h-io)-', 

a2=-ol102(h-ia)-', fi3=y3=io01*02(h-iO)-i, 

p4=~,-l=iolB21z(h-i~)-'; 

for 9"': 6=-1 , j3 -1-7 l--io~l-l~z(h-io)-l ,  - 

~z=-yz=-iol'l-l'(h-io)-L, a3=a01'l-1'(h-io)-L, 

a4=00,'E-"(A-ia)-'; 

for $(": 6=-1 , $ l=-yl=-iol-ll"(h-io) - I ,  

for $('): 6=1, ~~=-01-'0~(h+io)- ' ,  

az=-ol'Oz(h+io)-', fiS=-y3=ioOi'0, (h+io) - I ,  

fi4=1-y4=iol 0212(h+io) -'. 
All the constants that have not been written out explicitly 
are equal to zero. These formulas clearly demonstrate the 
analyticity of the Jost functions and define the scattering 
matrix Sv (il ) = qhV' + (T,A )p( ' )  ( T J  ) ( 19) for the simul- 
ton ( 1 8 ) :  

As T + - OJ , only the functions p ' I '  and p '2', are bound- 
ed at the point il = ia; as T+ + a,, only the functions $'3' 

and $',' are so bounded. A bounded solution can therefore 
be written in the form 

@=l-'cp'" ( z ,  io) + l ' ( ~ ( ~ '  ( z ,  io) 

=- ( z ,  io) +02*$cr' ( z ,  io)}ezaT~ ( 2 0 )  

where il = ia  is a root of the equation 

which differs from ( 2 0 )  by the factor I I* in the case of the 
simulton ( 18 ) . 

It is important to emphasize that this definition does 
not depend on the coordinate {because S,, and S ,  , (like S,,, 
S22, S33, S34, S43, and S,,) do not depend on l if we assume 
that the resonant medium is in the state of thermodynamic 
equilibrium as T+ + O J .  The 5 evolution of the other scat- 
tering data is determined by ( 13b) and has the form 

For arbitrary potentials E~Q, roots of ( 2 1 )  determine, in n=l, 2, m=3, 4. 
general, a discrete spectrum of the problem defined by In the ensuing analysis, we shall need the two-simulton 
( 13a). When ( 2  1 ) is satisfied, we can eliminate the singular- scattering matrix for the 
ities $ ' I '  and $'2' from 

~(i)=~,l$~i~+S,z~(2~+SlS$(3)+~14~~'~, sj=l(')0,(')201 sech 20, (2-z,) f1(2'0j(Z~202 sech 2oz( T - T ~ )  

(p(2)=S21$(i)+S22$(2)+S2s$(3)+S24zp(') with a, #a2. Instead of directly solving the equations of the 
spectral problem, we proceed as follows. We assume that the 

and construct a bounded solution as a linear combination simultons are well separated from one another: - T ,  ) 28, 
of e, "' and e, "' ($'3' and qb','), e.g., 1/2a2 (Fig. 2a).  Consider the Jost functions Q"' ( ~ , i l ) ,  

i =  1 ,  2. As T+ - O J ,  we havep"' ( T , / Z )  =g"'e-"', and, 
for T I  4 ~ 4 7 2 ,  we have 
- p ( 2 ' ( ~ J )  
- 2,- , , , S~~ ' (R)g 'k ' e - iA ' ,  so that, for T-+ + O J ,  we obtain 

The superscripts 1 and 2 on S label the one-simulton scatter- 
ing matrix ( 19) for l"', 8"', a ,  and 1'2', 8 '2 ' ,  a2,  respectively. 

The two-simulton scattering matrix can therefore be ex- 
pressed in terms of the one-simulton matrices 

FIG. 2. Disposition of simultons along the T axis before (a) and after (b) s. (u = s':' (h)  s,$' (1). 
collision. a-1.1 
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and, for A = i c ~ , , ~ ,  it can be transformed into the following 
form: 

where L"' * ' are the spherical components of the vector 
L"' : 

4. COLLISION OF DIFFERENTLY POLARIZED SlMULTONS 

Suppose that two different polarized simultons E,!" and 
~j'*): are incident on a three-level medium: 

eOj(t) =e;" (T,  ~ = O ) + E ~ ( ~ )  (2, t=O), 

ej(n) (T, L=0) =1(")0,(")20,, sech 20, (7-T,) , n=l ,  2, 

where the second simulton &j2', which lies on the Taxis to the 
right the first E:", T, > T, (in Fig. 2a), has a higher propaga- 
tion velocity than the first simulton 0, > a, and, as it pene- 
trates the medium, it interacts with and overtakes the first 
simulton. This means that, as g- + ar , the first simulton is 
found to the right of the second simulton on the T axis (Fig. 
2b). Each simulton will be characterized, in general, by the 
polarization vectors 

iA 5 f 
eap (- -) 20,, seoh 2un( T - - - 

4on2+A2 4un2+A2 znf) 9 

The unit vectors 1V) ' and 0"' ' and the shift T,! - T~ of the , , 

center of the jth simulton can be found for f -  + ar by a 
method analogous to that proposed in Ref. 18. 

We shall assume that, for both f = 0 and f - + a,, the 
simultons are sufficiently distant from one another, i.e., 
r2 - T, $- 1/20,, 1/20,, T; - T; $- 1/20,, 1/20,. Consider 
the linear combination of Jost functions e, 'I' and g, ',': 

Q) ( t ,  5, n) =-sz1 (h) cp(l) ( t ,  c, A) +sll ( ~ ) c p ( ~ )  ( 7 , ~  A). 

As T- - co , the function @(T,~,A) is independent of f :  

Let us now calculate @(T,~,A) and (7- + co ) and two val- 
ues of A, namely, AJ = iaJ , by "transporting" the Jost func- 
tions through the simultons. The results for [ = 0 and 
6- + m must be the same if we take into account the 
evolution of the scattering data. Using (20), (22), and (23), 
we find that, at f = 0 (Fig. 2a): 

for T- - ar 

a, (n2)={~(Z)-~g(l)e-ih,r+~(2)lg(2)e-iAa31(2)1- 'z-'l . 
0 1 + 0 z  ' 

for T, 47472 

0 1 - 0 2  Q) (a1) =-{el (1)'g(3)eihc+e, ( I ) '  g(b)eihlr} e z u t r , ~ ( l ) i .  - 
0 1 + 0 2  ' 

for T- + co 

a (I.,) =-{[01("'~3,"(hl) +o,'~"s~~' (A,) ~ g ( ~ ) e ~ ~ t ~  

+[O~"'*S,',Z' (A*) 

0 1 - 0 2  +oa(')' ~ 1 : )  (hi) ] g ( ~ ) e i ~ l = ) e 2 ~ t ~ 1 ~ ( f ) ~ *  - 
~ i + ~ r  ' 

For f -  + co, the situation after the collision of the simul- 
tons is as follows (Fig. 2b): 

for T-+ - co 

for T; &T<T; 

@ (Al) = {~(i)-l~(i)~-f%~+l(i)*g(2)~-fh~~}1(')" 0'-02 
0 1 + 0 2  ' 

(I)' (3)eiAzr+ez,(2)*g(l)e~~lr)e~02g'~(2)l~ "-" . 
(D (hz)=- (81 g 

ul+Oz ' 

for T--* + co 

0 1 - 0 2  @ ( i t )  =- {e1(1)*g(~)et~t~+e$1)*g(4)ei~sr)e2ui~t'~(f)~* - 
0,+02 ' 

For simplicity, and to avoid unwieldy expressions, we have 
omitted from these formulas the evolution factors (which 
subsequently cancel out) and primes on the quantities OV' , 
1' , L' I' , and S( J)  (A,), so that it must be remembered that 
these latter refer to the simultons defined by (24). 

We note that the equations for the spectral problem 
( 13a) are invariant under the replacements 

Bearing this in mind, and comparing the formulas for @(Aj ) 
as T- + w for S = 0 and f -+ + rn , we obtain the following 
transformation laws for the vectors 1"' and 0u' , which char- 
acterize polarized simultons: 

b ( i ) ' = ~ - l  {-b(')+20~b(~) (b(1)b(2)') ( 0 ~ - 0 ~ ) - l ) ,  

where the vectors bV' represent either l"), or 0") . 
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It follows that the collision of polarized simultons is 
accompanied by the rotation of the polarization vectors in- 
dependently of one another and by the redistribution of ener- 
gy between the ultrashort pulses forming the simulton. 
These processes are governed by (25), i.e., a law identical to 
the transformation law for the polarization vector of pulses 
of single-frequency self-induced transparency involving the 
1 SO and 1 s 1  transition^,^-^ but differs from the properties 
of the interaction of two-frequency waves in a nonresonant 
Kerr medium investigated in Refs. 7 and 8. 

The phase shifts of simultons that accompany their 
collisions are found to depend both on the polarization of the 
ultrashort pulses and on the energy distribution between 
them: 

Whatever the polarization, the simultons behave as if 
they repel one another: the overtaken simulton receives a 
positive increase in its coordinate T; - T, > 0, and the over- 
taking simulton receives a negative increase T; - r2 < 0. 

5. HIGHER-ORDER CONSERVATION LAWS 

To find the higher-order conservation laws and the infi- 
nite sequence of integrals of motion for the equations given 
by ( 11 ), it is convenient to rewrite the linear equation ( 13) 
of the inverse scattering method in the form of the Riccati 
matrix equations, e.g., 

h 

where r is a 2 X 2 matrix. We can verify that (26) is a suit- 
able pair of equations for the inverse scatte~ing method by 
checking that the condition a 2T /a<a~  = a 2r/a~a< leads to 
(11). 

Ifwemultiply (26a) by &+, and (26b) by k +, weobtain 
the following expression after some simple algebraic manip- 
ulation: 

which takes the form of a conservation law, i.e., the diver- 
gence of the current 

(Sp (El+ f), (2h+A)-' Sp ( P + P - I C ~ )  ) 

is zero. If the boundary condition for the problem corre- 
sponds th~modynamic equili>rium, i.e., as 171 - W ,  the 
matrix M = Mo is constant and P = 0, it follows from (27) 
that 

DD 

h 

As usual, ' the representation of r (A)  by a series in pow- 
ers of l/iA, i.e., 

0 

leads to an infinite sequence of higher-order conservation 
laws and integrals of motion: 

OD 

z"= J s p  (&+:(a)) dr. (30) 
-0 

The quantities I"") in (30) are determined by substituting 
(29) in (26a) and equating to zero the coefficients of equal 
powers of l/iA. This procedure results in the following re- 
currence relation: 

which is the matrix generalization of the well-known result 
for all nonlinear evolution equations that can be integrated 
by the inverse scattering method for the Zakharov-Shabat 
spectral problem.' As an illustration, we reproduce the first 
three terms in the sequence {I, ): 

i 8 
I ,  = - --j Sp (lit) dr, I ,  - sp (itA;) d5 2 4 

i aa 
I,  = - - 8 j ~ p { i +  - - i+a^+~+ i}d r .  a? 

6. CONCLUSIONS 

The special case ( 10) of total angular momenta of reso- 
nant energy levels is not unique, but it does lead to an exactly 
integrable set of nonlinear evolution equations. Another ex- 
ample is provided by the three-level system of the A- or V- 
configuration with j, = j, = j, = 1/2. According to the 
general equations given by (5)-(7), the left- and right-po- 
larized circular components of ultrashort pulses with the 
same carrier frequency propagate independently of one an- 
other, so that the interaction betneen arbitrarily polarized 
fields in this type of medium is described by two independent 
sets of nonlinear evolution equations that reduce to those 
investigated p r e v i o ~ s l y . ~ ~ ' ~  It is readily shown that, in con- 
trast to (25 ), linearly polarized simultons preserve their po- 
larization in a collision in the three-level medium with 
j, = jb = j, = 1/2, but the collision between a linearly po- 
larized simulton and a circularly polarized simulton results 
in the formation of three circularly polarized simultons. The 
latter result is a consequence of the separation of the left- and 
right-polarized components of the linearly polarized simul- 
ton due to the interaction between one of them and the circu- 
larly polarized simulton. 

One further example of an exactly integrable set of evo- 
lution equations is provided by the three-level system of the 
A- or V-configuration with angular momenta j, = j, = 1 
and jb = 0. In contrast to the case defined by ( lo),  here we 
have another spectral problem of dimensions 5 x 5, which 
gives rise to new laws for the rotation of the polarization 
vectors and for the redistribution of the energy of the collid- 
ing simultons. The angle of rotation of the polarization vec- 
tor is also found to depend on the energy distribution be- 
tween the ultrashort pulses constituting the simulton, and 
the redistribution of energy between the ultrashort pulses 
depends on their polarization. These results will be pub- 
lished separately. Here, we merely note that, from the formal 

2432 Sov. Phys. JETP 67 (12), December 1988 A. M. Basharov and A. I. MaTmistov 2432 



point of view, the generalized Maxwell-Bloch equations giv- 
en by (5)-(7) for j, = j, = 1 and j, = 0 are equivalent to 
the equations describing the propagation of a four-frequency 
ultrashort pulse in a nondegerate five-level medium19 in the 
case where the oscillator strengths corresponding to the res- 
onance conditions are equal. 

The Lax representation ( 13) and the infinite series of 
integrals of motion (30) are of interest for the further inves- 
tigation of the problem, including (1)  the solution of the 
quantum field theory model of emission and interaction of 
quanta in a three-level medium with a degenerate energy 
level, ( 2 )  the investigation of the polarization properties of 
different types of three-level echo in optically thick media, 
( 3 )  the analysis of the dynamics of ultrashort pulses with 
randomly modulated polarization, and (4)  the numerical 
simulation of the propagation and interaction of differently 
polarized ultrashort pulses when contrary to (9 ) ,  the oscilla- 
tor strengths of optically allowed transitions are not equal. 
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