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The production of a periodic structure in the form of alternate bands of metal and semiconductor 
on the surface of a semiconductor, by exposure to intense laser radiation, is investigated for the 
first time. The development of an instability in the uniform surface distribution of temperature 
and nonequilibrium carrier concentration in the solid semiconductor gives rise to a seed structure 
(with a period d-A), which contains bands of metal of infinitesimal width. These bands are 
either semiconductor melts or nonequilibrium solid metallic states produced by the laser 
radiation. The subsequent evolution of the periodic structure is investigated by performing a 
rigorous numerical solution of the electrodynamic problem of diffraction of laser radiation by the 
heterophase structure. The electrodynamic perturbation theory that is normally employed to 
investigate surface periodic structures is not valid under these conditions. It is shown that 
diffraction produces a redistribution of energy between the semiconductor and metal bands on 
the surface. Maximum energy release occurs in the semiconducting region near the separation 
boundary with the metal. This gives rise to a discontinuous increase in the width of the seed metal 
bands up to about 0.4d-0.5d (depending on the optical parameters of the material) when the laser 
radiation reaches a critical intensity. This behavior has been confirmed experimentally. 

When intense laser radiation is allowed to interact with 
a semiconductor, a periodic structure is formed on its sur- 
face. The period of this structure is determined by the wave- 
length of the initiating radiation.'.' There is a whole series of 
positive feedback mechanisms whereby the anomalous pene- 
tration of electromagnetic radiation into a periodic structure 
with a particular period (Wood anomalies) gives rise to the 
growth of initial perturbations with the same period. Which 
particular mechanism predominates depends on the particu- 
lar experimental conditions. Several ways in which the peri- 
odic structure can evolve were identified in Ref. 3, depend- 
ing on the energy of the incident radiation. 

The most extensively investigated periodic structures 
are those produced when the energy input is sufficient for the 
uniform melting of the surface layer of the target material. 
Positive feedback mechanisms, and the initial linear stage of 
the growth of the periodic structure, have been investigated 
in detail. ' Several publications devoted to the nonlinear evo- 
lution of the periodic structure under these conditions have 
recently a ~ p e a r e d . ~ - ~  When the incident energy is below the 
melting threshold, the periodic structure is formed in the 
solid semiconducting pha~e.'.~-'O The periodic structure can 
then be due either to the modulation of the properties of the 
semiconductor in the surface region on a plane separation 
boundary7-lo or to corrugation of the surface.' 

On the other hand, the intermediate stage, in which the 
periodic structure is formed by alternate bands of melt and 
solid phases, has been observed e~~er imenta l ly ,~~"  but has 
not, so far, received an adequate theoretical description be- 
cause of difficulties in solving the electrodynamic problem 
for this type of structure. The optical parameters of the ini- 
tial semiconducting phase and the metallic melt are very dif- 
ferent, which means that perturbation theory cannot be used 
to calculate the field in the structure. In this paper, we inves- 
tigate the intermediate stage by performing a rigorous nu- 
merical solution of the problem of diffraction of electromag- 
netic radiation by a heterophase periodic structure. Studies 

of this stage are important for the correct understanding of 
the theories of successive stages of formation of the periodic 
structure as the radiation energy increases. In a wider sense, 
this is also an investigation of the melting of semiconductors 
by coherent laser radiation. 

It is shown in Refs. 8 and 9 that, under the influence of 
laser radiation, the homogeneous state of a semiconductor 
becomes unstable against the formation of a periodic distri- 
bution of electron-hole pairs of concentration n (x )  and tem- 
perature T(x) as the incident energy is increased beyond a 
critical value. For normally incident laser radiation, the pe- 
riod of the structure is d-A and its wave vector points in the 
direction of the electric vector in the light wave. Local melt- 
ing occurs when the temperature exceeds the melting point. 
Melts of typical semiconductors such as germanium, silicon, 
and gallium arsenide are metals. A periodic structure pro- 
duced by temperature modulation will transform for partic- 
ular incident radiation energy, into a periodic structure con- 
sisting of bands of metallic melt embedded in the 
semiconducting hosts. 

The effect of laser radiation on a semiconductor does 
not always reduce to a simple heating of the surface layer. 
Experiments reported in Ref. 12 reveal the formation of a 
solid metallic state on the surface of indium antimonide 
when the latter is placed in liquid nitrogen and exposed to 
laser illumination. This phase transition may be due to the 
excitation of a sufficient quantity of nonequilibrium hole 
pairs.8 During the initial stage of the process, the significant 
factor is the instability of the homogenous surface distribu- 
tion of pair concentration. The development of this instabil- 
ity is accompanied by the appearance on the surface of peri- 
odically distributed bands of the solid metallic phase. Their 
subsequent evolution is determined by the character of the 
redistribution of radiation in the structure. From the point 
of view of electrodynamics, this structure is completely anal- 
ogous to that formed as a result of local melting. To be specif- 
ic, we shall consider a periodic structure formed as a result of 
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local melting, bearing in mind the fact that the results will 
also be valid for the description of the evolution of the struc- 
ture in the case of the nonthermal mechanism of the semi- 
conductor-metal phase transition under laser illumination. 

The optical parameters of metallic and semiconducting 
phases are significantly different, and the formation of the 
bands of metal on the surface produces a radical change in 
the conditions under which radiation penetrates the sample. 
It follows that, to elucidate the subsequent evolution of the 
structure, we must know the distribution of the radiation 
flux in the modified structure. We shall confine our attention 
to the electrodynamic problem, assuming that the character 
of the variation in the state of the material at a given point x  
on the surface can be deduced if we know the radiation flux 
P ( x )  penetrating the sample at the point x.  

Under typical conditions, a periodic surface structure is 
observed when the depth h of the melt is usually less than 0.1 
pm. The change in the density of the material during melting 
is 10% in the case of silicon and 5% in the case of germani- 
um. It follows that the depth of the surface variations when 
the bands of the alloy are formed is at most 0.01 p m  and can 
be neglected when the electrodynamic problem is being 
solved, i.e., the surface of the sample can be assumed to be 
flat. We thus arrive at the structure illustrated in the insert in 
Fig. 1: bands of the alloy with permittivity E ,  and width c lie 
on the surface of the semiconductor with permittivity E,. We 
wish to determine whether the width of the seed band of the 
alloy can be increased by redistributing the radiation within 
the structure. 

The solution of the diffraction problem for the structure 
shown in Fig. 1 will be obtained by using the integral form of 
the exact theory of diffraction for multilayered periodic 
structures. l 3  The assumed absence of corrugation on the sur- 

face of the sample resulted in a significant simplification of 
the problem and enabled us to reduce it to the solution of a 
single integral equation. Were it not so, we would have had 
to solve a set of two integral equations. 

Let us first briefly describe how the initial diffraction 
problem can be reduced to an integral equation. The neces- 
sary condition for using the integral form is that each of the 
layers of the structure be continuous. We shall therefore as- 
sume that the melt covers the entire surface of the sample, 
but its thickness h ,  outside the actual bands (for 1x1 > c / 2 )  
will be assumed infinitesimal. This leads us to the following 
problem: there are two separation boundaries, namely, melt- 
vacuum at y = 0 and melt-solid semiconductor at y = f ( x ) ,  
where f ( x )  = f ( x  + d )  and the period is d-A. The integral 
form of the exact theory of diffraction is based on the use of 
Green's formula which enables us to express the field 
throughout space in terms of its values u, and their normal 
derivatives du, /dn on the separation boundary between the 
media. The integral equations for u, and du,/dn are ob- 
tained by evaluating the limiting values of the field obtained 
by using Green's formula for each of the media and allowing 
the point of observation to approach the separation bound- 
ary. When there is only one corrugated boundary, this pro- 
cedure leads to a set of two integral equations. They have to 
be solved by numerical methods and require considerable 
amounts of computer storage and running time. We shall 
therefore use a variant of the integral formalism that enables 
us to reduce the problem to the solution of a single integral 
equation. The method essentially consists of replacing the 
two unknown functions u, and du, /dn with a combination 
of them. The method is based on the successive solution of 
auxiliary problems in which either the fields or their normal 
derivatives have a discontinuity across the separation 
boundary. The following proposition is then valid.14 

Consider a periodic profile y = f ( x )  that separates two 
half-spaces in which the electromagnetic field satisfies the 
same equation, namely, 

and the field and its derivative along the normal n to the 
surface y = f ( x )  have the following discontinuities across 
the surface: 

The field throughout space can then be written in the form 

FIG. 1. Flux distribution P ( x )  penetrating a periodic structure on the 
surface of germanium for 1 = 1.06 pm, c = 0.3d, h = 0.051, and size of 
transition region a = 0.05d; a-TE-polarization, b--TH-polarization for 
thefollowingvaluesof d / 1 :  1-4 .9;  2-4.98; 3-1.00; 4-1.10. The insert 
shows the geometry of the structure under investigation. 

and the Green function is given by14 

where 
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and 9 is the angle of incidence of the radiation. 
The field above the flat surface of the sample for y > 0 

can be written in the form of the Rayleigh series (E, = 1 ): 
m 

u, ( x ,  Y )  =exp ( i h ~ - i p : ~ )  y )  + ~ : " e x p  (ia.x+ig " Y), 
where B A ' )  are the amplitudes of the diffracted radiation. 
We assume that the amplitude of the radiation falling on the 
sample is equal to unity and that the plane of incidence is the 
xy plane. 

To find the field in the structure, we consider the fol- 
lowing auxiliary problems. The first problem is: consider an 
electromagnetic field u, for y < 0, which satisfies ( 1 ) at all 
points for j =  2, coincides with the required field u for 
y >  f(x), and is continuous across the separation boundary 
y = f(x) .  The solution of this problem can be written down 
using (3)  with r ( x )  = 0. The presence of the flat boundary 
at y = 0 can be taken into account by adding to (3)  the field 
reflected into the sample, which has the form of the Rayleigh 
series 

01 

( 2 )  6a2 =z A:' exp (ia,,x-ip. y )  . 

Let @(x) be the discontinuity in the normal derivative du,/ 
dn in the first auxiliary problem. The field for y > 0 has the 
form indicated by (5 1, and the following boundary condi- 
tions must be satisfied on they = 0 surface, since u, is identi- 
cal with the true field for y > f (x) :  

where c, = 1 for TE radiation (electric vector E of the light 
wave perpendicular to the wave vector Q of the periodic 
structure under consideration) and c, = E, for the TH polar- 
ization ( H l Q )  . The conditions defined by (7 )  enables us to 
express B A" and A 2' in terms of the function @(x) that we 
have introduced. In particular, 

X [ i + f Z ( x )  1'' dx- [ ( c , / c , )  p:''-fi:O ]8..}. (8)  

Having expressed A A2' in terms of @(x) ,  we find the 
limiting values of the field u, and the derivative along the 
normal t oy  = f (x)  as the point of observation approaches 
the surface from above, i.e., as y -+ f (x)  + 0. These quantities 
are eventually given by integrals of the function @(x).  If we 
recall that the solution of the first auxiliary problem for 
y > f ( x )  is identical with the required field u, and if we use 
the matching conditions for u across a corrugation y = f(x)  
such as that defined by (7), we find an expression for the 
limiting value of the true field u in terms of @(x)  as 
y-f(x) - 0. 

We now turn to the second auxilary problem. Suppose 
that a field u, satisifies ( 1 ) at all points for j  = 3, vanishes 

above the corrugation, and is equal to the true field u for 
y < f(x) .  Using the results of the first auxiliary problem, we 
can now find the expressions for r, (x)  and 7, ( x )  . Substitut- 
ing these expressions in (3),  we obtain u, at all points. Next, 
we find the limiting value of u, as y +  f(x) + 0, and equate it 
to zero (this is a necessary condition in the second auxiliary 
problem). As a result, we obtain the following integral equa- 
tion for the function q ( x )  = @(x)  [ l + f 12(x) (x)  1 l'' 
exp ( - i a ~ )  : 

G(') (5, 2')  c3 G ( 3 )  ( x ,  x ' )  +- + I dz  [ N ' ( ~ )  ( x ,  I )  GL2)  (z, x ' )  
0 

2  c,  2 0 

cs + - G") ( x ,  z )  N(" ( z ,  x')  ]}a ( x ' )  + j dx' [N '" )  ( x ,  X I )  F{  ( x r )  
C2 0 

cs dF, + - CZ G(3' ( 5 ,  2')'-(x' dn ) Fi  ( x )  =O, (9) 

where 

1 
.N( ' ;  ( r ,  x') = - z e r p  [ inQ (x -XI)  ] 

2d ,<=-m 

1 1 
G ( 3 )  ( x ,  x f )  = - z - 

2id n,-aB(3,) 

x e x p [ i n Q ( x - x ' ) + i p ~ S '  I f  ( x )  -f (x') 11, ( 12) 

x . e x p [ i n ~ ( x - x ' )  +ip,,('4 f ( x )  -f (2 ' )  1 1, ( 13) 

Fi ( x )  = 
'Po e x p [ - i f i ~ ' ' f ( z )  I ,  ( 14) 

(c1/c2) fi',"'+pb" 

Having solved (9),  we can calculate the field diffracted by 
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the structure through all space. Using (5) and (8),  we ob- 
tain the radiation flux distribution P(x)  that enters the sam- 
ple over they = 0 surface. It is readily shown that, for both 
polarizations, P(x)  can be written in the form 

where I, is the incident intensity. 
In addition to P(x) ,  we shall calculate the radiation flux 

Pf (x), crossing the currugated surface y = f(x). Compari- 
son of P with Pf for 1x1 > c /2  then enables us select the pa- 
rameters of the computational scheme and, in particular, to 
establish the criterion of the convergence of the results as 
h ,  -0. 

Equation (9)  was solved numerically, using the method 
described in Ref. 14. We note that the kernel of this integral 
equation is singular for x -xl. The numerical solution of (9)  
and, consequently, the quantities B il) in (8)  were therefore 
calculated subject to a certain error. To find the flux P(x) ,  

we must sum the Fourier series (5)  for y =; 0 with the coeffi- 
cients subject to this error. This procedure turns out to be 
incorrect, so that the summation was performed with stabili- 
zation according to Tikhonov." The regularization param- 
eter was chosen using the values ofpf (x)  for 1x1 > c /2 .  This 
enabled us to avoid fictitious oscillations on P(x) ,  due to the 
instability in the summation of the series, without losing, as a 
result of smoothing, the true slngularities in the flux distri- 
bution P(x) .  The parameters of the computational scheme 
for solving ( 9 ) were chosen using the convergence condition 
for the results. 

Since the output quantity in our computations was the 
integral characteristic P(x) ,  and the conclusions were ex- 
pected to be qualitative in character, we took f(x) in the 
form of a simple model function. The actual results are not 
very sensitive to the form of f(x)  and are governed by pa- 
rameters such as the width c and thickness h of the melt band 
and the size a of the transition region. Most of the calcula- 
tions were performed for f(x)  defined as follows: 

where z = x - ( c  - a)/2. 
In addition, the calculations were repeated with the 

transition region in ( 17) replaced with 

The results obtained for these two model functions were not 
very different, but the advantage of ( 17) was the continuity 
of f(x) and its first two derivatives, which improved the 
convergence of the numerical method. 

We shall now confine our attention to normally inci- 
dent radiation. The computation was performed for radi- 
ation with A = 1.06 pm on germanium or silicon, and radi- 
ation withil = 0.53pm on silicon. The permittivities were as 
follows: for germanium E, = - 32 + 72i (Ref. 3), 
E~ = 16 + 0.8i (Ref. 16), for silicon E, = - 16.8 + 21.6i 
(Ref. 17), at il = 0.53pm (Ref. 16) and&, = - 14.7 + 63i 
(Ref. 17) and E, = 12.25 + 7. 1OP4i (Ref. 16) at il = 1.06 
pm. Our problem was to calculate the flux P(x)  for a varying 
width c of the melt. The width c increases for given energy of 
the initiating radiation if there are regions in the semicon- 
ducting part in which the flux is higher than the flux P, in the 
case of the homogeneous semiconducting surface. A ther- 
mophysical calculation has to be performed to determine the 
specific flux difference for which a melt is produced at a 
given point on the surface. We shall not do this here and will 
deduce that an increase in c has taken place from the mere 
fact that the flux has exceeded P,. 

It is well known that the modulation of the flux pene- 
trating the corrugated surface of a homogeneous materi- 
al,1*2*5 or crossing a surface with periodic distribution of per- 
mitti~ity,'.~ has a well-defined resonant character. It is 
therefore interesting to examine the resonance properties of 
the periodic structure consisting of bands of the melt. Figure 
1 shows P(x)  for different values of the period, obtained by 
the above method in the case of germanium with c = 0.3 d 

and il = 1.06 pm. We note the dependence of P(x)  on d is 
different for different polarizations. Thus, for the TE polar- 
ization, the variation is monotonic as d increases, but a reso- 
nance occurs near d-il in the case of the TH polarization. 
For the TE polarization, and for TH well away from reso- 
nance, the flux P(0) penetrating the metal is close to that 
penetrating the homogeneous material, Pm = 1 - R, 
= 0.22. On the other hand, in the semiconducting region, 

the value P ( d  /2) is close to the flux penetrating the homoge- 
neous semiconductor, i.e., P, -.: 1 - R = 0.64 (R, and R, 
are the reflection coefficients of the melt and solid phase, 
respectively). Diffraction by the structure results in redis- 
tribution of flux near the separation boundary x, between 
the melt and the semiconductor (the position of this bound- 
ary is indicated in Fig. 1 ). The resonance near d-il in the 
case of the TH polarization takes the form of a substantial 
change in the flux P(d/2)  entering the semiconductor, an 
increase in the maximum near the separation boundary, and 
an increase in the flux entering the metal. These last two 
factors facilitate the increase in the width c of the initial band 
of melt. The dependence of P ( x )  on d has a similar character 
for each values of c .  The resonance value of d varies slightly 
with c. Because of this, the subsequent calculations were per- 
formed ford = 0.98A. 

Before we turn to an analysis of the evolution of the 
periodic structure, let us consider the dependence of the 
shape of P(x)  on the parameters of the model function f(x).  
Figure 2 shows a family of P(x)  curves for different h, 
a = 0.05d, and a = 0.10d (Ge,il = 1.06pm). Fora = O.OSd 
and small h, the function P(x)  has a characteristic form, 
namely, there are two flux maxima P, and P2 near the separa- 
tion boundary x, when x, = 0.15d. As h increases, the po- 
sition of P, shifts toward the semiconducting region, and P, 
vanishes. For a = O.ld, the maximum P2 is better defined 
and does not vanish with increasing h, whereas P, lies in the 
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FIG. 2. Distribution P(x)  in germanium for a = 0.05d (a)  and a = O.ld 
( b ) ,  d = 0.981, and c = 0.3d for the following values of h /A: 1 4 . 0 1 ;  2- 
0.02; 3 4 . 0 4 ;  4-0.06. 

metallic region for all h. The oscillating behavior of P(x)  
near the separation boundaries is actually due to diffraction 
by an edge, so that these features are sharper as the width of 
the transition region a is reduced and are enhanced by an 
increase in h. 

Despite the difference in the behavior of P(x)  near the 
boundary for different a, the curves shown in Figs. 2a and 2b 
have much in common. Somewhere near the boundary x, , 
the flux penetrating the semiconductor is found to be higher 
than P, . The coordinate x, of the point at which P(x,) = P, 
is not very sensitive to h and has a similar value for both 
values of a (x, = 0.26d for a = 0.05d and x, = 0.27d for 
a = 0.ld). The flux P(0)  penetrating the melt and the flux 
P ( d  /2) at the center of the semiconducting region are not 
very dependent on a; beginning with h = 0.02/1, these values 
are not very dependent on h (the depth S penetrated by light 
in germanium is 1.1 X 10W211 for II = 1.06 pm) .  Since the 

FIG. 3. The function P ( x )  in germanium for h = 0.051, d = 0.98, and the 
following values of c/d:  1 - 0 1 ;  2 - 4 3 ;  3 4 . 5 ;  4 -0 .9 .  The insert shows 
the reflection coefficient as a function of c. 

change in the state of matter at a given point x on the surface 
is determined not only by the local value of P(x),  but also by 
heat transfer to neighboring regions, sharp features on P(x)  
near x, are smoothed out. The evolution of the periodic 
structure is not therefore very dependent on the size a of the 
transition region or the thickness h of the melt. Because of 
this, we confined subsequent calculations to h = 0.05A and 
a = 0.05d. 

Figure 3 shows P(x)  for different c in the case of germa- 
nium and II = 1.06 pm. When c is small (curve 1 ), there are 
two well-defined flux maxima PI and P,. Only PI survives 
after c = 0.2d has been reached, and lies in the semiconduct- 
ing region at the point x,,, in the immediate neighborhood 
of x,. The value of PI initially increases with c, reaches a 
maximum at c = 0.2d, and then declines. The fact that the 
position of the flux maximum shifts toward the semicon- 
ducting region as c increases results in a positive feedback 
situation: an increase in the width of the metallic band leads 
to a shift of the flux maximum which gives rise to stronger 
heating of the region and, consequently, an increase in c and 
a further shift of x,,, . The increase in c continues until PI 
reaches its critical value PC,, which is determined by P, and 
the thermophysical parameters of the material. In principle, 
PC,, can be either somewhat higher or lower than P, because 
of the diffusion of heat in the system. 

To be specific, we shall now assume that PC,,, = P, . Fig- 
ure 3 then shows that the result of the above mechanism is 
that the periodic structure produced by modulation of the 
permittivity of the solid semiconducting phase when critical 
intensity is exceeded undergoes a discontinuous transition to 
a periodic structure consisting of bands of the melt on the 
surface of the semiconductor with c = c,,,, = 0.5d. An inter- 
esting property is that, as c varies from zero to c,,,, , the coor- 
dinate of the point at which P = P, holds remains almost 
constant. An increase in c above c,,,, leads to a reduction in 
Pmax below PC,,, , and to a reduction in the flux entering the 
melt in the neighborhood of x, . This ensures that even an 
increase in the energy of the initiating radiation within a 
certain range will not lead to an increase in c above ccrit . 

The insert in Fig. 3 shows the dependence of the reflec- 
tion coefficient on the structure under consideration. The 
nonlinearity of R(c)  is relatively weak, i.e., the resultant 
reflection is formed by an almost additive contribution of the 
metallic and the semiconducting segments. The discontin- 
uous increase in c, on the other hand, is due to diffractive 
redistribution of energy both between the metallic and semi- 
conducting regions and wiithin the semiconducting region. 

Figures 4 and 5 show the functions P(x)  for silicon at 
A = 1.06pm and A = 0.53 pm. For A =  1.06pm, the shape 
of the P (x )  curve is very similar to that for germanium (Fig. 
3 1. The difference is that, in the case of silicon, the maximum 
P2 extends up to c = 0.4d and the maximum value of P, is 
reached for c = 0.3d. The critical value c,,,,, on the other 
hand, is of the order of O.5d, just as in the case of germanium. 
For A = 0.53 pm in silicon (Fig. 5), the relationship 
between PI and P, is different. The position of PI shifts to the 
metallic region, and a flux maximum is observed at x, on 
the boundary of the melt. Moreover, for c = 0. ld, the value 
of the flux at this point, Pmi,, is less than PC,,, , but, on the 
other hand, the flux into the melt is then significantly greater 
than P, . As already noted, the state of the material is deter- 
mined by P(x)  and by the diffusion of heat from neighboring 
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FIG. 4. Flux distribution P ( x )  in the case of silicon illuminated by radi- 
ation with /1 = 1.06pm, a = 0.05d, h = 0.05/1, and d = 0.981 for the fol- 
lowing values of c /d:  1 - 4 . 1 ;  2-0.3; 3 - 4 . 5 ;  4 - 4 . 9 .  

regions. The width of the initial "fluctuation band" of the 
melt can therefore increase in this case. For larger values of 
c, on the other hand, P,,, exceeds PC,,,, and this definitely 
assures a further increase of c up to cCrit = 0.4 for which 
P2 = Pcrit  . 

An interesting feature of all these cases is that the flux 
penetrating the metallic regions is found to be greater than 
Pm because of diffractive redistribution of energy. The ratio 
P(0)/Pm can reach 2 or more. This effect facilitates the in- 
crease in the width of the bands of melt due to the diffusion of 
heat from the metallic to the semiconducting regions. The 
increase in P (0 )  for small c is an indication that the homoge- 
neous state of the semiconductor may be unstableagainst the 
formation of periodically distributed bands of the melt, even 
without taking into account the formation of the periodic 
structure by the modulation of permittivity in the solid semi- 
conducting phase. 

This feature of the penetration of radiation into the 
above structure can lead to an interesting effect in a material 
in which a nonthermal transition to the metallic state is pos- 
sible.' When the radiation intensity reaches its critical value 
I:,it in this case, a periodic structure consisting of bands of 
nonequilibrium solid metallic phase begins to form on the 
surface. The significant point is that is less that ICrit 
(necessary for the appearance of local melt regions). On the 
other hand, an increase in the flux into the metal, due to the 
diffractive redistribution of radiant energy, can lead to a 

FIG. 5. The function P ( x )  for /Z = 0.53 pm in the case of silicon, 
h = 0.05/1, a = 0.05d, and d = 0.98/1 for the following values of c /d:  1-  
0.1; 2-0.3; 3-0.5; d 4 . 9 .  

higher temperature of the metallic phase and to its thermal 
melting. Local regions of the melt can therefore form for 
radiant energy below the melting threshold. The important 
point is that this occurs via an intermediate nonequilibrium 
metallic state. This type of effect would impede the observa- 
tion of nonthermal phase transitions under the influence of 
laser radiation. The diffractive redistribution of energy in 
the structure thus seems to lead to the threshold appearance 
of bands of the melt of finite width c = c,,, . The fact that the 
qualitative features of this process are not very dependent on 
the particular values of the permittivity of the melt enables 
us to use our results to explain the experiment reported in 
Ref. 1 1, where a sudden increase was observed in the fraction 

fm of the melt on the surface of silicon exposed to radiation 
with A = 10.6 pm. Our analysis enables us to describe the 
first step on fm ( I )  as being due to the formation of a periodic 
structure with d-A (the value fm in Ref. 11 is 0.4). The 
subsequent steps on f, (I) are related in Ref. 11 to the for- 
mation of a periodic structure with d - 2/2, 3/2, etc. Without 
going into the transition between the periodic structure with 
d -2 to the periodic structure with d - 2/2, we shall assume 
that this doubling has already occurred, and will examine 
the evolution of the function P(x)  with increasing c for the 
structure. Calculations analogous to those discussed above 
then show that there is a second critical value c,,,,, before 
which a band of the melt with d-2/2 can appear in the peri- 
odic structure. For the materials we have discussed, 
c,,,, = 0.7d, which is close to the value reported in Ref. 11. 
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