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The family of trajectories of the bound states of a cluster of Nidentical particles (atoms, 
molecules, etc. ) is studied by the method of the l/d expansion ( d  is the dimensionality of space). 
In particular, the critical values of the coupling constant that correspond to the formation of a 
new bound state as the potential deepens are calculated. Approximate formulas are obtained for 
the critical coupling constants of inert-gas microclusters. 

1. INTRODUCTION 

The problem of the spectrum of the bound states of a 
system of identical particles interacting through a short- 
range potential has a number of applications in the physics of 
the nucleus and the physics of the condensed state. 1n the 
present paper we consider the case of a central pair interac- 
tion U(r)-a case that bears a direct relation to atomic and 
molecular clusters. 

Besides being of interest in its own right, the study of 
clusters also has importance for an understanding of the pro- 
cess of the gradual formation of the properties of a con- 
densed medium as the number of particles in the cluster in- 
creases. In addition, the spectroscopy of clusters provides 
additional information on the character of the interaction of 
particles that cannot be obtained from data on two-particle 
processes. 

Recently experimentalists have paid considerable at- 
tention to inert-gas clusters,I4 for which an approximate 
formula for the binding energies will be obtained in the pres- 
ent paper. 

The problem, in the framework of the method devel- 
oped here is solved in three stages. First we calculate the 
spectrum of the critical coupling constantsil., i.e., those val- 
ues ofA for which the spectra of the Hamiltonians with po- 
tentials (A + 0)  U and (A - 0 )  U differ by one bound state. 
Then, for each value ofAc, we find the spectrum of the bound 
states and, finally, construct the family of trajectories 
Z? ({n,), A )  in the "energy-coupling constant" plane for the 
levels with the set of quantum numbers {n,). The intersec- 
tion of the trajectories with the straight line A = A,, (where 
A,, is the physical value of the coupling constant) gives the 
spectrum of the excited states (both bound states and reson- 
ances) of the cluster. In addition, in those cases when the 
pair potential is too weak for a two-particle bound state to 
exist (as is the case , e.g., for helium atoms), our method 
makes it possible to determine the threshold number of par- 
ticles Nc above which a bound state exists in a cluster. 

It should be noted that the quantum problem is ex- 
tremely complicated even for three or four particles, because 
of the abundance of bound states, resonances, and decay 
channels. Progress in the N-body problem has been associat- 

potentials, and estimates have also been made for local 
short-range potentials. 

However, using scattering theory alone, up to now no- 
one has succeeded in obtaining (approximate) analytical 
formulas for the energy-level spectrum in the many-particle 
problem. Our aim is to obtain such formulas for the case of 
identical particles and a broad class of short-range poten- 
tials. In addition, the proposed method (unlike variational 
and quasiclassical methods) makes it possible to investigate 
the spectrum as a whole. 

The main idea of the method is as follows. We place N 
identical (structureless) particles in d-dimensional Euclid- 
ean space. In the limit d-. cc, the system "crystallizes" (the 
fluctuations are of order ( ( A r 2 ) )  -d - I )  about the com- 
pletely symmetrical configuration of a regular simplex (a 
triangle for N = 3, and a tetrahedron for N = 4). It can be 
shown that the limiting problem is exactly solvable. The sys- 
tem is completely localized in configuration space, and this 
makes it possible to calculate the asymptotic value of A,  
from the static configuration: 

Henceforth we shall call quantities calculated in the 
static limit "classical", meaning by this only the following: 
We neglect fluctuations on the background of the static con- 
figuration. It should be stressed that the limit d-. w has 
nothing in common with the quasiclassical approximation. 
(In fact, the static effective potential contains terms of order 
.li2d2. ) Superposed on the equilibrium symmetric configura- 
tion there are quantum fluctuations, which, in the harmonic 
approximation, lead to corrections -dl to the asymptotic 
formula ( 1 ) . Allowance for anharmonic effects gives correc- 
tions -8, d -  ', etc. Thus, an asymptotic perturbation theo- 
ry in the parameter l/d can be constructed. 

In Secs. 2-4 we calculate A,, in Sec. 5 we discuss the 
question of the selection of the states that have symmetry 
compatible with the statistics of the particles, in Sec. 6 we 
consider the problem of the bound-state spectrum, and in 
Sec. 7 we give the results for Lennard-Jones clusters (in par- 
ticular, for inert gases). 

ed mainly with scattering t h e ~ r y , ~  if we have in mind meth- 
ods that do not use model auvroximations. In varticular, 2. EFFECTIVE HAMlLTONlAN OF THE s-SECTOR 

A - 
such theorem-type statements as the Efimov effect and the We turn to the formulation of the method of the l/d - - 
Thomas theoremG8 were obtained in the framework of scat- expansion for application to the problem of calculating the 
tering theory. In a number of papers9-" the critical coupling spectrum of A,. We shall consider a system of N identical 
constants of the ground state of a three-particle and a four- particles with mass M (for definiteness, we temporarily as- 
particle cluster have been calculated in the case of separable sume them to be bosons with spin zero), placed in d-dimen- 
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sional Euclidean space (d)N - 1 ) and interacting via a cen- 
tral pair potential U(r) that decreases faster than l/r2 at 
infinity. In such a potential there is only a finite number of 
bound two-particle states. The potential U(r) has, possibly, 
asingularcore [U(r)- l /~+v,v>O,r-+O],butnotanab- 
solutely hard core, and is an analytic function on the positive 
semi-axis. In addition, we require that the function r2U(r) 
have precisely one nondegenerate local minimum at r#O, 
co , this (as will be seen from the following) being necessary 
for the existence and uniqueness of a symmetric equilibrium 
configuration of a cluster in the limit d - co . 

The Schrodinger equation (in the system of units with 
f i  = M = 1) for the critical coupling constant A, and the 
wavefunctions $, at the localization threshold has the form 

where u; (A = 1, ..., N; a = 1, ..., d )  are the coordinates of 
the particles, and r,, = lu, - u, I. 

We now confine ourselves to considering states with 
zero total orbital angular momentum, i.e., to the s-sector. In 
this sector there are (for d)N - 1 ) only 1N(N - 1 ) dynam- 
ical variables-namely, the internal coordinates r,, of the 
cluster. To eliminate the nonphysical degrees of freedom 
(the Euler angles describing the orientation of the cluster, 
and the coordinates of the center of mass of the cluster), in 
(2) we go over to the cluster internal coordinates and the 
conjugate momenta p,,. At the same time we replace the 
wavefunction using the rule pc = $,J1", where J i s  the Jaco- 
bian of the transformation to the internal coordinates, with 
the aim of disposing of the terms linear in the momenta. We 
obtain the equation 

where Z',) denotes that the index A is omitted in the summa- 
tion. The effective potential V,,, consists of the "centrifugal 
potential" Wand a sum V, of pair potentials: 

where r = det ( y,, ) is the Gram determinant of the Nipar- 
ticle system, y,, = u,,*u,,, and is the Gram determi- 
nant of the subsystem obtained by throwing away the parti- 
cle with label A. The boundary conditions on p, correspond 
to localized states on the threshold of binding. 

We consider the d - co limit of Eq. ( 3 ) . The system is at 
the effective-potential minimum corresponding to the sym- 
metric configuration, which is determined by a single pa- 
rameter-namely the equilibrium interparticle spacing a. 
We expand V,,, about a, setting r,, = a + x,, . The condi- 
tion for vanishing of the coefficient of 8, < ,x,, gives 

-4a/Na3+h,U' ( a )  =O.  (4)  

The asymptotic value of A, is found from the condition for 

vanishing of the effective potential at the minimum: 

As a result, we obtain the relation ( 1 ), in which a, is equal to 
the value of the equilibrium interparticle spacing in the lead- 
ing order in I/d and is determined from (4): 

The relations ( 1 ) and (4') give the asymptotic value of 
the threshold coupling constant, corresponding to the "clas- 
sical" limit. We, however, shall be interested in the value of 
A, at a physical value of d (d,, = 2 or 3) We shall seek an 
expression for A, in the form of an asymptotic series in pow- 
ers of l/d: 

P 

Truncating the expansion (6)  at the first term corresponds 
to the "cl~ssical" approximation, while truncating it at the 
second corresponds to the harmonic approximation. Taking 
the third ter&into account means calculating the correction 
from the cubic and quartic anharmonicities in the first non- 
vanishing order. An analogous expansion also holds for the 
equilibrium interparticle spacing a: 

To find the spectrum of A, to terms -d - P  it is neces- 
sary to expand the effective Hamiltonian H e , ,  to anharmon- 
icities of degree 2p + 4 and to calculate by perturbation the- 
ory its spectrum, which will have a l/d structure analogous 
to (6): 

D 

k- 1 

Setting in (8)  gk ({n,)) = 0 (k  = 2, 1 ,..., -p) ,  we obtain 
a recursive chain of equations for the coefficients A,  (in,)) 
( I =  2, 1, ..., -p )  in the asymptotic expansion (6) .  

3. ASYMPTOTIC SYMMETRY OF THE CLUSTER: THE 
NORMAL MODES 

We shall consider the quantum dynamics superposed 
on the classical equilibrium configuration. In the asymptotic 
limit d- co the problem becomes exactly solvable owing to 
the symmetry of the Hamiltonian ( 3 ) and the wavefunctions 
under the group of permutations of the particles, which is 
isomorphic to the symmetric group S, (we recall that we 
have temporarily confined ourselves to considering bosons 
with spin zero). 

In the asymptotic limit the quantum fluctuations are 
harmonic, and the problem reduces to that of a harmonic 
oscillator with fN(N - 1 ) degrees of freedom and an addi- 
tional symmetry. Small displacements x,, from the equilib- 
rium configuration transform according to a fN(  N - 1 )-di- 
mensional representation of S,, equal to the direct sum of 
three irreducible representations-namely, a one-dimen- 
sional representation (N) , an ( N  - 1 )-dimensional repre- 
sentation ( N  - 1, 1 ), and a jN(N - 3)-dimensional repre- 
sentation ( N  - 2, 2) ,  which we designate as the scalar (s), 
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vector (v), and tensor ( t )  representations, respectively. 
Thus, the vibrational spectrum of the cluster is classified 
using three irreducible representations, and has three differ- 
ent normal modes R,, a,, and 0,. 

The correction to the classical energy (5) on account of 
harmonic oscillations about the equilibrium configuration is 
given by the following obvious expression: 

where D, are the dimensionalities of the irreducible repre- 
sentations, and K, are the principal quantum numbers of the 
three S, -invariant "spherical" oscillators. 

To determine the normal-mode frequencies R, we 
bring the part of the effective Hamiltonian that is quadratic 
in the operatorsp,, and x, into diagonal form: 

where go, l,, and g,, are normal coordinates, and P,, IT,, 

and P,, are the conjugate momenta, corresponding to the 
scalar, vector, and tensor types of oscillation of the cluster. 
The normal coordinates are constructed from the internal 
coordinates x,, of the cluster as follows: 

E , , = [ k ( k - I )  (1-2) (1-3) I-'"[x y , n l - ( k - l ) y , l ] .  
m-l 

where 
h-I 

( A )  

xA = zAB, ymk =x (m'xn,A- (k-3)xmm 
B A-l 

Similarly, ?z,, T,, and T,, can be expressed in terms ofp,,. It 
is easy to convince oneself that the normal coordinates and 
momenta determined by Eq. ( 1 1 ) are canonically conjugate. 
After substitution of ( 11 ) into ( 10) and identification with 
the quadratic part of the Hamiltonian (3)  we find the fol- 
lowing expressions for the normal modes R, and masses M, 
of the vibrational excitations of the cluster: 

To calculate A, to terms -dl we equate to zero the 
coefficients 8, and 8, in the expansion (8) ,  where 8, is 
determined by the minimum of the effective potential and is 
the leading (in l/d) term of the "classical" part of the ener- 
gy, while 8, contains both the harmonic part of the energy 
(9) (in leading order in l/d) and a correction to the "classi- 
cal" part of the energy (in the next-to-leading order). As a 
result, we find 

where 

is the leading (in l/d) term of the harmonic part of the 
energy. 

We give an explicit expression for the leading coeffi- 
cients w,, in the l/d expansion of the frequencies R, -w, 
d +a,,, + ... : 

The expression A2d2 + A,d corresponds to the exact 
quantum solution, for the existence of which it is necessary 
that all frequencies be positive (to leading order in l/d),  i.e., 
that w, > 0 (y = s,v,t). As can be seen without difficulty, the 
positivity of w, follows from the condition imposed on the 
potential U at the beginning of Sec. 2 [the function r2U(r) 
has a single nondegenerate minimum]. Thus, an exact quan- 
tum solution exists for this class of potentials. For N = 3 and 
N = 4 this solution is also unique (provided that the mini- 
mum of ?U(r) is unique). 

We now shift the expansion parameter d, using the for- 
mula 

Then, to within terms - O(dO), the expressionA2dZ + A ,  d is 
equivalent to &az, i.e., the shift ( 14) makes it possible to 
interpret the quantum corrections as an effective renormal- 
ization of the dimensionality d+a .  As will be seen from the 
following, the renormalization ( 14) is necessary for the 
elimination of structures (in higher orders of perturbation 
theory in the parameter l/d) that diverge in the quasiclassi- 
cal limit (i.e., at large values of the vibrational quantum 
numbers), and corresponds to a certain special way of re- 
summing the perturbation-theory series. This renormaliza- 
tion, for the class of potentials U, ( r )  = r - 2p- - 2r -"-', 
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which are exactly solvable for N = 2, leads to the result that 
the renormalized classical value of A, (for N = 2)coincides 
with the exact value for all values of K, . 

We note that in a number of papers on the l/d expan- 
sion a shift of the expansion parameter is used to improve the 
convergence of the perturbation-theory series. l2-I4. For the 
two-body problem the shifted l/d expansion can be inter- 
preted as a l/n expansion (where n is the principal or radial 
quantum number) .I5 

The spectrum of A, in the harmonic approximation is 
strongly degenerate. In fact, it follows from (13) that A, 
depends only on the three principal quantum numbers 

In the classical limit, i.e., for no, n,, n,, -+ co, we have multi- 
dimensional classical degeneracy, implying coincidence of 
the frequencies in the sectors corresponding to purely vector 
or tensor oscillations. Allowing for the corrections toAc that 
arise from the anharmonicities lifts the continuous (in the 
classical limit) degeneracy and leaves only "accidental" dis- 
crete degeneracy. 

4. PERTURBATION THEORY IN THE PARAMETER 1 / d  

We turn now to the analysis of the general structure of 
the corrections to the asymptotic formula A, -A,d that 
arise on account of the anharmonic terms in He,. . The scale 
of the quantum fluctuations in the harmonic approximation, 
as we have seen, is as follows: (x:,)-d -I, (p:,) 
-d(d+ co ). In the harmonic approximation each of the 
three terms T, W, and V, of the effective Hamiltonian (3)  is 
of order d. Thus, the anharmonic terms of degree k + 2 in 
(3) are of order d l -  k/2. 

We shall regard the anharmonic part Ha,, of the opera- 
tor H e , ,  as a perturbation. In the f th order of perturbation 
theory (in the anharmonicity) structures arise that contain 
in the numerator a product off matrix elements of the opera- 
tor Ha,, , and in the denominator a product off - 1 linear 
combinations of normal-mode frequencies. We shall esti- 
mate in leading order in l/d the contribution of the structure 
containing anharmonic terms of degrees kj + 2 ( j = 1 ,..., J) 
in the dynamical variables. The numerator is of order 
dl- k / 2 , ~ h e r e  

while the denominator is of order df-I; consequently, the 
contribution of the structure under consideration is 
O(dl - ,I2). Thus, the correction of order d 'contains struc- 
tures with different f and {k,), satisfying the condition 
k = 2s + 2. The total number of different structures giving a 
contribution of order d - "  to A, is equal to the number of 
partitions of the number 2s + 2 into natural numbers. The 
function p (k )  increases rapidly with increase of k (e.g., 
p(10) = 42, andp(100) = 190,569,292), and this leads to a 
sharp increase in the size of the calculations as each succes- 
sive correction is taken into account. We shall enumerate the 
partitions for the first three corrections, using the standard 
notation ( lg12g2 . . . ), indicating that the partition contains 

precisely g, ones, g, twos, etc., with 

2 3 s  

For s = 0 there are two partitions: (2)  and ( 1 2),  correspond- 
ing to allowance for the quartic anharmonicity in first order 
and for the cubic anharmonicity in second order; for s = 1 
there are five partitions: (4), ( 13), (22), ( 1 22), and ( 1 4); for 
s = 2 there are already eleven partitions: (6) ,  ( 15 ), (24), 
(124), (32), (1  2 31, ( i33) ,  v 3 ) ,  ( 1 ~ 2 ~ 1 ,  ( i42) ,  (16). 

The multiple (in the classical sense)degeneracy of the 
spectrum of A, that obtains in the harmonic approximation 
is lifted by the O ( 8 )  terms. There remains only the "acci- 
dental" degeneracy with a multiplicity not greater than a 
certain value fixed for each value of N (equal to 2 for N = 3, 
and 3 for N =  4).  

To calculate A, to order -8 we need (besides a more 
exact calculation of the "classical" and "harmonic" parts of 
the energy) to solve the secular equation in a layer with fixed 
principal quantum numbers K, (i.e., in the subspace of the 
states belonging to one value of A, in the harmonic approxi- 
mation) : 

with effective Hamiltonian K. The operator K has the form 

K =  Z P ( { K ~ } )  ( H & - - H ~  P (  {KT'}) 
(Ky) (Ky t l g h a r m  ( {KT'} ) - 8 h a r m  ( { K T ) )  

where P({K,)) is the projection operator on to the {K,)- 
layer, g, , , ,  ({K,)) is the value of the energy of the degener- 
ate level with quantum numbers K, in the harmonic approx- 
imation, and H ,  and H, are the cubic and quartic terms of 
Ha,, . Here, since we are interested in the correction of order 
8 ,  it is sufficient to calculate the spectrum of E in leading 
order. To determine the splitting of the harmonic spectrum 
of A F' ({K, 1 )  in the {K,)-layer, it is necessary to equate 
successively to zero all the values of %', calculated with 
allowance for E, in the given {K,)-layer. 

The problem of the diagonalization of the Hamiltonian 
K is rather complicated since the scalar, vector, and tensor 
degrees of freedom are strongly mixed on account of the 
anharmonicity. In the limit K, -+ cc the problem of the dia- 
gonalization of the operator ( 16) becomes purely classical, 
and for its solution it is convenient to make use of a represen- 
tation of the Hamiltonian in terms of action-angle variables. 
We shall regard no, n,, and n,, as continuous variables of the 
action type and introduce phases p,, p,, and p,, conjugate 
to them. Representing the matrix elements of ( 16) in trigo- 
nometric form, we obtain the classical effective Hamiltonian 
in a phase space of dimensionality N ( N  - 1 ). 

The terms of the perturbation-theory series in the pa- 
rameter l /d for A, have the structure nL+ '/d' 
(S = - 2, - 1,0,1,2 ,...) in the classical limit n M  -+ C C ,  

whereas, obviously, the correct quasiclassical asymptotic 
form for A, should be of order n2, for n, - cc . To eliminate 
terms with a pathological increase in the quasiclassical limit 
we must renormalize d by the rule ( 14). It is not difficult to 
show that with such a renormalization of the expansion pa- 
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rameter the sum of any number of terms of the perturbation- 
theory series has the correct quasiclassical asymptotic form. 

Three degrees of freedom do not participate in the dy- 
namics for N24. The action variables K,, K,, and K, are 
integrals of the motion for the classical analog of the Hamil- 
tonian ( 16) : {K,, K}, = 0, while the corresponding phases 

are cyclic variables. For the asymptotic calculation of the 
spectrum of the Hamiltonian ( 16) we must apply the Mas- 
lov technique of multidimensional quasiclassical quantiza- 
tion. The main complication lies in the fact that four inte- 
grals are insufficient for integration of the problem (for 
N>4), and also in the nontriviality of the topology of the 
subspace K = const. 

In this respect the three-particle problem is somewhat 
distinct. For this problem the number of integrals of the mo- 
tion at the level of the effective Hamiltonian ( 16) coincides 
with the number of degrees of freedom and the correspond- 
ing dynamical system is exactly integrable (the dynamics is 
one-dimensional) . 

We shall discuss the dynamical symmetry of the prob- 
lem. As we have seen, the spectrum of the Hamiltonian ( 10) 
is multiply degenerate. This fact is a consequence of a non- 
commutative invariance algebra A,,, isomorphic to 
su (D, ) e su (D, ) . The dynamical symmetry makes it possi- 
ble to obtain a representation of the effective Hamiltonian 
( 16) in the form of a quadratic form on the algebra Ai,,. In a 
number of special cases such Hamiltonians admit exact inte- 
grability. 

For example, for a three-particle cluster we have A,,, 
z s u ( 2 ) ,  and the spectrum of the Hamiltonian K has the 
form 

where the coefficients k and 1 are expressed in terms of the 
derivatives U'P) (a ,  ) (p = 0,1, ..., 4) and, in view of their 
cumbersome form, are not given here; L : = L :, , where L,, 
= c, 7~~ - c3 T, is the "orbital angular momentum" of the 
vector excitations of the cluster. 

For bosons with spin zero, only states with L, a multi- 
ple of three are physically admissible. We note also the dis- 
tinctive "supersymmetry" of the problem, which manifests 
itself in the fact that the spectrum of K for bosons with spin 
zero coincides with that for fermions with spin 1/2 and total 
spin 3/2. (The ground state of the Bose cluster does not have 
a super-partner. ) 

Thus, the three-particle problem is integrable in the 
first three orders in l / d .  

5. SPIN, STATISTICS, AND SYMMETRY 

The entire preceding analysis pertained, in fact, to 
"bo1tzmannons"-particles that are identical, but distin- 
guishable in principle. We turn now to the question of the 
selection of the admissible states for particles possessing a 
given spin and statistics (including, possibly, parastatis- 
tics). 

We shall consider the subspace L({K,)) of the unper- 

turbed wavefunctions with a fixed set of principal quantum 
numbers. The space L ( {K,}) is isomorphic to the space of 
the representation 

(In fact, the excitations of a cluster have boson statistics, and 
this requires symmetrization of the inner product of the cor- 
responding set of one-particle representations.) By virtue of 
the invariance of the Hamiltonian ( 10) under the group S, 
each subspace L({K,}) decomposes into a direct sum of 
invariant (under SN ) subspaces L'p) ( {K,)), isomorphic to 
the direct sum of several complexes of the spaces L'p' of 
irreducible representation (p ) .  Some of the subspaces 
Leu' ({K,)) may turn out to be trivial. 

Fixing the number of particles, the spin and the statis- 
tics, and also the multiplet state of the system, we obtain the 
set of representations (p) that corresponds to the physically 
observable states. For identical bosons with spin zero the 
only admissible representation is the completely symmetric 
representation (N),  while for identical fermions with spin 
1/2 in the ( N  + 1)-plet state, only the completely antisym- 
metric representation ( l N  ) is admissible. Selecting the phy- 
sically admissible states, we obtain the spectrum (of the 
critical constants or energies) corresponding to the given 
type of particle. We note that the ground state of a fermion 
cluster with maximum total spin lies substantially above the 
ground state of the boson cluster. We shall illustrate this 
remark using the examples of three particles with spins 4 and 
with spins 0, respectively. The space L ' "' (K, ,K, ) is trivial 
for K, = 0,1,2, and one-dimensional for K, = 3. Thus, the 
ground state of the fermion cluster is shifted by an amount of 
order 3&, relative to the ground state of the boson cluster. 

Thus, in the harmonic approximation one selects the 
(degenerate) levels satisfying certain symmetry require- 
ments that follow from the statistics of the particles. How- 
ever, not all states corresponding to a given level have the 
required symmetry. It is necessary to distinguish the physi- 
cally admissible states and, only for these, solve the secular 
equation ( 15). To this end we shall expand the Hamiltonian 
( 16) as a sum of irreducible operators: 

Each level corresponding to the subspace 
L'p' = CB IK,3L (/')({K,,)) is degenerate with multiplicity 
dim@), which can be determined using the well known 
hook rule. This degeneracy is preserved, by virtue of the 
selection rules of Ref. 16, in all orders of perturbation theo- 
ry. However, it has no physical meaning, since the Hamilto- 
nian does not depend on the spin variables. In fact, the com- 
plete wavefunction is a superposition of coordinate 
wavefunctions corresponding to different components of the 
representation ( p )  with coefficients equal to the spin wave- 
functions, which are chosen in such a way that the complete 
wavefunction has the required symmetry. 

6. TRAJECTORIES OF THE BOUND STATES IN THE 
"ENERGY-COUPLING CONSTANT" PLANE 

We turn now to the calculation of the energy of the 
bound states. For simplicity we confine ourselves to the har- 
monic approximation. We first find the spectrum of the lev- 

241 7 Sov. Phys. JETP 67 (1 2). December 1988 A. A. Belov and Yu. E. Lozovik 2417 



els for a threshold value of the coupling constant. The spec- 
trum has a universal form and is a superposition of three 
equal-spacing spectra with frequencies that depend linearly 
on the quantum numbers K r '  parametrizing the threshold: 

where the first argument of 8 denotes the set of quantum 
numbers of the (degenerate, in the harmonic approxima- 
tion) level, and the second argument denotes the set of quan- 
tum numbers parametrizing the threshold at which the spec- 
trum is calculated. Despite the fact that in the definition of 
8 ({K,},{K ;}) the arguments (the quantum numbers of 
the level and of the threshold) appear asymmetrically, the 
formula ( 18) possesses a well defined symmetry under inter- 
change of the arguments of %': 

where M = A,, - A, ({K,}). We note that with increase of 
K, the relative contribution of the second term in the right- 
hand side of (20) decreases rapidly (at a fixed M ) .  The 
formula (20) is, in essence, the analytic continuation of ( 18) 
from a discrete set of threshold spectral values to arbitrary A. 
In the opposite limiting case M S A ,  ({K,}), we have 

We see that as M varies from zero to infinity the slope of the 
trajectories is doubled. (Of course, all of this applies only to 
the harmonic approximation. ) We note that to obtain more- 
exact quantitative values for the energies of the bound states 
it is necessary to go beyond the harmonic approximation. 

7:THE LENNARD-JONES POTENTIAL 

8 ( { K 7 } ,  { K T r } ) - 8 ( { K ~ ' 1 3  { K ~ l )  We now apply the formulas obtained above to the Len- 

= N ( N - 1 )  IU(ao) I(hc({KT})-hc({KT'))).  ( 19) nardJones potential 

Using the formula ( 18 1, we now find the trajectories of the U ( r ) = 4 ~ [ ( ( ~ / r ) ' ~ - ( o / r ) ~ ] .  
bound levels in the "energy-coupling constant" plane. 

In constructing the trajectories we shall digress from (The parameters & and a for the inert gases are given in, e.g., 

questions associated with the particle statistics. We shall Ref. 17.) From the condition ? U ( r )  1, = , ,  = min we find a; 
consider the part of the trajectory of a bound state with = (5/2)1'3d and U(a0) = 24&/25. Substituting the values 

quantum numbers K, abutting the threshold A, ({K,}). ( 12'), we find 

For a value A,, differing little from the threshold value, the 
0 8 = 2 4 1 ~  551fifi"/Mo2, o,=2'/a .3'h .5-'afi2/MaZ 

following approximate formula is valid: 

N ( N - l )  IU(ao) I [ A ~ +  
ot = ( 1 + 4 / N )  '"2'/3.5-'"fiZ/MoZ. (22) 

& ( { K T } )  = - 2 4hc ( {KT} 
Setting d = 3, from (22) we find the values of the "effective 

+o ( (Ah) , (20) dimensionality" 2 for different N: 

Using the parameters of the interatomic potentials (see For clusters with a larger number of particles the meth- 
Ref. 17), we obtain the spectrum of the critical coupling od of the l/d expansion can be applied to calculate A, and 
constants for inert-gas clusters in the harmonic approxima- the binding energy of the ground state of the cluster. We 
tion. For example, for 4He, clusters in the ground state we note, however, that the accuracy of this method worsens as 
have [substituting (22) into ( 13) 1 the following values for N increases. 
the critical coupling constants: To improve the accuracy of the l/d expansion we can 

which are in qualitative agreement with the results obtained 
by other methods (see, e.g., Refs. 3 and 4).  

For a quantitative comparison of the method of the l/d 
expansion with other methods it is necessary to calculate the 
next (in l/d) corrections in the perturbation-theory series. 

8. CONCLUSION 

Thus, as we see, the method of the I/dexpansion makes 
it possible to obtain the spectra of the critical coupling con- 
stants and bound-state energies of microclusters (N(4). We 
note that this method is also suitable for calculating the ener- 
gies of resonances decaying as a result of tunneling through 
the barrier in the effective potential. 

employ interpolation using the limiting value A, ( N  = w ) 

calculated by other methods (e.g., by means of a cluster ex- 
pansion). For example, in Ref. 18 it was shown that the 
potential 

admits an exact solution in the limit N- W :  
A, = d(p - d + 212 forp > d - 2. Interpolating the l/d ex- 
pansion with the exact solution, we can obtain a formula 
which gives a sufficiently good approximation for all N>2. 

The authors are grateful to V. L. Pokrovskii for useful 
discussions. 
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