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A left-right (L-R ) symmetric model of four-dimensional supergravity with SO( 10) gauge group, 
obtained as t k  low-energy limit in superstring theory, is considered. The spectrum of gauge fields 
and their interactions agree with the Weinberg-Salam theory and the model contains additional 
heavy bosons W; and Z; . Besides the N, = 3 generations of 16-plets the SO( 10) model 
includes "fragments" of such generations, which play the role of Higgs particles, and scalar chiral 
fields, whose number exceeds the number of generations by one. As a result each generation's 
neutrino acquires a stably small Majorana mass. It is shown that the scalar fields potential gives 
rise to spontaneous breaking of the SU(2). group and the L-R symmetry, resulting in the 
appearance of the standard Weinberg-Salam theory in the low-energy region. However 
reasonable values for the mass M, of the X boson and for sin20w (Ow being the Weinberg angle) 
can only be obtained in the model for a high mass scale MR - 1010-10'2 GeV for the breaking of 
the right groupSU(2). . 

1. INTRODUCTION 

The Lagrangian for low-energy supergravity (SU- 
GRA) in four-dimensional space includes1 three unknown 
functions of the scalar components of chiral superfields z' : 
the Kahler function G(zl,zi+ ), the superpotential Wand the 
gauge function x(z l  ), which determines the gauge constant 
l/& = ( R e ~ ( z ' ) ) ~  These functions were found in the so- 
called no-scale theory in the work of the CERN group.2 Lat- 
er334 it was shown that they can be obtained in a certain ap- 
proximation in the low-energy limit from the 
ten-dimensional SUGRA,' which is the point-field limit of 
heterotic6 superstrings. These functions have the form 

The scalar fields zi = z' (x )  in Eq. ( 1 ) include: a )  the fields 
in the gravitational sector z(x)  = Z(x)/Mp, s (x)  = S(x) /  
Mp, sometimes called dilaton and compacton, which have 
vacuum expectation values (vev) of the order of the Planck 
mass Mp z loi9 GeV: (s),- (z),- 1; b)  the fields y' (x )  
= Y' (x)/Mp of physical particles, i.e., Higgs scalars and 

scalar components of quarks and leptons, for which 
(Y'  (XI)  -Mw <Mp, where M w  - lo2 GeV is W-boson 
mass of the Weinberg-Salam theory. 

In low-energy SUGRA one encounters several difficul- 
ties and unclear points. The mechanism by which the super- 
partner of the gauge field-the gaugino-acquires mass is 
unclear. The various types of gauginos: photino, gluino, Z0- 
and W-ino all acquire at the scale P-Mp the same mass" 
Ml12 < Mp, which is vanishingly small compared to the 
Planck mass due to supersymmetry violation in the gravita- 
tional sector, while at the same time the gauge fields them- 
selves remain massless. As a result supersymmetry violation 
is transferred to the sector of physical fields, where masses of 
all fields and vev's of all scalar Higgs fields are found to be 
proportional to the same quantity MI,,. 

In this manner, aside from the mass MI,, the low-ener- 
gy SUGRA contains only dimensionless parameters: 

Yukawa constants hikj and the parameters h,, Do and yo of 
the superpotential Win Eq. ( 1 ), which determine the vacu- 
um values so = (s), = I/gi of the field s (x)  that minimize 
the corresponding potential V ( s )  = )a@/a~1~. 

So far we have no theory that describes compactifica- 
tion of superstrings and gives unique answers to questions 
about the gauge group and the structure of the matter fields 
after compactification in the d = 4 space at energies small 
compared to the Planck scale: P(Mp. It is not even clear 
whether one can do altogether without compactification and 
formulate7 string theory directly in d = 4 space. Neverthe- 
less in recent years a number of  author^'.^ discussed different 
versions of low-energy SUGRA models, compatible with 
current ideas about compactification and having direct rela- 
tion to physical reality. Noteworthy among such models are 
the so-called left-right (L-R) symmetric theories (which 
were already studied in the seventies in the framework of 
grand unified theories") with the following gauge groups: 

1) the E, g r o ~ ~ , ~ . ~ , ' ~  broken by the Wilson-Hosotani 
loops12 below the scale Mx 5 Mp to the group 

2) the simpler SO( 10) group,'.13 broken below Mx to 
the symmetry 

The breaking of the initial group proceeds in both cases with- 
out decrease in the rank r = 6 for E, and r = 5 for SO( 10). 

The model with E, symmetry is more complicated, con- 
tains additional particles in each of the N, = 3 generations 
(since the fundamental multiplet of matter fields in E, is a 
27-plet) and results in too high values for Mx and sin2 Ow. 
Below we consider the model based on SO( 10),',13 which is 
more economical and simpler. 

All lepton and quark fields of one generation are united 
in this model in one 16-plet, which is the fundamental repre- 
sentation of the SO( 10) group. Beside the full N, = 3 gen- 
erations of 16-plets the theory may additional 
fields of Higgs particles in the form of "fragments" of 16- 
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TABLE I .  The quantities I, ,  , I , ,  and Y,- , . 

plets and "antifragments" of 16-plets, as well as in the form 
of fragments of the vector multiplet 10 containing the Higgs 
field R. All these fields can be represented as follows: 

q: = (do, UC); 
c i '  

lLk = ((eC, Y )= ' I  

where the superscript i denotes the generation (with i = 0 
corresponding to the fragment generation) and the braces 
indicate the multiplets with respect to the SU(2), and 
SU(2), groups. The values of left and right isospin I,, , I,, 
of the corresponding SU(2), and SU(2), groups, and of 
the hypercharge Y, -, of the U( 1 ), - , group for each of 
the particles in Eq. (4) are given in Table I. In this notation 
the electric charge in units of the proton charge e, is given 
for each of the particles in Eq. (4) by 

where Y = Y, - , + I,, is the usual hypercharge of the 
Weinberg-Salam model. 

In SUGRA models based on the theory of compactified 
superstrings the breaking of the basic E, group [or SO(10) 
group in the case considered here4] down to the symmetries 
(2), (3) proceeds at a high scale P-M, 5 Mp via the Hoso- 
tani mechanism. It is ~ e l l - k n o w n ' ~ ~ ~ * ' ~  that in this process 
only those particles from the fragments (in our case fiO and - 
16', as well as 10') remain massless, i.e., do not acquire a 

mass m - Mp, whose fields are invariant under the action of 
h 

the operator W, generated by the Wilson-Hosotani loop. It is 
these fields only that remain" in the fragments (4) .  For this 
reason, in part, the fragments so and x O ,  do not contain 
the quark-like fields (2; ) or ( D  g , US ) , and the fragment @ 
does not contain the color fields go and g; with charge f 1/ 
3; after compactification these fields become heavy and fall 
out from the spectrum. 

After breaking the SO( 10) symmetry we are left with 

the symmetry (3).  Correpondingly the covariant derivative 
contains besides gluons and the fields of Wp,, and W,,, . , 
corresponding to the SU(2), and SU(2) , groups, one more 
neutral gauge field B,, (x)  of the U( 1 ) , - group: 

where the gluon contribution is omitted and I,, = ~ ; / 2 ,  
I,, = </2, a = 1,2,3 are the generators ofSU(2) , ,  (e,, 
are Pauli matrices). The Lagrangian of the scalar sector of 
the model, i.e., of the scalar components y t  (x)  of the quarks, 
leptons, Higgs scalars, etc., will have the form 

where V( y$ ) is the potential of the scalars; with the Kahler 
function G(zi,z+) of the form (1)  it is given by 
V = la W/dy$ I' + VD, where VD stands for the familiar D- 
terms of the potential (see Sec. 3). 

Beside the fields (4), including the N, = 3 16-plet gen- 
erations, the fiO fragments, and 16' antifragments and 
fragments of the 10'-plet of Higgs fields, the theory will need 
also neutral fields pi (x)-SO(10) group scalars, one from 
each generation (including i = 0). These fields are very im- 
portant, since it is they that make possible Yukawa cou- 
plings not only in the form hij 16' 10°16j of the 16' fragment, 
but also in the form Aj 16' 1 6 O p  of the 16' antifragment, 
where the corresponding i = j = 0 term fo 16' 16'p O is re- 
sponsible for the large mass m, = f,(~ ') ) M w  of the experi- 
mentally unobserved fragment particles. 

The superpotential W( yi ) in (1) (with 
yi = 16',16', 16', 10°,pi ) has the form 

where he, Aj, lo are Yukawa coupling constants and 
i, j = 0,1,2,3. Upon decreasing the momentum Pof the parti- 
cles the fields of the scalars %, N, H t, H O,, p O acquire non- 
zero vev due to the couplings of the form 
ho,160160100 + foO16' 16'p O + ~ ~ o o ( p  '13, with the physi- 
cally interesting case being when 

where 

and to simplify the notation the "tilde," denoting the scalar 
component of the superfield, and the brackets ( ... ),for the 
vev, are omitted here and below. The scalar components of 
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the antifragments also acquire vev 

RO=NOCl ROC=No, (10) 

corresponding to the minimum of the contribution of V, of 
the D-terms, with V2;'" = 0. 

The mechanism for the appearance of such vev, pro- 
posed in the papers of Ref. 15, is connected with the form of 
the equations of the renormalization group (see Appendix, 
Sec. 1) and is described in detail in Sec. 3. As the particle 
momentum P decreases, first the group SU(2). and the L- 
R symmetry of the theory are broken at P-MR - N 6 
(MR = MWR is the mass of the W,, . bosons), and one is 
left with the standard SU(2), x U( 1 ) group, whose break- 
ing at P- MwL - 10' GeV results from the fields HI: and H :  
acquiring the vev's v, , v, : v, - v, - Mw . 

In this fashion the set of fields (4)  is minimal and for 
small PS Mw gives rise to the standard "electroweak" 
Weinberg-Salam theory. 

2. STRUCTURE OFTHE L-RSYMMETRIC THEORY 

2.1. The simplest and longest known structure" is that 
of the sector of charged W-bosons: W,, . 
= (W,,! f WPL1 )/a andW,, .. The mass matrix for 

these fields is obtained by extracting from the kinetic part of 
the Lagrangian Y,, Eq. (7 ) ,  the terms YMs that are qua- 

dratic in these gauge fields and keeping in it just the vev of 
the neutral scalars (9).  This gives 

L?M~*= (g,Z/4) { ( WpRi)2+(~2+N02) ( WpLi)' 

+2u,v*W,L'W,,'}, 

where i = 1,2 and v2 = v i  + v:. For Ng bvbN, one of the 
two eigenvalues of the corresponding mass matrix (in which 
terms -No < u were ignored), 

is very close to the mass of the W-boson of the Weinberg- 
Salam theory 

while the other, 

M2=MwR=g2Noc/2+0 (v)  , 

is very large. The mixing anglex, of the W,, , and WpR . 
bosons is very small: sin 2xW z 2,yw z 2v, v,/(N; )' < 1. 

The sector of the neutral fields is not much more com- 
plicated. 

2.2. Contribution of the B, , W:, and W:, fields to the 
covariant derivative (6) : 

where WE, = ( W;, f W:, ) / a ,  can be put into the 
more convenient form 

where Ys - , = Q - (I3, + 13, ) and 

are the standard combinations of the B, and W:+ fields, as 
in the Weinberg-Salam theory with 

where e = g;g2/& is the charge of the electron, A, ( x )  is the 
electromagnetic field po%ntial and eC2 = (g; ) -' + 2g; 2.  

The application of A: to the scalar fields p ,  HI: and 
H O, possessing nonzero vev gives 

where (NC), = N6 and where the contribution of the field 
&(x) was ignored since it is very small as a consequence of 
the relations (9).  Substitution of these values into the part of 
the Lagrangian of the scalars that is quadratic in the gauge 
fields, 

shows that the field of the heavy Z; boson consists of a 
linear combination Z,, - c, W: - , while the standard Z- 
boson is the combination coZp0 + WE _ , which is orthogo- 
nal to it. Therefore the fields of these bosons normalized to 
unity (Z: = Zh2 = 1) are 

h 

In terms of these fields A: is determined in a form analogous 
to that of the Weinberg-Salam theory: 

where 

does not contain I,, ; here 

B= (gfZ+g,Z) ", e=gfgZ/g, 

therefore, in particular, eP2  = (g') - 2  + g; = (g; ) -2 

+ 2g;', i.e., (<)-' = (g; ) - 2  + g c 2 .  
Applying A: in this form to the scalar fields p ,  HI: 

and H I: (or expressing the fields Zpo and WE - in terms of 
Z, and Z; ) we obtain 

with the sum of these squares, YMz,>, being the matrix of the 
squared masses of the fields Z, and Z; : 

where v2 = v i  + v: and where, in view of (9) ,  the contribu- 
tion due to (A,#), = ( g/2) (Z, + s2/coZ; )No was omit- 
ted since the vev of the field satisfies No <u. The eigenvalues 
of this matrix 

Mz2=~~2/4+O(v'/(Noc)2), MZ.'= (g2/4) ( C ~ N ~ ~ / C ~ ) ~ + O ( V ~ )  
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determine the masses of the physical fields Z,,,, and Z;,,, 
and correspond to a very small angle x:~) =.c: u2/c4(N ) 4 1 
for the mixing of the Z ;  and Z, fields. 

3. THE SUPERPOTENTIAL, THE PROBLEM OF THE 
NEUTRINO MASS AND SPONTANEOUS BREAKING OF L-R 
SYMMETRY 

3.1. The superpotential (8) contains many terms due to 
the presence in the theory of generations of particles, frag- 
ments of generations and singlets p i .  Separating in (8 )  the 
terms with i = j = 0 we write it in the form 

where 

and c0 = +&O. Products of isotopic doublets are defined ev- 
erywhere in invariant form, for example 

with (XZ) =$ T r ( X & X C & ) ,  i.e., 

and the product L & is defined analogously. 
It is clear that the superpotential ( 14) gives rise to mass 

matrices for d- and u-quarks proportional to each other: 

where v, = (HI: ),, u, = ( H  ),; analogously it gives for the 
electron and neutrino in each generation 

For no choice of the constants h, and h,, do these matrices 
describe the physics of the mixing of quark generations 
(since they correspond to zero Kobayashi-Maskawa an- 
gles), to accomplish that one needs the more sophisticated 
approach of Ref. 16 utilizing, for example, Higgs scalars 
whose vev depend on the generation labels i, j. This problem 
is beyond the scope of the present work. 

3.2. Let us consider a simpler problem: is it possible to 
obtain with the superpotential ( 14) a very small neutrino 
mass in each generation (for u, -v, ) with a moderate (be- 
tween MeV and GeV) mass of all electrons, i.e., electron, p- 
meson and 7-meson? 

We will show that the see-saw mechan i~m '~ . ' ~  indeed 
gives rise under spontaneous L-R symmetry breaking, i.e., 
under the conditions (9) N > u, - u, )No, to a stably small 
Majorana mass for all neutrinos." 

Initially we confine ourselves to one generation and 
omit all indices i, j. The part of the superpotential ( 14) and 
(15) that contains the fields v = vL, vC = V R  and p = p i :  

W,'=-hH,ovvc-f (m"vcp+~vecp) +5v0cp2/2, 
gives the following contribution to the fermionic Lagrangian 
of these fields: 

M mq + - (vC(p+(pv") + - v2 + C.C. 
2 2 

where 

For what follows only the magnitude of these masses matters 
(their sign is unimportant) and one should keep in mind, as 
is shown below, that (z,), = N c  and ( z c ) ,  = No, where 
N i ) u, )No and (p,) = p, - N 6. Consequently, 
M)p  Cl) m, m, - M, where p -pe with pe referring to the 
mass of the electron of the given generation. 

Under these circumstances the quadratic form for 2: 
is easily brought to principal  axe^"^^^: 

= I"m' vlz+ '~ f '~ , '@~'+  C.C., 
M 

where 

here v' = Y + vp + AvC is the field with left chirality, 
p i=pL  +pX is the Dirac field, pL = ~ - T Y ,  p i  
= Y' + Av, and 17 = p / M  ', A = m/M ' ( 1 are small param- 

eters. It is seen that the neutrino acquires a small Majorana 
mass equal top: = p (ml/M), where ml /Mzp/M is a very 
small quantity. 

The above discussion directly generalizes to the case of 
an arbitrary number N, of generations: nowp, M, m, and m 
become matrices: 

and Y ;  is brought to the form 

where Y' and p 2 are defined in the above indicated form 
through the matrices vii = (p/M 1 and Aij = (m/ 

(1 (for example, v' = vi + rliipi + Aijvjc). TheMa- 
jorana masses of the neutrinos of all three generations may in 
principle be obtained by diagonalizing the matrix 
pi = (pml/M) ii. They could increase with generation num- 
ber i due to an increase in the quantities pij and mu -pii in 
the numerator, or instead decrease due to the more rapid 
increase of the denominator. 

We note that a version of the theory is possible in which 
the neutrino has a Dirac, and not Majorana, mass: it is a bit 
more complicated and requires the introduction in each gen- 
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eration of not one chiral singlet p (x) ,  but two: g, = pL and 
pc (x)  = & . The Lagrangian in the neutrino sector be- 
comes in that caseI9 in place of ( 16) 

where v: = ( Y  + ~ p ) ~  - (qc - A  'Vc)R, p : = (p  
- VV) + (Vc + A  'ij5c)R, A ' = Amp/m, with r] andA hav- 
ing the above values. It is seen that after diagonalization the 
right neutrino has become almost pure F .  This means, in 
part, that if there existed prior to diagonalization a transition 
of the type v-7' (for example via the neutrino magnetic 
moment), then its magnitude would be reduced upon dia- 
gonalization by a factor A = m/M( l .  This remark applies 
also to the Majorana case ( 16). 

3.3. Let us show how spontaneous breaking of L-R 
symmetry arises, i.e., how the inequalities NG % v%N, (with 
Ng -po= (pO),) for the vev arise. To this end we keep in 
the superpotential (20) and (21) only fields with nonzero 
vev: 

< Wo~o=-h~NoHuW~c-f~(Nom,"S NocWo)cpo-fo'HuoH~O-f ocpo3/3, 

and, after constructing the potential of these scalar fields 

we find the size of their vev by minimizing V with respect to 
these vev. Here 

are the D-terms of the potential, 

V2=mH2(v ,2 f  vd2)+mpZcpOZ+ m N 2 [ N t + ( N O C ) Z ]  

+m$[  ( ~ o c ) 2 + f l o ' ]  

are the mass terms, and 

~ . ' ~ = 2 h ~ A ~ N o N ~ ~ ~ , + 2 f o A ~  (NociVo+NoWoc) ( ~ O + ~ / ~ A C G O T O ~  

are the cubic terms, which arise-like the mass terms-as a 
result of renormalization group evolution. Here the magni- 
tvde of the squared masses of the scalars satisfies 
mi = mi (P2) and the coefficients A, =A, (P) with the di- 
mension of mass depend on the scale of the particle momen- 
tum P = - p2 and can be obtained by solving the equations 
of the renormalization group (see Appendix) with the 
boundary conditions mi 1 ,= ,x = A, I ,= Mx = 0, where 
Mx (Mp-the unification scale. The equations of the renor- 
malization group determine the size of the derivatives 
dm:/dl and dA, /dl, where I = ln(M $/PZ), and contain 
only one parameter with the dimensions of mass-the quan- 
tity MI,, (this parameter is of order lo3-lo4 GeV and deter- 
mines the mass scale of the superpartners; it is sometimes 
referred to as the supersymmetry-breaking scale, 
MI,, = Mss ). 

The contribution to these derivatives from the gauge 
interactions is positive, while that from the Yukawa interac- 

FIG. 1. The dependence on the momentum P, resulting from the equa- 
tions of the renormalization group (see Appendix), of the squared masses 
of the scalar fie1ds;mL (the fields H, and H, ), mi = (m;,, + mk, )/2 
(the fields zo and N :  ) and mi(, (the field cp O ) .  

tions is negative, i.e., with increasing I = ln(M$/P2) the 
quantities mi  and A, start to decrease, and decrease faster 
the larger they are themselves and the larger the Yukawa 
coupling constants h,, f,, f 6, go, hU, etc. As a result, with 
decreasing P from P = Mx the size of the squared masses of 
the scalars mi at first increases, but then begins to decrease, 
changing sign at some P= PO,, below which they become 
negative: mi = - pi (P) as is shown in Fig. 1 for the physi- 
cally interesting case h,, fo-c,, when p: kp; %p&, 
P < PO,. For negative m i  = - the scalar fields acquire 
nonvanishing vev that are larger the larger the correspond- 
ing mass&. The potential of the scalars is given in terms of 
these vev in the form 

v=-p~%~-p, "cp~~-2po~~+hOAh~~yf  2fo(A-o 

+2/3yfoAC~03+h02('/ ,y2+~U2~) +hOfO~'~cp  
+ f o Y ( ~ + P ~ ~ ~ d + y c p o ~ ) ~ +  f o 2 ( ~ Z ~ l r 2 + 2 ~ ) ~ 0 2 ,  ( 17) 

where 

2poZ=pN2f pij2, 

x=(Noc)2+No2 ,  y=2NOCNo, 

and the Yukawa constants go, f 6, enter ( 17) in the form 

Here we have taken into account that in the presence of D- 
terms the minimum of the potential with respect to 
No = ( R  ), and Rg = (RC), is reached for values No = N G , 
R; = No, for which V, = 0. The vev values 

are determined by the minimum of this potential and, in 
spite of its unwieldy form, are found quite simply by simulta- 
neously solving the equations dV/dy = dV/dx 
= dV/dp = 0 in the form 

2408 Sov. Phys. JETP 67 (12), December 1988 M. V. Burova and K. A. Ter-Martirosyan 2408 



In the physically interesting case y> 1, fo 4 1 ho 1 - 1, when 
p, 2po) U, we obtain two solutions: with N; )No and with 
No) N;, and, as P 4 M x  is decreased, the physical system of 
fields can fall into one of these states, corresponding to its 
minimum energy. The state with N ; )No corresponds to the 
breaking for P <  N; of the right group, i.e., to the Weinberg- 
Salam theory; for this state 

where u' -Mw =: 10' GeV. 

4. THE SIZE OF M, AND sin2 8, 

The main shortcoming of grand unified L-R symmetric 
theories is the fact that the change in the gauge constants 
a, = g:/4a(n = 3,2), a' = gt2/4a in the region P <  Mx 
leads, due to the presence of the two bosons W &  and W& , 
to rather large values of Mx >M, = loL9 GeV and 
s2 = sin2 8, >0.3-0.4.9 This is connected with the fact that 
the introduction into the theory of the additional SU(2), 
symmetry leads to a decrease by six units of the coefficient 
b = b ' + b ,, in the variation 

-1 
a-' ( P )  = (a')  -'+ a2, =8/,ai:T + (b/2n) In (Mx/P) 

of the electromagnetic constant a = e2/4a. 
Taking into account the fragment generations 16' and 

E O ,  from Eq. (4)  drastically reduces Mx down to 1016- 
lo1* GeV, but sinZ 8, can be reduced to the experimental 
value ~ 0 . 2 3  only by introducing new high mass scales (be- 
sideM, =: 102GeV): MR SM,, MR/Mw - 10'0-10'2. The 
supersymmetry-breaking mass scale Mss = MI,,, i.e., the 
size of the mass of the superpartners, has little effect on the 
above result. 

In the SO(10) case under consideration, i.e., the sym- 
metry (3) ,  an additional mass scale M, >M, is possible. 
Here (a1)-' = (a; )- '  + a; ', where a; = gh2/4a (see 
Sec. 2.2); further, for P = Mx we have a, = a, = a,,, but 
a' = +a,,, , therefore (a; ) - I  = +a;;, for P = MX . 

For n = 2,3 we have the well-known relations 

where b, = iK, - 9, b, = 4K2 - 6, with K, and K2 = K,,, 
respectively, the number of color triplets of light particles 
(with m, < P) and the number of SU(2). -doublets, and 

(a')  -' ( P )  =5/3a,;'T + b'X ( P )  

with b f =  b; + b, and b; =Z,(Y, , ) : ,  where the sum 
includes all particles with mk < P. Expressing in these three 
relations (where a, = a,, = a,, ) the constant a~;, in 
terms of a, ' (P) ,  taking into account that for a = e2/4a 

and that a;' =a- 's in2 Ow, we obtain upon setting 
P = M w ,  

Xo= (l/2n)ln(Mx/M,) =(a-1-8/3a3-1)/E, 
(20) 

where a - I  = a-'(M,) = 128 and a,' = a c 1 ( M W )  = 9. 
Here we have not taken into account the change in the 

coefficients b, -t b,, = b, - A, for P <  MR due to the "dy- 

ing off" of the contribution A, of the heavy particles-the - 
fragments 16O, 16' and 10' with heavy mass3' rn; -MR 
(and possibly also superpartners if their mass is high: 
Mss -MR ). For large MR )M, taking this into account 
results in a noticeable effect changing ( 19) into 

where Y(P) = (1/2a)ln(MR/P), and n = 3,2. For (a1)-' 
a similar equation is valid in which a;;, is replaced by 
+a;;, , while b, and b, - A, are replaced by b ' and 
b ' - A:. Upon setting P = M, in these three equations we 
readily obtain analogously to (20) 

where Yo = ( 1/2a)ln(MR /Mw ), 6 was defined above, 
= A' + A, - +A,, b2, = b2 - b,, and A,, = A, - A,. 

Each generation's 16-plet (4 )  includes K: = 4 color 
triplets of q- and qc -superfields and K; = 4SU(2), -doub- 
lets, and the fragments in (4) given in addition SK, = 0, 
SK, = 4. Therefore b, = 6 - 9 = - 3, b, = (6 - 6) 
+ iSK, = 2 for N, = 3 generations of 16-plets. 

According to Table I summing over the particles of the 
16-plet gives 

while summing over the 16' fragments gives 

(here the Higgs particles from - 10' do not contribute, since 
for them Y,-, = 0), therefore b, = $N, + 2 = 6, i.e., - 
b ' = b ~ + b 2 = 8 , 0 r ( b , , b 2 , b f ) = ( - 3 , 2 , 8 ) , b = 1 8 .  

Without taking into account the contribution of the 
fragments we would have instead (b,,b,,b ') = ( - 3,0,4), 
6 = 12. Substitution into (20) without the fragment contri- 
bution produces wholly unreasonable numbers: Mx/ 
M, = 4.5 lo2,, sin2 8, = 0.273, while with the fragment 
contribution included we get Xo = 9 and Mx ~ 0 . 5  1018 
GeV, but too high a value sin2 8, = 0.296, instead of 
(sin2 8, ),,, = 0.230 + 0.005. 

Let us discuss now what happens for large MR,  i.e., 
when M, = lonR GeV)M, [for Yo = (n, - 2)/2.73 > 11 
in two extreme limits. 

a )  Mss =: M, S M,, i.e., all superpartners are heavy. 
Here one needs to include in A, contributions of the 16O, - 
16', and 10' fragments, as well as of the superpartners of 

the 16-plet particles; for scalars it is obtained by multiplying 
the contribution of the superfield by 3 ,  while for fermions 
the multiplication factor is 3. This yields 

In the region P< M, the group SU(2), is broken so 
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that here b '  = b ;, where b ;  = 2, Y :  with 
Y = Y, - + I,, being the usual hypercharge of the Wein- 
berg8alam theory, and A' = b ',, M R  - b ' where 
b ',, M R  = 8 was defined above. According to Table I, 

is the contribution from all the particles in the 16-plets, while 
the contribution from the fragments 

need not be considered because they are heavy. Therefore 
without the scalars (superpartners) the 16-plets contribute 
6 '  - - ( 2 ) .  7 ( 1 0  T )  N - -T,i.e., 20 ' A1=8 - +Q = + , o r  

Equation (21) gives the same value Xo = 3, i.e., 
Mx = 0.5 1018 GeV, but now sinZ 8, = 0.296 - (n, 
- 2)/175. As can be seen, by increasing n, one can get 

sin2 8, to reach 0.230 only for n, - 2=: 10-12, i.e., for a 
very high scale MR =: 10Iz GeV. 

b) MR ,Mw -Mss, i.e., fragments are heavy but su- 
perpartners are light. In that case A, = 0 and A, = +, since 
now only two doublets of heavy leptons from the fragments 
16O, 18' and two doublets of heavy higgsinos from 10' fail to 
contribute to 6,. 

Omitting the contribution of these same particles to b ; 
we obtain 6 ;  = (10/3)Ng + (2/3)(3 + 1) = 9,  whence 
A ' = b ' - b l  - 8 -  38 - - 14 

Y -  T -  T,o r  

Substitution of these results into Eq. (21) with Mx = lonX 
GeV gives 

i.e., sin2@,-0.236 even for n, - 2 =  8 (and then 
Mx =:2. 1016 GeV). 

As is seen, in both cases (for MR -Mss and for 
MR )Mss ) the difference 0.296 - sin2 Ow equals 
(nR - 2)/q0, where the number qo - 150-200 depends con- 
cretely on the masses of the various particles. In principle a 
version of the theory is possible for which go is close to 102so 
that the scale M, = 10"" GeV may be not very high: M, / 
Mw z 10,-10'. 

5. CONCLUSION 

L-R symmetric SUGRA models with P-parity spon- 
taneously broken in the low-energy region P< MR are esthe- 
tically very attractive. However in them unification of the 
interactions at P= Mx gives too high a value of 
sin2 8, ~ 0 . 2 9 6 .  The experimental value of sin2 8, ~ 0 . 2 3  
can here be achieved only for a very high SU(2), -symme- 
try-breaking scale MR - 101O-lO1z GeV. Whether one may 
obtain values at the same time for the vev of the scalars HE, 
H i ,  of the electroweak theory of the order ofMW - 10' GeV 
by minimizing a potential of the form ( 18) remains unclear. 
In any event it is understood that this would require fine 

tuning of the Yukawa constants h,, f ,, fo and f A and of the 
masses p;, p i ,  and p i ,  which are determined by these very 
same constants in the equations of the renormalization 
group (see Appendix ) . 

Let us recall that the theory based on SO( lo),  but not 
including the SU(2), symmetry [i.e., having after SO( 10) 
breaking the rank 4 symmetry SU(3), xSU(2), 
x U( 1 ). 1, automatically gives the experimental value of 
sin2 8,. Indeed, in such a theory there is no need for the 16' 
and ='fragments which break the SU(2), symmetry, and 
for Ng generations of 16-plets we have 

where 

at= r : ~ , + i = ~ ~ l , N ~ + ~ ,  
k 

which gives upon substitution into (21 ) the Ng -independent 
values Xo = 5.2, M,y = 1.3 1016 GeV, and sin2 8, 
= (9 + 4Xo)/ap' = 0.233. The presence of fragments in- 

creases the coefficient b2 by unity and gives rise to an unac- 
ceptable increase in sin2 8, by 5.2/aP1 = 0.04. However, in 
theories of this type (to which the CERN E,-model2 is very 
close) there is no room in the superpotential (8),  (14) for 
scalars pi and the term fii ( I  'z 8 + 1 i c ~ o ) ~  is absent, mak- 
ing it impossible for the neutrino in each generation to have a 
stably small mass. 

It may be that obtaining small vev v, 
= (HE ) - u d  = ( H i  ) - M W  simultaneously with large vev 

N g - M, can ensure a superpotential that includes nonren- 
ormalizable interactions, for example, of the form 

which upon minimizing the potential would immediately 
yieldno= (N~)2+N~=:p&p,i.e.,forN~~Nowewould 
have MR -Ng =: (poMp) 'I2- 1010-1011 GeV. One is then 
still left with the problem of how to get small values for v, 
and vd -Mw from a potential of the form (17) with the 
additional term A ixi /M$.  

Aside from these shortcomings, specific to the L-R 
symmetric models, all SUGRA models contain in general 
unclear points, related to the choice of the basic functions of 
the form ( 1 ) and the choice of the supersymmetry-breaking 
scale MI,, = Mss . It is altogether unclear how this quantity, 
determined in the gravitational sector where the only avail- 
able parameter is the Planck mass M,, can have values tens 
of orders of magnitude smaller than M,, which is precisely 
what is assumed in low-energy SUGRA. 

This work was performed in part at the Aspen Center 
for physics (Colorado, USA) in the summer of 1987, in part 
at Rome university I and concluded at ITEF. One of the 
authors (K.T.-M.) expresses gratitude to Aspen Center di- 
rectors M. Simmons and B. Durand for hospitality, to J. 
Schwartz for discussions at the early stages of the work, and 
also to collaborators of Rome university I. F. Calogero, A. 
Degasperis and L. Maiani for excellent working conditions. 

APPENDIX 

Equations of the renormalization group in the Sq10) model 

Below we give the renormalization group equations, ob- 
tained in the usual manner,I5 for the Yukawa constants and 
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masses of the particles in the model with SO( 10) symmetry 
and a superpotential of the form ( 14) 

W=WO+W,I, 
Wo=hoL~L~c+fo(LoLoc+L~cLo)cpo+fo'(%~)cp0+'/~~o(cp0)3, 

W3,=1;(q&'qc) +h(G%lc) +f(~~0~+1~L0)cp+'/z~~~~~, 

where we take into account Yukawa coupling only of third- 
generation particles and 

1) The equations for the normalized Yukawa constants 

YhI= (hi (P) I4n) ' ,  Y f i =  ( f ,  ( P )  /4n) 

Yt= ('/,co/4n) " YY,= ('/,5/4n) 
have the form 

dYh,,/dL=L ( 6 ~ ~ + a " ~ ' - 5 Y ~ - 2 Y f , - Y f ~ ~ - y h - 3  ) , 

aYl,/dl= (3aZ+aB1-2Yh,-fiYl,-2Yf,,-Yc,-Yf) Yf , ,  

dYL,/dl=-3 (by,,+ 2Yf,'+Yt,) Yto, 

dYf,,/dl= (3~~-2Y~-4Yf , , -4Yfo-Y~,-3Yi; -2Yh)  Yfo . ,  

dYh/dl=Yh ( 6 2 ~ f  ~ ~ ' - Y b - y j , ~ - 5 Y h - 3 Y ~ - 2 Y f ) ,  

d P  ,;/dl=('6/3b3+6Ez+ '/,?iB'-Yb-5Yh-7Yi -Yj.) E ' , ; ,  

dT;/dl=- ( 8 Y f + 4 Y ~ + 4 Y ~ , + 2 Y j , ~ + Y ~ o )  Yco, 

where we used the notation I = ln(M ;/p2), 
5, = ~ , / ~ I T = ~ : / ( ~ I T ) ~ .  At P = M x ,  i.e., I=0, these 
Yukawa constants satisfy the boundary condition 
Y, (0) = Y :  where Y :  are dimensionless parameters of the 
theory. 

2 )  The equations for the constants A,,, A,, A<, with 
units of mass are 

dAh,/dl=6~zMz+ E B ' M B - ~ Y ~ & - ~ Y , + ~ ~ ,  

-Yf,,Afov-YhAh-3Yi;AK, 

dA fa/dl=33~M2+~~'M~-2yhdhD-6Yf~fo 

-2Yf,~Af,*-YtoA~,-Y1At, 

dd4L,/dl=-3(4Yl,A .+2Yt,~Af0*+Y~+4~,) ,  

dA i,~/dl=36ZM~-2Yh~~-4Yfo~Aj,~-4Af,Yfo 

-YcJg.-2YrAh-3YiAi;, 

~ A ~ / ~ ~ = ~ E Z M Z + E ~ ' M B - Y ~ , A ~ . - Y ~ , ~ A ~ ~ ~ - ~ Y ~ A ~  

-2k",Af-3YzAil 

d~~/dl='~/~a~~~~63zM~+~/~d~'M~-Yhdho-5YhAh 

where 

M ,  ( P )  =M,,,E, ( P )  (Mx) n=2, 37 

3) The equations for the squared masses mf  (P) of the 
scalars: 

dmN2/dl=3a'zMzZ+EB'~B2-~~~mh~-Yf.mf~, 

d m ~ ~ / d l = 3 E ~ M ~ ~ + ~ ~ ' M +  Yfomf:- Y f m t l  

d m , 0 ~ / d l = - 4 Y ~ ~ m ~ ~ ~ - 2 Y ~ ~ ~  mr,~2-YEomt~-YcmrZ, 

dm,z/dl=6EzM22- Y,,mbz-- Y,,~m,,~z-3YKm-,2-Y~,mh2, 
dm,~/dl=3a'zM~2+a'~'MBZ-3~~m~2-Yfmf2, 

dm~/dl='6/3d3M,2+3a'zMzZ+1/gEB'MBz-2Yj; mi2) 

d q / d l = - 2 Y f m f 2 - Y c m t ,  

where we have introduced the notation 

mbZ=2m~Z+ T?Z.H~+A~:, :ni,2=mN2+m~Z+mp~Z+A,,Z, 

m f , ~ 2 = ~ ~ 2 + 2 m H Z + A f , ~ z l  mto2=3wZ+At,l, 

mhZ=2m12fm~ZfAh2, mi;a=2m,2f nH2+Ai 

m t Z = m , 2 + m ~ 2 + ~ Z +  Af2,  m t 2 = 2 m ~ + m ~ ~ 2 + A L Z .  

The boundary conditions at P = Mx are A f(0) 
= rnf ( 0 )  = 0. Besides the "bare" Yukawa constants Y :  the 

solutions depend only on one mass parameter M,,, (it is 
clear that all these constants should be chosen so that the 
W &  boson of the Weinberg-Salam theory has the correct 
value for its mass M w  = 83 GeV). 

"The general formula2 gives for the ratio M,,,/M, a value equal to zero 
for X ( Z '  ) Z S ,  Eq. (1). while the mass of the gravitino (s = 3/2) is 
M3,,-M,. It is the acquisition of such a mass by the gravitino that is 
responsible for supersymmetry breaking in the gravitational sector of the 
theory. 
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