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We investigate the effects of electric, scalar, and vector fields on the properties of timelike 
singularities-which are sources of these fields-and on the structure of their space-time 
environment, all within the context of the general theory of relativity. 

1. INTRODUCTION 

According to general relativity, space-time singularities 
(besides normal matter and physical fields) can serve as 
sources of a gravitational field. If these singularities are sepa- 
rated from a distant observer by an event horizon, they are 
black holes. If on the other hand a timelike singularity is not 
surrounded by a horizon, it is known as a naked singularity. 
The extreme curvature near one of these sources severely 
complicates any investigation of its physical meaning and 
structure, something that is necessary if one is to study the 
multiplicity of solutions of the Einstein equations that such 
singularities possess. Without studies of naked singularities, 
it is impossible to ascertain whether they are produced by 
gravitational collapse-that is, to resolve the problem of 
whether cosmic censorship, which is an important factor in 
global theorems in gravitation, actually forbids such a pro- 
cess from taking place. 

The author has developed a method' that enables one to 
determine the type of a timelike singularity, i.e., to find out 
whether it is a point source, line source, or perhaps takes 
some other form. It has been shown that apart from the more 
familiar types of singularities, there is a new kind which can- 
not exist in a space of finite curvature. In Ref. 1, we did not 
attempt to name this singularity; here, because of its highly 
unusual features, we propose to call it paradoxical. Point, 
line, and paradoxical singularities are described by a single 
family of solutions, the type of source being determined by 
the functions that enter into it. 

The simplest solution describing such sources is the y- 
metric, which is obtained from Eq. ( 1 ) by setting a = 0. The 
most complicated may contain up to three arbitrary physical 
functions of three variables.' Other possible singularities of 
no particular type are possible, such as the general solution 
of the Einstein equations near timelike ~ingularities.~ Line 
and paradoxical singularities cannot be produced in a col- 
lapse event. 

What must change if a singularity is also to be the 
source of an electric or scalar field? For infinitely long singu- 
larities, exact solutions have been obtained for scalar, elec- 
t r i ~ , ~  and magnetic In particular, it turns out that 
the electrostatic field of an infinite string with constant lin- 
ear mass and charge density at first falls off with increasing 
distance, but then, due to self-gravitation, it increases, pro- 
ducing a nonremovable singularity at a finite distance. 

In the present paper, we find and study solutions de- 
scribing space-time that contains the simplest form of finite- 
size timelike singularity, which is also the source of an elec- 
tric or massless scalar field. The conclusions that we draw 
from our analysis of these solutions remain valid for any type 
of point, line, or paradoxical singularity. 

An electric field will not affect line or paradoxical sin- 
gularities, but when a charge exceeds a certain nonzero mini- 
mum value, self-gravitation induces a singularity at a finite 
distance from the source. For a smaller charge, the effect 
disappears. The structure of space-time near charged point 
singularities is significantly altered, and the latter ought to 
have a negative "bare" mass to cancel their infinite field en- 
ergy. 

A point singularity, the source of a scalar field, may 
have not just a negative but a positive mass as well. When the 
scalar charge on a singularity is large enough, the latter can- 
not be a line source. Singularities will not occur at a finite 
distance from sources of any type; this is also true of a mas- 
sive scalar field, since the effect also fails to appear for infi- 
nitely long ~ingularities.~ 

2. GENERALIZATION OF THE */-METRIC 

We consider space-time with the metric 

ds2=th2"(v/2) exp [2a (v)] dtZ 
-'/,L2 sh2 v th-Zp(~/2)  exp [-2a(v) ] 

X[ (If COS' u/shZ v )  ' -p2(d~2f dv2) +cos2u dVZ]. (1 

For a = 0, this becomes the usual y-metric. A previous anal- 
ysis' has shown that the singularity at v = 0 is a point singu- 
larity with negative mass when p < 0, and for p = - 1 it is 
equivalent to the Schwarzschild metric with negative mass. 
For p = 0 the space-time is flat, and when 0 < p  < 1, the sin- 
gularity is a line. Fo rp  = 1 it becomes a virtual singularity. 
Analytic continuation of this solution yields the Schwarzs- 
child metric with positive mass, in which v = 0 corresponds 
to the horizon of a black hole. For p > 1, the singularity be- 
comes paradoxical, and is impossible in spaces of finite cur- 
vature. For p>2,  two directional singularities appear at the 
points v = 0, u = f r/2, which correspond to two infinitely 
distant points joined by a padadoxical singularity. In the 
latter case, space-time contains three different spatial infini- 
ties. 

Introduction of the factor exp[ + 2a(u) ] enables us to 
generalize the y-metric to the case in which the source car- 
ries either an electric or massless scalar charge. The depen- 
dence of these factors solely on the coordinate v is suggested 
by the form of the solution with an infinitely long string [2],  
and ensures that all nondiagonal components of the Ricci 
tensor vanish. With x0 = t ,  x 1  = v,  x2  = u,  and x3 = p, we 
have 

Roo=-R22=-RsS=-g li-'(a"+a' cth v) ,  (2)  

~, '=g, , - '  [a"-2a' '-I- a' (cth v-4p  sh-' V)  1, ( 3 )  
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where a prime denotes a derivative with respect to v. 
For completeness, we also construct a solution for a 

singularity with a source in the form of a semi-infinite string 
in coordinate space, carrying an electric or scalar charge. 
The corresponding metric 

ds2=v2' exp [2a(v) ] d t ' - ~ ~ - ~ '  exp [-2a(v) 1 
x[ ( 1 + ~ ~ / ~ ~ ) ~ - ~ ~ ( d ~ ~ + d v ~ ) + ~ ~  dqz] (4)  

is transformed into the exact vacuum solution at a = 0.' The 
nondiagonal components of the Ricci tensor are zero, and 
the diagonal components are given by 

R,O=-R,Z=-RsL-g,,-f(a"+a'u-~), 

R,'=gll-f[a"-2a' '+( I - 4 ~ )  a ' u - ' I .  ( 5 )  

3. ELECTRICALLY CHARGED SINGULARITY 

Consider Maxwell's equations in the space ( 1 ), assum- 
ing that the field points in the v-direction and that Fo, de- 
pends only on v. The equation 

F i k ,  ~+Fli, ,+ Fk,, i=O 

is satisfied identically, and from 

we obtain 

Fol=-h thzp(v/2) sh-3u(l+cos2 u/shz v)"-' exp (2a), 

F,,='/,hL2 thzw(u/2)sh-' v exp (2a). (8 

Next, calculating the components of the traceless energy- 
momentum tensor we obtain (with c = G = 1 ) 

Ro0=R,1E-R2z=-R33=-Fo1FO~ 

=='/rhZLZ th4'(u/2) sh-' ~ e ' ~ ( l + c o s ~  u/shZ u)"-I. (9)  

The relation between R :, R :, and R : is already satisfied by 
virtueof (2).  Equating (2)  and (3)  and solving the resulting 
equation, we find 

exp a= [Cl+C2 th2'(u/2) I-', C,, CZ=const. (10) 

Substituting (10) into (2)  and (3)  demonstrates that Eq. 
(9) holds, and from A 2L = - 64C1C+2, we have that 
C,C2 < 0. For C, = 0 or C2 = 0, we obtain a y-metric with no 
electric field. In the present case of interest, with C,C,#O, 
we put C, = A - ' and C2 = - C ' A  - ' and reduce the solu- 
tion to the form 

p, L, A,  C = const, (11) 

The factor A in goo can be changed by scaling the time, and in 
the other components by renormalizing the parameter L. We 
thus set A = I 1 - C 1 for C # 1, ensuring Galilean invar- 

iance at asymptotically large distances. For C 2  = 1, we set 
A  = 1. 

The metric ( 11 ) contains a singularity at v = 0, and 
that singularity is nonremovable for p # 0 and p # 1. For 
C 2 >  1 one more singularity appears at v = v,, where 
th2w (vo/2) = C -'. AS one approaches these singularities, 
the field ( 12) tends to infinity. For C 2 #  1, space-time be- 
comes asymptotically flat as u-. a. We can determine the 
mass of the source from the form of goo at large distances: 

Its charge can be obtained from Gauss's law: 

This expression is consistent with the form of the field at 
large distances, E = ( - FO'F,, ) 'I2, when C # 1. 

Consider the structure of space-time ( 1 1 ) for different 
values of p and C2.  For p = 0, we have a flat space with no 
electric field. For p > 0, the form of the metric near the sin- 
gularity v = 0 is practically the same as ( 11) with C = 0, 
L = L / I 1  - C21. Therefore, for O < p < 1  we have a line 
source, and for p > 1 a paradoxical source, while for p > 2  
there are two directional singularities located at the points 
v = 0, u = f ~ / 2 ,  corresponding to infinitely distant 
points. In the vicinity of these points the electric field 
strength also has a directional singularitity, and tends either 
to zero or infinity, depending on how we approach it. 

For C < 1, space-time is regular for v > 0. The mass of 
the singularity (13) is positive, and exceeds its charge. It 
also exceeds the mass of an electrically neutral singularity, 
due to the contribution of the electric field energy to the 
overall mass. As C * + 1 for a singularity with finite mass and 
charge, the parameter L must decrease as L = E ( 1 - C 2). 

For C 2  > 1, space-time has singularities at u = 0 and 
v = v,. If we consider the singularity at v = 0 to be a line or 
paradoxical source with a larger charge than for C < 1, we 
see that due to self-gravitation, the electric field strength 
then begins to increase with increasing v, and tends to infin- 
ity as one approaches v,. 

This effect, then, which makes its appearance in an infi- 
nitely long singularity no matter what its charge,3 occurs in 
finite-size sources only for Q > Qmin > 0. Since according to 
( 14) the parametersp, L, and C do not, in and of themselves, 
determine any quantities that are amenable to measurement, 
and ( 13) does not hold because of the lack of flat asymptotic 
behavior, this limiting value is not manifested in terms of any 
measurable quantities. 

For p, p = const, the distance from the source v = 0 to 
the singularity v = vo depends on u. I f p  < 1, it is at a maxi- 
mum at u = 0 and a minimum at u = f ~ / 2 .  On the other 
hand, for p > 1, it increases with decreasing cos u. For p>2, 
this distance diverges at u = f ~ / 2 ,  due to the appearance 
of the aforementioned directional singularities. 

For C 2 >  1, we may also consider the singularity at 
v = uo as a source of electric and gravitational fields; space- 
time is then described by Eq. ( 1 1 ) for vo < v < oo . It displays 
'flat asymptotic behavior as u-, m, and Eq. ( 13) is valid, 
giving M <  0, and in conjunction with ( 14), M <  - lQ 1. 
Near the singularity v = v,, the space-time ( 11 ) acquires the 
form 
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If we construct a diagram that enables us to determine 
the type of singularity,' we find that the singularity v = v, 
corresponds to a point source. Evaluating the integral 

as a function of the coordinate v of the surface of integration, 
we find that the source has an infinite negative bare mass. 
The total mass of the source and its surrounding field within 
the volume bounded by the surface v = const increases with 
increasing v, approaching the negative value of M in ( 13 ) as 
v + cc . We encounter a similar situation in classical electro- 
dynamics, .u-ith an infinite negative mass of a point source 
being cancelled by the infinite energy of its surrounding elec- 
tric field. We thus see that this problem persists within the 
framework of general relativity as well. 

The interpretation of the metric ( 1 1 ) is somewhat al- 
tered for p = l ,  due to the fact that the singularity v = 0 
becomes virtual, and as we have seen, corresponds to the 
horizon of a black hole. Following the transformation 

r=L chZ(v/2) +C2L(1-C2)-' 

the solution of ( 1 1  ) with p = 1 and C 2 #  1 reduces to the 
Reissner-Nordstrram metric5 

with M and Q taken from ( 13) and ( 14). There are two 
horizons, located at r = L /( 1 - C2)  and r = C 2L / 
(1 - C2) .  The first corresponds to v = 0, and the second is 
located in the region into which we analytically continued 
( 11 ). The metric ( 17) has a true singularitity at r = 0, corre- 
sponding to v = v,. At small r, its asymptotic behavior is 
described by ( 15 ) . The source also has an infinite negative 
bare mass and infinite electric field energy. For C 2  < 1, both 
horizons lie at r > 0, and we are dealing with a charged black 
hole. In that event, the overall mass Mof the singularity plus 
the field is positive. For C 7 1, both horizons lie at r < 0; that 
is, they are completely absent, and we have a naked 
Reissner-Nordstrerm singularity with M < 0. It is not possi- 
ble to obtain a naked singularity from ( 1 1 ) with 0 < M < Q. 

For C 2  = p = 1, the metric ( 1 1 ) reduces to another 
well-known solution, the electromagnetic Bertotti-Robin- 
son ~niverse ,~  and there is no singularity. For C = 1, p # 1, 
we obtain a space-time with a line (0  < p  < 1 ) or paradoxical 
(p > 1 )  source which tends toward the Bertotti-Robinson 
solution with increasing distance from the source. 

For p <O, we obtain no new solutions, as the metric 
( 1 1 ) is symmetric under the interchangep + - p, C-+ C - '. 

In similar fashion, we may use the solution (4)  to con- 
struct a metric with a semi-infinite charged source, 

The physical meaning of this metric is disclosed in a manner 
similar to ( 1 1 ) . The main difference is that there will be a 
singularity at v = u, = IC I''P no matter how small its 
charge. 

4. SINGULAR SOURCE OF A MASSLESS SCALAR FIELD 

We now consider a massless scalar field with energy- 
momentum tensor 

in the space-time ( 1 ). If $ depends only on v, the field equa- 
tion 

yields 

Substituting this result into (2)  and (3) ,  we obtain the met- 
ric 

We obtain the mass of the singularity from the form ofg,, in 
this asymptotically flat solution: 

M=Lv/2. (23) 

Let us analyze the space-time represented by (22). For Y < 0 
we obtain a point source with negative mass. For Y > 0 and a 
weak scalar charge /712 < 1/2, three types of sources are pos- 
sible. For 17 1 <p2 < 1/2 + ( 1/4 - 1 1 2 ,  ' I 2  we have a line 
source, 1/2 + (1/4 - 1q12)112<p2< 1 + 1712 gives a point 
source with positive mass, and,u2 > 1 + 1 q 1 gives a paradox- 
ical source of mass M >  L /2. As the scalar charge is raised to 
(qI2 > 1/2, line sources are no longer possible, and for 
IqI2<p2< 1 + lq12,i.e.,0<M<L/2,wehaveapointsource 
with positive mass; For p 2  > 1 + 1q / 2, we have a paradoxical 
singularity. Note that for small 17 1 ,  point sources of positive 
mass are separated from point sources of negative mass by a 
zone of line sources. As I q I approaches zero, a zone of posi- 
tive-mass point sources is compressed down to the point 
p = 1, or in other words, to a black hole. 

For a semi-infinite filamentary source of a massless sca- 
lar field, we obtain the metric 

v ~ = p Z - 1 q ( 1 1 2 ,  $=- ' In v + const. (24) 
2 (2n) '" 

Both in this instance and that of an infinite ~ t r i n g , ~  there are 
no singularities at a finite distance from the source. 
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5. COMBINED EFFECT OF ELECTRIC AND MASSLESS 
SCALAR FIELDS 

If the singularity in ( 1 ) is a source of both an electric 
and massless scalar field, one can readily find possible solu- 
tions. One of these is a natural generalization of ( 1 ), ( 12), 
and (21): 

x (du2+dv2) + cod u dq2]  , ( 2 5 )  

q,=- v ' In th - + const, 
2 (2n) " 2 

Here, the combined effect of the two fields reduces to the 
sum of their effects individually. 

A second solution arises for p2 < I 1 ': 

This solution has an infinity of singularities, but the field $ is 
regular throughout. When we consider the region between 
two singularities, we obtain a point source with infinite nega- 
tive mass, and because of self-gravitation, the field produces 
a singularity at a finite distance from the source. This is 
clearly an unphysical solution. 

The third metric, which is obtained for p2 = 1 r] 1 2 ,  takes 
the form 

It describes a space-time with no source at v = 0, which can 
be obtained from ( 16). Here the scalar and electric fields are 
concentrated by the intrinsic gravitational field. Notice that 
one can draw a parallel between (25)-(27) and the three 
solutions for an infinite charged filament obtained in Ref. 3. 

6. THE EFFECT OF MASSIVE SCALAR AND VECTOR FIELDS 
ON THE PROPERTIES OF TIMELIKE SlNGULARlTlES 

If we have a massive scalar or vector field whose source 
is a timelike singularity, the corresponding exact solution 
cannot be constructed. Even in the much simpler case of an 
infinite filament, the resulting systems of equations cannot 
be ~ o l v e d . ~ . ~  A qualitative examination of the effects of mas- 
sive fields is nevertheless possible. If we consider the Ein- 

stein equations and the equations for the nongravitational 
fields, it is clear that terms which include the mass of the 
field quanta turn out to be much smaller than the leading 
terms, and the asymptotic form of the space-time is describ- 
able by solutions for the massless field. Massive fields will 
therefore affect the type of singularity in just the same way as 
the massless fields considered above. 

The issue is somewhat more complicated when we in- 
vestigate space-time far from a singularity. For a massive 
scalar field, there will be no singularities at a finite distance 
from the source, inasmuch as there are none for an infinitely 
long filament either.3 If in fact such a filament were the 
source of a massive vector field, there would evidently be a 
singularity engendered by its self-gra~itation.~ For finite- 
length singularities, one should expect that this effect would 
be observed if the vector charge were to exceed some thresh- 
old, but it is extremely difficult to obtain the corresponding 
solutions. 

7. CONCLUSION 

We have thus shown that if a line or paradoxical singu- 
larity of any type also possesses an electric or vector charge, 
it will affect neither the properties of space-time near the 
source nor the type of singularity. At the same time, far from 
a source that carries a large charge, self-gravitation may in- 
duce a time singularity. A point source of a gravitational, 
electric, or vector field ought to have negative bare mass, and 
the space-time outside it should then be regular. No new 
types of singularity appear in the latter case. 

If a timelike singularity carries a scalar charge, a new 
type of positive-mass point singularity intermediate between 
line and paradoxical singularities becomes possible. As the 
scalar charge increases, this type completely expels line 
sources, engendering a region of negative-mass point 
sources. It is easily seen that sources of this type cannot be 
formed in a collapse, since when a naked singularity is ini- 
tially formed (if in fact it can be), one expects small values of 
p and 171. Space-time outside any type of singularity with a 
scalar charge is regular, and singularities cannot result from 
self-gravitation of the field. 
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