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We calculate spin precession rates in a gravitational field in a Lorentz frame that we construct via 
a rotationless Lorentz transformation from the laboratory frame. In deriving this tranformation, 
we obtain an exact expression for the rate of precession in both the Schwarzschild and Reissner- 
Nordstrsm metrics. Along the way, a transformation is derived which reduces the latter to 
"isotropic" form. Furthermore, our technique has been applied to an arbitrarily weak 
gravitational field. Our expression for the rate of precession in the limiting cases of low velocity 
and the post-Newtonian approximation is in agreement with previous results. As the speed of a 
particle tends to unity, the expression for the rate of precession has a finite limit, a part of which 
describes the rotation of the plane of polarization of a photon. 

1. INTRODUCTION 

Comparison of the predictions of general relativity with 
experimental data remains one of the most pressing prob- 
lems of physics, due to a paucity of experimental results. 
Recently developed experimental techniques have made it 
possible to measure relativistic gravitational effects to high 
accuracy,' suggesting that calculations of specific new pro- 
cesses and measurements of effects that are already known 
might be refined to further test Einstein's theory. - In the present paper, we examine gravitational polar- 
ization effects involved in particle spin (or gyroscope axis) 
precession and the rotation of the plane of polarization of a 
photon, all moving freely in a gravitational field. These are 
all manifestations of exactly the same phenomenon, since 
the gyroscope axis, particle spin vector, and photon polar- 
ization vector all undergo parallel transport along their re- 
spective trajectories. De Sitter2 was the first to point out, 
soon after the initial appearance of the general theory of rela- 
tivity, that a gyroscope ought to precess in a gravitational 
field, while Fokker3 provided the first correct calculation of 
uniform circular motion in the field of a centrally symmetric 
massive body (Schwarzschild field). SchifP calculated the 
rate of precession of a nonrelativistic gyroscope in a weak 
field, but because it is so small, this effect has thus far not 
been observed. For example, a gyroscope mounted within a 
satellite orbiting the Earth would precess a total of seven arc- 
seconds per year, an amount not yet accessible to existing 
instrumentation (see Ref. 1 for a review of the experimental 
situation and for further references). This phenomenon, 
however, could be detected if one were to investigate the 
behavior of polarized relativistic particles passing near a 
massive body like the Sun (relativity is required to prevent 
particle capture). The effect is proportional to the mass of 
the body responsible for the field, so the advantage that the 
latter experiment using polarized particles would have over 
a terrestrial gyroscope experiment would be of order lo5 per 
revolution of the satellite. Obviously, the gyroscope torqu- 
ing can be handled by increasing the length of the observa- 
tion, which of course requires that the satellite maintain a 
fixed orientation throughout the entire measurement. 

In calculating the spin precession rate, one assumes that 
the spin vector of a free particle undergoes parallel transport 
along a geodesic (if nongravitational forces act on the parti- 

cle, the spin will undergo Fermi-Walker transport5). This 
statement was proved in Ref. 6 for the case of an electron in a 
weak field, and Ravndal proved it for a point particle with 
spin within the framework of supersymmetric classical me- 
chanics.' One might hope that under appropriate circum- 
stances the proposition would also be true in quantum field 
theory, and we shall provide qualitative arguments to sup- 
port this view. In fact, the wave equation for a particle in a 
gravitational field is formally the same as the corresponding 
equation for a free particle in flat space described by curvi- 
linear coordinates. Since in flat space the spin of a free parti- 
cle maintains its orientation, and the straight line along 
which it moves is a geodesic, our previous statement about 
parallel transport of the spin along a geodesic is not surpris- 
ing in this context. In curvilinear coordinates, as expected, 
we find 

DS' -- 
LIT 

- 0, (1)  

where D /DT represents the covariant derivative, DT = d r  is 
the element of length on the particle's world line, and S 'is its 
spin vector. It would seem that a similar equation ought to 
hold for a particle in a gravitational field as well, but we 
would be making an implicit assumption about the minima- 
lity of such a generalization. In a gravitational field, in gen- 
eral, terms can appear on the right-hand side of Eq. ( 1 ) that 
are proportional to the Riemann tensor Rq,,, and to deriva- 
tives of the particle velocity uii, which vanish in free space. 
Examples include R ',,, u'(Dum/Dr)S " R L,, u';"S" Sj (u 
- d;') etc. 

Here uw denotes the covariant derivative with respect 
to 2. In writing out possible nonminimal terms, we have 
observed the necessary conservation of the norm S'S, of the 
spin vector under parallel transport. If the dimensions of a 
particle wave packet are much less than the typical scale of 
variation of the gravitational field, one can treat the particle 
as a point particle to first order, so that only projections of 
the derivative uii along the direction of particle motion sur- 
vive, i.e., Dui/Dr, which vanish by virtue of the equation of 
motion. For these reasons, then, nominal terms drop out of 
the right-hand side of Eq. ( 1.) for particle motion along a 
geodesic. 

At this point, our discussion ceases to be rigorous, as 
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there have been studies of the effects of spin on the equation 
of motion in which it was concluded that a particle with spin 
in a gravitational field does not move along a geode~ic.~ Un- 
der those circumstances, when the dimensions of the wave 
packet become comparable to the typical scale length of the 
gravitational field, it becomes impossible to localize the spin 
at a well-defined point, and S' in Eq. ( 1 )  then describes a 
density for the spin vector. Furthermore, the situation is 
even more complicated when nonminimal terms are present, 
in that the norm SiSi of the spin density is then not con- 
served. In addition, in considering the exact equations of a 
particle in a gravitational field (a  Dirac electron, for exam- 
ple), one gets the distinct impression that no closed set of 
equations exists to describe the evolution of the spin vector 
in an arbitrary gravitational field. 

Our paper is organized as follows: in Sec. 2, using the 
Schwarzschild field, we devise a means of constructing a 
Lorentz frame, in which we then calculate the rate of spin 
precession. In Sec. 3, we obtain the rate of precession in a 
Schwarzschild field in a different way, in order to justify 
certain assumptions made in Sec. 2. In Sec. 4, the technique 
developed in Sec. 2 is applied to the Reissner-Nordstrum 
field, and finally, in Sec. 5 we apply it to an arbitrary gravita- 
tional field. 

2. MOVING REFERENCE FRAME 

For the sake of definiteness, we shall deal with elec- 
trons. For a particle spin vector S' and velocity d we have, 
as usual,9 

s'u,=o. (2 )  

Since the norm vector undergoing parallel transport is con- 
served, condition (2 )  implies that the norm of the spin vec- 
tor is conserved in the electron's rest frame. Next, let us 
construct at any point in space a tetrad of orthonormal vec- 
torsA ;,, , where a = 0,1,2,3 numbers the vectors of a tetrad; 
as the particle moves, we relate its spin to these vectors. It 
follows from (2 )  that we can only introduce a three-dimen- 
sional angular rate of precession in a reference frame 
(known as a comoving frame) in which one of the vectors, 
say A;,, , coincides with u'. Clearly, though, the precession 
rate calculated in an arbitrary comoving frame generally has 
little to say about the spin precession itself, since the various 
comoving reference frames can rotate (three-dimensional- 
ly ) about one another. 

There is a single preferred reference frame in flat Min- 
kowski space (call it A) which is derived from the laborato- 
ry frame L by a pure Lorentz transformation with no spatial 
rotation. Obviously, the rate of spin precession in that frame 
will also be the desired precession rate relative to the coordi- 
nate system under consideration. With a view to further gen- 
eralization, let us describe the frame L and A in some detail. 

Consider a Minkowski space with line element ds and 
Cartesian coordinates, t, x ,  y,  and z such that 
ds' = dt - dx2 - dy2 - dz2. The tetrad of normalized vec- 
tors which are directed, at every point in space, along con- 
stant-coordinate lines, forms a laboratory frame of reference 
with components 

Here each row corresponds to a particular vector of the tet- 
rad, and each column corresponds to a vector component 
(given by the superscript). Let us now operate on the frame 
of reference L with a rotationless Lorentz transformation 
matrix, and take the velocity v to be in an arbitrary direction. 
The resulting reference frame takes the form1' 

This is precisely the frame in which one can obtain an expres- 
sion for the Thomas precession (see below for details). 

We now attempt to generalize these results to the case in 
which a gravitational field is present. Specifically, we con- 
sider a Schwarzschild field in "isotropic" coordinates": 

The analogy with Minkowski space is a perfect one, and we 
have no leeway in choosing this frame of reference. 

Next, let us attempt to construct the analog of a Lorentz 
frame in the Schwarzschild field (5) .  If we go to a locally 
geodesic system, i.e., one in which the metric tensor is diag- 
onal at the point in question, then it is perfectly natural to 
assume that the transformation matrix A:, 

where p = (g , r l , c ) .  In these coordinates, one can readily 
produce an analog of the laboratory reference frame in Min- 
kowski space by choosing a tetrad of normalized vectors di- 
rected along the constant-coordinate curves, thereby form- 
ing a frame of reference that we may call the laboratory 
frame: 

is the same at the given point as the usual rotationless Lor- 
entz transformation matrix in flat space [Eq. (4)  ]. Indeed, 
the tangent space at the given point is indistinguishable from 
a flat space, and the global properties of the gravitational 
field that result from a nonvanishing curvature tensor are 
not manifested under this transformation. 

It is easy to see that the transformation 

where p, = const, diagonalizes the metric (5)  at the points 

. ( 6 )  L= 

t,' = 
1-m/2pi 
l+m/2pl 

- 
g;z 0 0 0 - 
0 g;z 0 0 

0 0 g;z 0 

At these points, the laboratory frame L takes the form ( 3 ) ,  
while the Lorentz frame, and accordingly the Lorentz trans- 
formation matrix, take the form (4) .  

Now let us go back to isotropic coordinates at the indi- 
cated points. The laboratory reference frame is 
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and the rotationless Lorentz transformation matrix is 

Here we have used the fact that v' = (g: + /g, - )v. We thus 
obtain an expression for the Lorentz frame at the isolated 
points (8):  

Furthermore, note that p ,  in Eq. (9)  is arbitrary, so that 
equation holds at any point in the Schwarzschild space. We 
emphasize once again that if we proceed by analogy with 
Cartesian coordinates in Minkowski space, there is no lee- 
way in the choice of L [Eq. (6)  ] and A [Eq. (9)  ]-they are 
uniquely determined. 

Let us use Eq. (9)  to find the rate of spin precession. We 
expand the spin vector Si in terms of the vectors of the co- 
moving frame: S ' = A f ,, S '"', where S ' O ' = O  by virtue of Eq. 
(2).  The fundamental equation ( 1 ) then implies that 

where a,@ = 1,2,3. In deriving ( lo) ,  we have taken advan- 
tage of the orthonormality of the reference frame12: 

where q(,b) is the metric tensor of Minkowski space, v ( a b )  

= diag ( 1, - 1, - 1, - 1 ). This last equation may be conve- 
niently rewritten in the form 

h : , , ~ ! ~ ' =  62, 

where A jb' = Ai(,) q(Ob), or in other words A I"' = - Ai("), 
A jO' = A,,, . Substituting (9) into Eq. ( lo ) ,  we obtain 

3. PROOF OF THE FUNDAMENTAL PROPOSITION1' 

Before discussing Eq. ( 11 ) in more detail, let us derive 
(9) in a somewhat different way. We make no assumptions 
about the form of the Lorentz transformations, and suppose 
only that they exist in general. We introduce an auxiliary 
comoving frame A: 

where v5 = dc/d t ;  v, = dq/dt; u2 = v i  + v i ;  we have as- 
sumed that the particle moves in the (c,q) plane. This is not 
a significant assumption, as particle motion in a central force 
field is always planar, and a simple rotation suffices to bring 
the actual orbital plane into coincidence with any other 
plane. Making use of ( l o ) ,  we find that Siprecesses in the 
frame A at a rate 

In general, the frame A rotates in some way about the 
frame A. To ascertain the rate of rotation, let us consider a 
new reference frame R, 

The reference frame A can obviously be obtained from the 
reference frame R by a rotationless Lorentz transformation. 
In fact, two of the three spatial vectors in the two frames are 
identical. Moreover, frame A moves at a velocity v relative to 
frame R, and this will provide the information we need. 
Frame A actually cannot rotate spatially with respect to R, 
since a frame of reference is completely defined by two of its 
three basis vectors. Recalling the coincidence between vec- 
tors and A and R and counting up the number of parameters 
that may be used in transforming from R to A, we are left 
with only one. Both reference frames are characterized by 
six free parameters: 16 (the total)-4 (for normalization)- 
6 (for orthogonality). Having specified one general vector, 
we have fixed three of those parameters [4-1 (for normali- 
zation) 1; the second general vector fixes another two [4-1 
(for normalization)-1 (for orthogonality to the first vec- 
tor) 1. That leaves but one parameter free. Since A moves at 
velocity v with respect to R (A = u'), R can be trans- 
formed into A via a rotationless Lorentz transformation. 

We have thus shown that the frame of reference A in 
which we are considering the precession may be obtained 
from the frame L via a rotationless Lorentz transformation, 
and frame A may be obtained from frame R, but R is rotated 
by a certain angle q, with respect to L: 

Hence, we find that 
1 

6)An=ORL=@ = - (i)7,~~-6~v,). 
v2 

Finally, the desired rate of precession fl is 

Q = ~ a + ~ a a  = 
(I'g--l) 

v Z  (*tv,--finv~) 

i.e., it is identical to ( 11 ). The coincidence between these 
two spin-vector precession rates means that we have found 
an explicit expression for the Lorentz frame A in the 
Schwarzschild field, and that our assumption of the local 
nature of Lorentz transformation is valid. 

Taking the limit as m -0 in Eq. (16), i.e., going to flat 
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space with rectilinear geodesics, we obtain the Thomas 
precession formula.I4 In order to obtain zero (the spin of a 
free particle naturally does not precess in flat space), it is 
necessary to make use of the equation of motion Dui/Dr = 0. 
This is of course reasonable, and relates to the fact that Eq. 
( 11) holds for any arbitrary nongeodesic motion of a parti- 
cle for which the spin vector undergoes Fermi-Walker trans- 
port along the t raje~tory.~ Under the latter circumstances, 
S ' satisfies the equation 

or equivalently 

DS' Duj -= -u's'-. 
Dz Dz 

Introducing invariant components of S' relative to 
some comoving frame of reference, we obtain 

d~(b)=-h~(~)S(~)Dh(~,'-h~(~)~'Dujh~(~)S(~). 

By virtue of the orthogonality of the vectors in this frame, 
the second term in the equations for the first three compo- 
nents vanishes. For the fourth equation ( b  = 0), we have 
[recall that S'O'=O] 

i.e., the equation is satisfied identically, as we set out to 
prove. 

Equation ( 16) combined with the equation of motion 
thus provides a complete solution, given arbitrary particle 
motion, for spin precession in a Schwarzschild field, with the 
proviso that the source of nongeodesic motion may not sig- 
nificantly distort the gravitational background field. A gyro- 
scope in an airplane or rocket, for example, will satisfy this 
condition. 

We now turn once more to the case of a geodesic trajec- 
tory. With Duf/Dr = 0, we have 

The final expression for R then becomes 

For m/p 4 1, we obtain 
m I 

Q=,{- [I-(I-V~)']+ i}[p,v]. (18) 
P v2 

For v4 1, this reduces to the equation given by S~h i f f ,~  

The precession rate obviously depends on the choice of refer- 
ence frame L, which is determined by the coordinate system. 
In a hyperbolic trajectory, the total spin-rotation angle is the 
same for all metrics that become Cartesian at infinity. Inte- 
grating Eq. ( 18) along the straight line 6 = vt, 7 = 6,  = 0, 
we obtain 

Note that in reference frame R, one of the axes points along 

the direction of v, so if we integrate a,, along the trajectory, 
we obtain a particle-velocity rotation angle after the field has 
passed": 

2m I+ vZ 
( P R 3 - - -  b v2 

This means that as v- 1, the spin tends to turn jointly with 
the trajectory [see ( 19) for v- 11. 

4. SPIN PRECESSION IN A REISSNER-NORDSTRaM FIELD 

The technique developed in the preceding sections can 
easily be generalized to the case of a test particle with spin 
moving in a Reissner-Nordstrrm field, which has a squared 
world-line elementI6 

and an electromagnetic vector potential Ai equal to 

where m and e are the mass and charge of the central body, 
respectively. We assume here that e<m in order not to have 
to deal with a naked singularity. 

The reason it is possible to generalize the approach tak- 
en in Sec. 2 to the metric (20) is that there exists a coordinate 
transformation that takes the field (20) into a form analo- 
gous to (5): it is easy to show that after a transformation 

the metric (20) acquires the form 

R - ~  dsZ = --;; dt2-g+2(d~2+dqZ+db2), (23) 
0 

and the vector potential becomes Ai = (e/pg+,O,O,O). By 
analogy with the Schwarzschild field, we call (t, p) isotropic 
coordinates. The metric (23) was apparently first developed 
in Ref. 17, although the gravitational field (23) of a charged 
point particle was obtained directly from the Einstein equa- 
tions, and the coordinate transformation (22) relating the 
metrics (20) and (23) thus went undiscovered. 

We see from the form of the metric (23) that all of the 
structures of Sec. 2 carry over into Reissner-Nordstrrm 
space in isotropic coordinates. Without dwelling on the de- 
tails, we present here the most important results. The labora- 
tory frame for this space takes the form 

and the Lorentz frame obtained from (24) via a rotationless 
Lorentz transformation becomes 
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If we then make use of Eq. ( lo),  which holds for an arbitrary 
gravitational field, Eq. (25) yields the rate of spin preces- 
sion: 

(v"Q-v"~") 
Q,"= ( g - r - I )  

v2 

which reduces to ( 1 1 ) when e = 0. 
This latter expression can be sharpened somewhat if the 

equation of motion of the test particle is known. For definite- 
ness, consider a charged particle with charge q, and moving 
freely (no coupling) in the field (23). The velocity vector u' 
of this particle will satisfy the equation 

whereupon we have 

Substituting (27) into (26), we obtain 

Since the charge on the central body enters into the metric 
expression (23) only the ratio in e 2 / ~ '  and we are assuming 
e<m, we find that to first order in m/p, the spin of a neutral 
particle precesses in a weak gravitational field at the same 
rate as given by ( 18) for the Schwarzschild field. In this 
approximation, the contrast with the Schwarzschild field 
appears only for a charged particle. For e/p< 1, the addi- 
tional term a, in the precession rate becomes 

This equation describes the precession of the spin of a 
charged particle in a Coulomb field. 

5. SPIN PRECESSION IN AN ARBITRARY WEAK 
GRAVITATIONAL FIELD 

We shall now examine the motion of a particle with spin 
in an arbitary weak gravitational field described by the met- 
ric 

where vik = diag( 1, - 1, - 1, - 1) is the metric of Min- 
kowski space, and 1 hi, 1 4 1. 

a) Choice of a laboratory frame. The principal property 
characterizing the laboratory frame is that its timelike 
vector I{, ,  coincides with the velocity vector ui of some 

particle at rest in the given coordinate system: ui 
= (g, "2,0,0,0). Thus, 

We now make use of the most restrictive possible orthonor- 
mality conditions for the remaining vectors I ia, . The re- 
quirement of orthogonality between the I ;,, and I {,, im- 
plies that 

If we take (32) into account, the remaining orthonormality 
relations take the form 

where a#,p,v = 1,2,3. Equation (33) cannot be solved for 
the I , , , ,  in an arbitrary gravitational field. Instead,, we at- 
tempt to carry out the appropriate calculations for the weak 
field (30), for which we obtain 

with vik = vik. We seek components I,,,, of the reference 
frame in the form 

where B,, = O(h), such that in the absence of a gravitation- 
al field, the frame I :) is transformed into the natural labora- 
tory frame (3)  for Minkowski space, 

~:(.,==6:~,. 

Substitution of (34) and (35) into (33) yields 

Separating Ba8 into symmetric and antisymmetic parts, Ba8 
=B(,) +Bla6 1, where B<ap) = h(BaP + Boa ) and B[aD 1 

= 4 (Ba8 - Bga ), we find from (7 )  that 

in which Blab is arbitrary. The simplest way to reduce the 
vectors I,,,, to a specific usable form is to set BIa6 , equal to 
zero." Thus, to O(h 2 ) ,  the laboratory frame that we have 
chosen takes the form 

Note that because of the way in which we have broken 
out the quantities v, and h,, it is impossible to put together 
an antisymmetric second-rank tensor linear in h,, . To do so 
would require other expressions-specifically, second de- 
rivatives of the metric tensor g,,, such as (h,,,, 
- h,k,rm )vkrn. 

In practical terms, a laboratory frame is characterized 
by the fact that it is stationary with respect to a selected 
frame of reference (the sun, for example), and does not ro- 
tate with respect to the fixed (i.e., infinitely distant) stars. 
The frame (37) naturally satisfies the first condition, but its 
interrelation with starlight remains to be elucidated. In this 
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regard, we cannot guarantee that the precession rate that we 
may calculate at some time in the future will agree locally (in 
time) with feasible experimental measurements. For open 
trajectories in the gravitational field of an isolated system, 
however, the angle by which the spin rotates will perforce 
agree with the experimental value, since in the infinite 
depths of space, the frame (37) coincides with the natural 
laboratory frame for Minkowski space, which obviously 
does not rotate relative to the fixed stars. 

b) Construction of the Lorentz frame. When we have 
chosen our laboratory frame, the construction of the corre- 
sponding Lorentz frame is unique, according to the results of 
Sec. 2. To make our exposition clear, we shall go into a fair 
amount of detail for each stage of this construction. We 
choose an arbitrary point in space-time ( i , la)  lying on the 
world line of a particle. The metric at this point is of the form 
gik (i , la) = vik + hik . One can then easily verify that the lin- 
ear transformation 

reduces thelaboratory frame (37) at the point (7 ' , l ta)  to the 
form (3), while the metric at that point is of course diagonal- 
ized. As we showed in Sec. 2, a rotationless Lorentz transfor- 
mation at the given point and in the ( t  ',xIB) coordinate sys- 
tem looks just the same as it would in Minkowski space, that 
is, it is of the form given by Eq. (4).  

Let us now return to the original coordinate (t, xu).  The 
Lorentz matrix A: in (4), being itself a scalar under coordi- 
nate transformations (since R ;,, = A: 1 f ,, ), will only 
change under the present transformation by virtue of the fact 
that the velocities v'" and fl in the ( t  ', x'") and (t, xS) sys- 
tems are related by 

If we then substitute (39) into Eq. (4), we find that the 
rotationless Lorentz transformation matrix at the point 
(i,za) in the (t,xa) coordinate system takes the form 

1 + - v ~ v ~ v ~ v ~ )  - -If- V ~ U ~ [ V ~ V % ~ +  (h0+2v%0r) dl, (40) 
v2 2u2 

Next let us operate with this matrix 11x40)  on the frame 
(37) at the point ( i , la) ,  obtaining as a result the Lorentz 
frame A at the point (;,la). Furthermore, note that we ori- 
ginally chose this point arbitrarily, so our construction is 
equally valid for any point in space-time. Thus, the Lorentz 
frame A obtained via a rotationless Lorentz transformation 
from the laboratory frame L (37) in the space (30) is, to 
order Oh ', 

c) Spin precession rate. Substituting the components of 
the Lorentz frame (4 1 ) into Eq. ( lo),  we have to order h ' 

Equation ( 10) for the rate of spin precession also holds for 
nongeodesic motion of a particle, so in combination with the 
particle's equation of motion, it gives a complete description 
of spin precession in an arbitrary gravitational field. Return- 
ing to the case of a test particle following a geodesic trajec- 
tory, we see that the equation of motion implies that 

Substituting (43) into (42), we have 
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In some sense, Eqs. (42) and (44) are the ultimate end- 
products of the development in the present section. Let us 
examine various limiting cases of these two equations. Let- 
ting the particle velocity v approach zero in (42) and retain- 
ing terms linear in u, we obtain 

In the post-Newtonian approximation for the gravitational 
field," we have 

where m is the mass and J" the angular momentum of the 
body responsible for the field. Equation (45) then becomes 

Q;~f='/~(v"d"-v"d~) +2 (vUcp,,+v"q,x) +1/2(g~,X-gY,o).  

This is the same as the corresponding equation for a gyro- 
scope given in Ref. 19 (taking into account the definition of 
the acceleration a", of course). Finally, to conclude our ex- 
amination of the post-Newtonian approximation, let us ap- 
ply it to the general equations (42) and (44), giving the rate 
of spin precession of a relativistic particle in that approxima- 
tion, 

and, taking the geodesic equation into consideration, 

If in this equation we set the angular momentum J a t o  zero, 
the remainder describes the precession of the spin of a rela- 
tivistic particle in a Schwarzschild field. This calculation 
was first carried out in Ref. 13. 

Equation (44) tends to a finite limit as the particle ve- 
locity v goes to unity: 

We have thus managed to find rate of precession of the 
spin of a massless particle, such as a neutrino, as well as the 
rate of precession of the polarization vector of a photon, 
since the latter also undergoes parallel transport along its 
trajectory (a  geodesic) ." The two final terms in (49 ) are the 
most interesting, since they contain the component of the 
three-dimensional rate of precession fl parallel to the pho- 
ton velocity v. It is easy to imagine that that is the part of fl 
that describes the rate at which the plane of polarization of 
the photon precesses. Consider, for example, a particle that 
at a given moment t is moving along the x axis. The compo- 
nent of fl parallel to v is then 

This expression was first derived in Ref. 21 in a different 
manner, motivated by heuristic considerations. To order h ', 
the total rotation angle 19 of the plane of polarization for an 
open trajectory in the post-Newtonian approximation is 
zero, as reported in Ref. 20, and this result can readily be 
verified by using Eq. (50). 

The author is indebted to I. Yu. Kobzarev for useful 
discussions and information about Ref. 21. He also thanks 
S. I. Blinnikov and D. K. Nadezhin for useful discussions of 
the problems involved in an experimental test of general rel- 
ativity. 

"A brief discussion of this point may be found in Ref. 13. 
"A discussion of similar ambiguities in a different reference frame may be 
found in Ref. 6. 
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